1
|
Alemany I, Rose JN, Ferreira PF, Pennell DJ, Nielles‐Vallespin S, Scott AD, Doorly DJ. Realistic numerical simulations of diffusion tensor cardiovascular magnetic resonance: The effects of perfusion and membrane permeability. Magn Reson Med 2023; 90:1641-1656. [PMID: 37415339 PMCID: PMC10952789 DOI: 10.1002/mrm.29737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To study the sensitivity of diffusion tensor cardiovascular magnetic resonance (DT-CMR) to microvascular perfusion and changes in cell permeability. METHODS Monte Carlo (MC) random walk simulations in the myocardium have been performed to simulate self-diffusion of water molecules in histology-based media with varying extracellular volume fraction (ECV) and permeable membranes. The effect of microvascular perfusion on simulations of the DT-CMR signal has been incorporated by adding the contribution of particles traveling through an anisotropic capillary network to the diffusion signal. The simulations have been performed considering three pulse sequences with clinical gradient strengths: monopolar stimulated echo acquisition mode (STEAM), monopolar pulsed-gradient spin echo (PGSE), and second-order motion-compensated spin echo (MCSE). RESULTS Reducing ECV intensifies the diffusion restriction and incorporating membrane permeability reduces the anisotropy of the diffusion tensor. Widening the intercapillary velocity distribution results in increased measured diffusion along the cardiomyocytes long axis when the capillary networks are anisotropic. Perfusion amplifies the mean diffusivity for STEAM while the opposite is observed for short diffusion encoding time sequences (PGSE and MCSE). CONCLUSION The effect of perfusion on the measured diffusion tensor is reduced using an increased reference b-value. Our results pave the way for characterization of the response of DT-CMR to microstructural changes underlying cardiac pathology and highlight the higher sensitivity of STEAM to permeability and microvascular circulation due to its longer diffusion encoding time.
Collapse
Affiliation(s)
- Ignasi Alemany
- Department of AeronauticsImperial College LondonLondonUK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Jan N. Rose
- Department of AeronauticsImperial College LondonLondonUK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
2
|
Random walk diffusion simulations in semi-permeable layered media with varying diffusivity. Sci Rep 2022; 12:10759. [PMID: 35750717 PMCID: PMC9232609 DOI: 10.1038/s41598-022-14541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
In this paper we present random walk based solutions to diffusion in semi-permeable layered media with varying diffusivity. We propose a novel transit model for solving the interaction of random walkers with a membrane. This hybrid model is based on treating the membrane permeability and the step change in diffusion coefficient as two interactions separated by an infinitesimally small layer. By conducting an extensive analytical flux analysis, the performance of our hybrid model is compared with a commonly used membrane transit model (reference model). Numerical simulations demonstrate the limitations of the reference model in dealing with step changes in diffusivity and show the capability of the hybrid model to overcome this limitation and to offer substantial gains in computational efficiency. The suitability of both random walk transit models for the application to simulations of diffusion tensor cardiovascular magnetic resonance (DT-CMR) imaging is assessed in a histology-based domain relevant to DT-CMR. In order to demonstrate the usefulness of the new hybrid model for other possible applications, we also consider a larger range of permeabilities beyond those commonly found in biological tissues.
Collapse
|
3
|
Slator PJ, Palombo M, Miller KL, Westin C, Laun F, Kim D, Haldar JP, Benjamini D, Lemberskiy G, de Almeida Martins JP, Hutter J. Combined diffusion-relaxometry microstructure imaging: Current status and future prospects. Magn Reson Med 2021; 86:2987-3011. [PMID: 34411331 PMCID: PMC8568657 DOI: 10.1002/mrm.28963] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T 1 , T 2 , and T 2 ∗ . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.
Collapse
Affiliation(s)
- Paddy J. Slator
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Marco Palombo
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Carl‐Fredrik Westin
- Department of RadiologyBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Frederik Laun
- Institute of RadiologyUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Daeun Kim
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Dan Benjamini
- The Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMDUSA
- The Center for Neuroscience and Regenerative MedicineUniformed Service University of the Health SciencesBethesdaMDUSA
| | | | - Joao P. de Almeida Martins
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Department of Radiology and Nuclear MedicineSt. Olav’s University HospitalTrondheimNorway
| | - Jana Hutter
- Centre for Biomedical EngineeringSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
- Centre for the Developing BrainSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
| |
Collapse
|
4
|
Benjamini D, Basser PJ. Multidimensional correlation MRI. NMR IN BIOMEDICINE 2020; 33:e4226. [PMID: 31909516 PMCID: PMC11062766 DOI: 10.1002/nbm.4226] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 05/23/2023]
Abstract
Multidimensional correlation spectroscopy is emerging as a novel MRI modality that is well suited for microstructure and microdynamic imaging studies, especially of biological specimens. Conventional MRI methods only provide voxel-averaged and mostly macroscopically averaged information; these methods cannot disentangle intra-voxel heterogeneity on the basis of both water mobility and local chemical interactions. By correlating multiple MR contrast mechanisms and processing the data in an integrated manner, correlation spectroscopy is able to resolve the distribution of water populations according to their chemical and physical interactions with the environment. The use of a non-parametric, phenomenological representation of the multidimensional MR signal makes no assumptions about tissue structure, thereby allowing the study of microscopic structure and composition of complex heterogeneous biological systems. However, until recently, vast data requirements have confined these types of measurement to non-localized NMR applications and prevented them from being widely and successfully used in conjunction with imaging. Recent groundbreaking advancements have allowed this powerful NMR methodology to be migrated to MRI, initiating its emergence as a promising imaging approach. This review is not intended to cover the entire field of multidimensional MR; instead, it focuses on pioneering imaging applications and the challenges involved. In addition, the background and motivation that have led to multidimensional correlation MR development are discussed, along with the basic underlying mathematical concepts. The goal of the present work is to provide the reader with a fundamental understanding of the techniques developed and their potential benefits, and to provide guidance to help refine future applications of this technology.
Collapse
Affiliation(s)
- Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Peter J. Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Rose JN, Nielles-Vallespin S, Ferreira PF, Firmin DN, Scott AD, Doorly DJ. Novel insights into in-vivo diffusion tensor cardiovascular magnetic resonance using computational modeling and a histology-based virtual microstructure. Magn Reson Med 2018; 81:2759-2773. [PMID: 30350880 PMCID: PMC6637383 DOI: 10.1002/mrm.27561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Purpose To develop histology‐informed simulations of diffusion tensor cardiovascular magnetic resonance (DT‐CMR) for typical in‐vivo pulse sequences and determine their sensitivity to changes in extra‐cellular space (ECS) and other microstructural parameters. Methods We synthesised the DT‐CMR signal from Monte Carlo random walk simulations. The virtual tissue was based on porcine histology. The cells were thickened and then shrunk to modify ECS. We also created idealised geometries using cuboids in regular arrangement, matching the extra‐cellular volume fraction (ECV) of 16–40%. The simulated voxel size was 2.8 × 2.8 × 8.0 mm3 for pulse sequences covering short and long diffusion times: Stejskal–Tanner pulsed‐gradient spin echo, second‐order motion‐compensated spin echo, and stimulated echo acquisition mode (STEAM), with clinically available gradient strengths. Results The primary diffusion tensor eigenvalue increases linearly with ECV at a similar rate for all simulated geometries. Mean diffusivity (MD) varies linearly, too, but is higher for the substrates with more uniformly distributed ECS. Fractional anisotropy (FA) for the histology‐based geometry is higher than the idealised geometry with low sensitivity to ECV, except for the long mixing time of the STEAM sequence. Varying the intra‐cellular diffusivity (DIC) results in large changes of MD and FA. Varying extra‐cellular diffusivity or using stronger gradients has minor effects on FA. Uncertainties of the primary eigenvector orientation are reduced using STEAM. Conclusions We found that the distribution of ECS has a measurable impact on DT‐CMR parameters. The observed sensitivity of MD and FA to ECV and DIC has potentially interesting applications for interpreting in‐vivo DT‐CMR parameters.
Collapse
Affiliation(s)
- Jan N Rose
- Department of Aeronautics, Imperial College London, London, United Kingdom
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Denis J Doorly
- Department of Aeronautics, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Johnson M, Peakall J, Jia X, Fairweather M, Harbottle D, Biggs S, Hunter TN. Enhanced gas migration through permeable bubble networks within consolidated soft sediments. AIChE J 2018. [DOI: 10.1002/aic.16223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Johnson
- School of Chemical and Process Engineering; University of Leeds; Leeds LS2 9JT U.K
| | - Jeffrey Peakall
- School of Earth and Environment; University of Leeds; Leeds LS2 9JT U.K
| | - Xiaodong Jia
- School of Chemical and Process Engineering; University of Leeds; Leeds LS2 9JT U.K
| | - Michael Fairweather
- School of Chemical and Process Engineering; University of Leeds; Leeds LS2 9JT U.K
| | - David Harbottle
- School of Chemical Engineering; University of Queensland; Brisbane, QLD 4072 Australia
| | - Simon Biggs
- School of Chemical Engineering; University of Queensland; Brisbane, QLD 4072 Australia
| | - Timothy N. Hunter
- School of Chemical and Process Engineering; University of Leeds; Leeds LS2 9JT U.K
| |
Collapse
|
7
|
Mitchell J, Fordham EJ. Contributed review: nuclear magnetic resonance core analysis at 0.3 T. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:111502. [PMID: 25430091 DOI: 10.1063/1.4902093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.
Collapse
Affiliation(s)
- Jonathan Mitchell
- Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom
| | - Edmund J Fordham
- Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom
| |
Collapse
|
8
|
Mitchell J, Gladden LF, Chandrasekera TC, Fordham EJ. Low-field permanent magnets for industrial process and quality control. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 76:1-60. [PMID: 24360243 DOI: 10.1016/j.pnmrs.2013.09.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 05/13/2023]
Abstract
In this review we focus on the technology associated with low-field NMR. We present the current state-of-the-art in low-field NMR hardware and experiments, considering general magnet designs, rf performance, data processing and interpretation. We provide guidance on obtaining the optimum results from these instruments, along with an introduction for those new to low-field NMR. The applications of lowfield NMR are now many and diverse. Furthermore, niche applications have spawned unique magnet designs to accommodate the extremes of operating environment or sample geometry. Trying to capture all the applications, methods, and hardware encompassed by low-field NMR would be a daunting task and likely of little interest to researchers or industrialists working in specific subject areas. Instead we discuss only a few applications to highlight uses of the hardware and experiments in an industrial environment. For details on more particular methods and applications, we provide citations to specialized review articles.
Collapse
Affiliation(s)
- J Mitchell
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom; Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom
| | - L F Gladden
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom.
| | - T C Chandrasekera
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | - E J Fordham
- Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom
| |
Collapse
|
9
|
Cerebral blood volume affects blood-brain barrier integrity in an acute transient stroke model. J Cereb Blood Flow Metab 2013; 33:898-905. [PMID: 23462571 PMCID: PMC3677109 DOI: 10.1038/jcbfm.2013.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insufficient vascular reserve after an ischemic stroke may induce biochemical cascades that subsequently deteriorate the blood-brain barrier (BBB) function. However, the direct relationship between poor cerebral blood volume (CBV) restoration and BBB disruption has not been examined in acute stroke. To quantify BBB integrity at acute stages of transient stroke, in particular for cases in which extravasation of the standard contrast agent (Gd-DTPA) is not observed, we adopted the water exchange index (WEI), a novel magnetic resonance image-derived parameter to estimate the water permeability across the BBB. The apparent diffusion coefficient (ADC) and R2 relaxation rate constant were also measured for outlining the tissue abnormality, while fractional CBV and WEI were quantified for assessing vascular alterations. The significantly decreased ADC and R2 in the ischemic cortices did not correlate with the changes in CBV or WEI. In contrast, a strong negative correlation between the ipsilesional WEI and CBV was found, in which stroke mice were clustered into two groups: (1) high WEI and low CBV and (2) normal WEI and CBV. The low CBV observed for mice with a disrupted BBB, characterized by a high WEI, indicates the importance of CBV restoration for maintaining BBB stability in acute stroke.
Collapse
|
10
|
Bernin D, Topgaard D. NMR diffusion and relaxation correlation methods: New insights in heterogeneous materials. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Antkowiak PF, Vandsburger MH, Epstein FH. Quantitative pancreatic β cell MRI using manganese-enhanced Look-Locker imaging and two-site water exchange analysis. Magn Reson Med 2011; 67:1730-9. [PMID: 22189705 DOI: 10.1002/mrm.23139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/16/2011] [Accepted: 07/14/2011] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell imaging would be useful in monitoring the progression of and therapies for diabetes. The purpose of this study was to develop and evaluate quantitative β-cell MRI using manganese (Mn(2+)) labeling of β cells, T1 mapping, and a two-site water exchange model. Normal, pharmacologically-treated, and severely diabetic mice underwent injection of MnCl(2). Pancreatic water proton T1 relaxation was measured using Look-Locker MRI, and two-site water exchange analysis was used to estimate model parameters including the intracellular water proton relaxation rate constant (R1(ic)) and the intracellular fraction as indicators of β-cell function and mass, respectively. Logarithmic plots of T1 relaxation revealed two distinct proton pools relaxing with different T1s, and the two-site water exchange model fit the measured T1 relaxation data better than a monoexponential model. The intracellular R1(ic) time course revealed the kinetics of β-cell Mn(2+) labeling. Pharmacological treatments with nifedipine, tolbutamide, and diazoxide altered R1(ic), indicating that beta cell function was a determinant of Mn(2+) uptake. Intracellular fraction was significantly higher in mice with normal β cell mass than in diabetic mice (14.9% vs. 14.4%, P < 0.05). Two-site water exchange analysis of T1 relaxation of the Mn(2+)-enhanced pancreas is a promising method for quantifying β cell volume fraction and function.
Collapse
Affiliation(s)
- Patrick F Antkowiak
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
12
|
Ackerman JJH, Neil JJ. The use of MR-detectable reporter molecules and ions to evaluate diffusion in normal and ischemic brain. NMR IN BIOMEDICINE 2010; 23:725-33. [PMID: 20669147 PMCID: PMC3080095 DOI: 10.1002/nbm.1530] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a result of the technical challenges associated with distinguishing the MR signals arising from intracellular and extracellular water, a variety of endogenous and exogenous MR-detectable molecules and ions have been employed as compartment-specific reporters of water motion. Although these reporter molecules and ions do not have the same apparent diffusion coefficients (ADCs) as water, their ADCs are assumed to be directly related to the ADC of the water in which they are solvated. This approach has been used to probe motion in the intra- and extracellular space of cultured cells and intact tissue. Despite potential interpretative challenges with the use of reporter molecules or ions and the wide variety used, the following conclusions are consistent considering all studies: (i) the apparent free diffusive motion in the intracellular space is approximately one-half of that in dilute aqueous solution; (ii) ADCs for intracellular and extracellular water are similar; (iii) the intracellular ADC decreases in association with brain injury. These findings provide support for the hypothesis that the overall brain water ADC decrease that accompanies brain injury is driven primarily by a decrease in the ADC of intracellular water. We review the studies supporting these conclusions, and interpret them in the context of explaining the decrease in overall brain water ADC that accompanies brain injury.
Collapse
Affiliation(s)
- Joseph J H Ackerman
- Department of Chemistry, Campus Box 1134, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
13
|
Zhang Y, Poirer-Quinot M, Springer CS, Balschi JA. Discrimination of intra- and extracellular 23Na+ signals in yeast cell suspensions using longitudinal magnetic resonance relaxography. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:28-37. [PMID: 20430659 PMCID: PMC2885488 DOI: 10.1016/j.jmr.2010.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 03/01/2010] [Accepted: 03/29/2010] [Indexed: 05/16/2023]
Abstract
This study tested the ability of MR relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+)23Na+ signals using their longitudinal relaxation time constant (T1) values. Na+-loaded yeast cell (Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na+T1 differences were examined: a selective Nae+T1 decrease induced by an extracellular relaxation reagent (RRe), GdDOTP5-; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SRe), TmDOTP5-, were used to validate the MRR measurements. With 12.8 mM RRe, the 23Nae+T1 was 2.4 ms and the 23Nai+T1 was 9.5 ms (9.4 T, 24 degrees C). The Na+ amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RRe or by MRS/SRe. Without RRe, the Na+-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (+/-0.3) ms and 32.7 (+/-2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (+/-0.06); while Nae+ was higher, 1.43 (+/-0.12) compared with MRS/SRe measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na+ flux measurements; with RRe for animal studies and without RRe for humans.
Collapse
Affiliation(s)
- Yajie Zhang
- Physiological NMR Core Laboratory, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|