1
|
Weiser PJ, Langs G, Motyka S, Bogner W, Courvoisier S, Hoffmann M, Klauser A, Andronesi OC. WALINET: A water and lipid identification convolutional neural network for nuisance signal removal in 1 H $$ {}^1\mathrm{H} $$ MR spectroscopic imaging. Magn Reson Med 2025; 93:1430-1442. [PMID: 39737778 PMCID: PMC11782715 DOI: 10.1002/mrm.30402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025]
Abstract
PURPOSE Proton magnetic resonance spectroscopic imaging ( 1 H $$ {}^1\mathrm{H} $$ -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain 1 H $$ {}^1\mathrm{H} $$ -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution 1 H $$ {}^1\mathrm{H} $$ -MRSI to accurately remove lipid and water signals while preserving the metabolite signal. The potential of supervised neural networks for this task remains unexplored, despite their success for other MRSI processing. METHODS We introduce a deep learning method based on a modified Y-NET network for water and lipid removal in whole-brain 1 H $$ {}^1\mathrm{H} $$ -MRSI. The WALINET (WAter and LIpid neural NETwork) was compared with conventional methods such as the state-of-the-art lipid L2 regularization and Hankel-Lanczos singular value decomposition (HLSVD) water suppression. Methods were evaluated on simulated models and in vivo whole-brain MRSI using NMRSE, SNR, CRLB, and FWHM metrics. RESULTS WALINET is significantly faster and needs 8s for high-resolution whole-brain MRSI, compared with 42min for conventional HLSVD+L2. WALINET suppresses lipid and water in the brain by 25-45 and 34-53-fold, respectively. WALINET has better performance than HLSVD+L2, providing: (1) more lipid removal with 41% lower NRMSE; (2) better metabolite signal preservation with 71% lower NRMSE in simulated data; 155% higher SNR and 50% lower CRLB in in vivo data. Metabolic maps obtained by WALINET in healthy subjects and patients show better gray-/white-matter contrast with more visible structural details. CONCLUSIONS WALINET has superior performance for nuisance signal removal and metabolite quantification on whole-brain 1 H $$ {}^1\mathrm{H} $$ -MRSI compared with conventional state-of-the-art techniques. This represents a new application of deep learning for MRSI processing, with potential for automated high-throughput workflow.
Collapse
Affiliation(s)
- Paul J. Weiser
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Computational Imaging Research Lab–Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Georg Langs
- Computational Imaging Research Lab–Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Stanislav Motyka
- High Field MR Center–Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Wolfgang Bogner
- High Field MR Center–Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Sébastien Courvoisier
- Center for Biomedical Imaging (CIBM)GenevaSwitzerland
- Department of Radiology and Medical Informatics, University of GenevaGenevaSwitzerland
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Antoine Klauser
- Advanced Clinical Imaging TechnologySiemens Healthineers International AGLausanneSwitzerland
| | - Ovidiu C. Andronesi
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Simicic D, Alves B, Mosso J, Briand G, Lê TP, van Heeswijk RB, Starčuková J, Lanz B, Klauser A, Strasser B, Bogner W, Cudalbu C. Fast High-Resolution Metabolite Mapping in the rat Brain Using 1H-FID-MRSI at 14.1 T. NMR IN BIOMEDICINE 2025; 38:e5304. [PMID: 39711201 DOI: 10.1002/nbm.5304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1 T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage, and spatial resolution in the rat brain and developed a custom dedicated processing pipeline with a graphical user interface for Bruker 1H-FID-MRSI: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis set and in vivo measured MM, provided reliable fits for the data at acquisition delays of 1.30 ms. The resulting Cramér-Rao lower bounds were sufficiently low (< 30%) for eight metabolites of interest (total creatine, N-acetylaspartate, N-acetylaspartate + N-acetylaspartylglutamate, total choline, glutamine, glutamate, myo-inositol, and taurine), leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained with one and two averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high reproducibility over time. We demonstrated that the increased SNR and spectral resolution at 14.1 T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 min using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1 T provided robust, reproducible, and high-quality metabolic mapping of brain metabolites with minimal technical limitations.
Collapse
Affiliation(s)
- Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Brayan Alves
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Functional and Metabolic Imaging, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Guillaume Briand
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thanh Phong Lê
- Laboratory of Functional and Metabolic Imaging, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jana Starčuková
- Institute of Scientific Instruments of the CAS, Brno, Czech Republic
| | - Bernard Lanz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antoine Klauser
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Bernhard Strasser
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
Kumaragamage C, McIntyre S, Nixon TW, De Feyter HM, de Graaf RA. High-quality lipid suppression and B0 shimming for human brain 1H MRSI. Neuroimage 2024; 300:120845. [PMID: 39276817 PMCID: PMC11540284 DOI: 10.1016/j.neuroimage.2024.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) is a powerful technique that can map the metabolic profile in the brain non-invasively. Extracranial lipid contamination and insufficient B0 homogeneity however hampers robustness, and as a result has hindered widespread use of MRSI in clinical and research settings. Over the last six years we have developed highly effective extracranial lipid suppression methods with a second order gradient insert (ECLIPSE) utilizing inner volume selection (IVS) and outer volume suppression (OVS) methods. While ECLIPSE provides > 100-fold in lipid suppression with modest radio frequency (RF) power requirements and immunity to B1+ field variations, axial coverage is reduced for non-elliptical head shapes. In this work we detail the design, construction, and utility of MC-ECLIPSE, a pulsed second order gradient coil with Z2 and X2Y2 fields, combined with a 54-channel multi-coil (MC) array. The MC-ECLIPSE platform allows arbitrary region of interest (ROI) shaped OVS for full-axial slice coverage, in addition to MC-based B0 field shimming, for robust human brain proton MRSI. In vivo experiments demonstrate that MC-ECLIPSE allows axial brain coverage of 92-95 % is achieved following arbitrary ROI shaped OVS for various head shapes. The standard deviation (SD) of the residual B0 field following SH2 and MC shimming were 25 ± 9 Hz and 18 ± 8 Hz over a 5 cm slab, and 18 ± 5 Hz and 14 ± 6 Hz over a 1.5 cm slab, respectively. These results demonstrate that B0 magnetic field shimming with the MC array supersedes second order harmonic capabilities available on standard MRI systems for both restricted and large ROIs. Furthermore, MC based B0 shimming provides comparable shimming performance to an unrestricted SH5 shim set for both restricted, and 5-cm slab shim challenges. Phantom experiments demonstrate the high level of localization performance achievable with MC-ECLIPSE, with ROI edge chemical shift displacements ranging from 1-3 mm with a median value of 2 mm, and transition width metrics ranging from 1-2.5 mm throughout the ROI edge. Furthermore, MC based B0 shimming is comparable to performance following a full set of unrestricted spherical harmonic fields up to order 5. Short echo time MRSI and GABA-edited MRSI acquisitions in the human brain following MC-shimming and arbitrary ROI shaping demonstrate full-axial slice coverage and extracranial lipid artifact free spectra. MC-ECLIPSE allows full-axial coverage and robust MRSI acquisitions, while allowing interrogation of cortical tissue proximal to the skull, which has significant value in a wide range of neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA.
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Swago S, Elliott MA, Nanga RPR, Wilson NE, Cember A, Reddy R, Witschey WR. Quantification of cross-relaxation in downfield 1 H MRS at 7 T in human calf muscle. Magn Reson Med 2023; 90:11-20. [PMID: 36807934 PMCID: PMC10149600 DOI: 10.1002/mrm.29615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
PURPOSE The purpose of this study was to characterize the 1 H downfield MR spectrum from 8.0 to 10.0 ppm of human skeletal muscle at 7 T and determine the T1 and cross-relaxation rates of observed resonances. METHODS We performed downfield MRS in the calf muscle of 7 healthy volunteers. Single-voxel downfield MRS was collected using alternately selective or broadband inversion-recovery sequences and spectrally selective 90° E-BURP RF pulse excitation centered at 9.0 ppm with bandwidth = 600 Hz (2.0 ppm). MRS was collected using TIs of 50-2500 ms. We modeled recovery of the longitudinal magnetization of three observable resonances using two models: (1) a three-parameter model accounting for the apparent T1 recovery and (2) a Solomon model explicitly including cross-relaxation effects. RESULTS Three resonances were observed in human calf muscle at 7 T at 8.0, 8.2, and 8.5 ppm. We found broadband (broad) and selective (sel) inversion recovery T1 = mean ± SD (ms): T1-broad,8.0ppm = 2108.2 ± 664.5, T1-sel,8.0ppm = 753.6 ± 141.0 (p = 0.003); T1-broad,8.2ppm = 2033.5 ± 338.4, T1-sel,8.2ppm = 135.3 ± 35.3 (p < 0.0001); and T1-broad,8.5ppm = 1395.4 ± 75.4, T1-sel,8.5ppm = 107.1 ± 40.0 (p < 0.0001). Using the Solomon model, we found T1 = mean ± SD (ms): T1-8.0ppm = 1595.6 ± 491.1, T1-8.2ppm = 1737.2 ± 963.7, and T1-8.5ppm = 849.8 ± 282.0 (p = 0.04). Post hoc tests corrected for multiple comparisons showed no significant difference in T1 between peaks. The cross-relaxation rate σAB = mean ± SD (Hz) of each peak was σAB,8.0ppm = 0.76 ± 0.20, σAB,8.2ppm = 5.31 ± 2.27, and σAB,8.5ppm = 7.90 ± 2.74 (p < 0.0001); post hoc t-tests revealed the cross-relaxation rate of the 8.0 ppm peak was significantly slower than the peaks at 8.2 ppm (p = 0.0018) and 8.5 ppm (p = 0.0005). CONCLUSION We found significant differences in effective T1 and cross-relaxation rates of 1 H resonances between 8.0 and 8.5 ppm in the healthy human calf muscle at 7 T.
Collapse
Affiliation(s)
- Sophia Swago
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA
| | - Mark A. Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Neil E. Wilson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abigail Cember
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Seginer A, Keith GA, Porter DA, Schmidt R. Artifact suppression in readout-segmented consistent K-t space EPSI (RS-COKE) for fast 1 H spectroscopic imaging at 7 T. Magn Reson Med 2022; 88:2339-2357. [PMID: 35975965 PMCID: PMC9804880 DOI: 10.1002/mrm.29373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE Fast proton (1 H) MRSI is an important diagnostic tool for clinical investigations, providing metabolic and spatial information. MRSI at 7 T benefits from increased SNR and improved separation of peaks but requires larger spectral widths. RS-COKE (Readout-Segmented Consistent K-t space Epsi) is an echo planar spectroscopic imaging (Epsi) variant capable to support the spectral width required for human brain metabolites spectra at 7 T. However, mismatches between readout segments lead to artifacts, particularly when subcutaneous lipid signals are not suppressed. In this study, these mismatches and their effects are analyzed and reduced. METHODS The following corrections to the data were performed: i) frequency-dependent phase corrections; ii) k-space trajectory corrections, derived from short reference scans; and iii) smoothing of data at segment transitions to mitigate the effect of residual mismatches. The improvement was evaluated by performing single-slice RS-COKE on a head-shaped phantom with a "lipid" layer and healthy subjects, using varying resolutions and durations ranging from 4.1 × 4.7 × 15 mm3 in 5:46 min to 3.1 × 3.3 × 15 mm3 in 13:07 min. RESULTS Artifacts arising from the readout-segmented acquisition were substantially reduced, thus providing high-quality spectroscopic imaging in phantom and human scans. LCModel fitting of the human data resulted in a relative Cramer-Rao lower bounds within 6% for NAA, Cr, and Cho images in the majority of the voxels. CONCLUSION Using the new reference scans and reconstruction steps, RS-COKE was able to deliver fast 1 H MRSI at 7 T, overcoming the spectral width limitation of standard EPSI at this field strength.
Collapse
Affiliation(s)
| | - Graeme A. Keith
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUnited Kingdom
| | - David A. Porter
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUnited Kingdom
| | - Rita Schmidt
- Department of Brain SciencesWeizmann Institute of ScienceRehovotIsrael,The Azrieli National Institute for Human Brain Imaging and ResearchWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
6
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
7
|
Klauser A, Strasser B, Thapa B, Lazeyras F, Andronesi O. Achieving high-resolution 1H-MRSI of the human brain with compressed-sensing and low-rank reconstruction at 7 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 331:107048. [PMID: 34438355 PMCID: PMC8717865 DOI: 10.1016/j.jmr.2021.107048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/29/2021] [Accepted: 08/08/2021] [Indexed: 06/02/2023]
Abstract
Low sensitivity MR techniques such as magnetic resonance spectroscopic imaging (MRSI) greatly benefit from the gain in signal-to-noise provided by ultra-high field MR. High-resolution and whole-slab brain MRSI remains however very challenging due to lengthy acquisition, low signal, lipid contamination and field inhomogeneity. In this study, we propose an acquisition-reconstruction scheme that combines 1H free-induction-decay (FID)-MRSI sequence, short TR acquisition, compressed sensing acceleration and low-rank modeling with total-generalized-variation constraint to achieve metabolite imaging in two and three dimensions at 7 Tesla. The resulting images and volumes reveal highly detailed distributions that are specific to each metabolite and follow the underlying brain anatomy. The MRSI method was validated in a high-resolution phantom containing fine metabolite structures, and in five healthy volunteers. This new application of compressed sensing acceleration paves the way for high-resolution MRSI in clinical setting with acquisition times of 5 min for 2D MRSI at 2.5 mm and of 20 min for 3D MRSI at 3.3 mm isotropic.
Collapse
Affiliation(s)
- Antoine Klauser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Geneva, Switzerland.
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bijaya Thapa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Ovidiu Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Reducing SAR in 7T brain fMRI by circumventing fat suppression while removing the lipid signal through a parallel acquisition approach. Sci Rep 2021; 11:15371. [PMID: 34321529 PMCID: PMC8319205 DOI: 10.1038/s41598-021-94692-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ultra-high-field functional magnetic resonance imaging (fMRI) offers a way to new insights while increasing the spatial and temporal resolution. However, a crucial concern in 7T human MRI is the increase in power deposition, supervised through the specific absorption rate (SAR). The SAR limitation can restrict the brain coverage or the minimal repetition time of fMRI experiments. In the majority of today’s studies fMRI relies on the well-known gradient-echo echo-planar imaging (GRE-EPI) sequence, which offers ultrafast acquisition. Commonly, the GRE-EPI sequence comprises two pulses: fat suppression and excitation. This work provides the means for a significant reduction in the SAR by circumventing the fat-suppression pulse. Without this fat-suppression, however, lipid signal can result in artifacts due to the chemical shift between the lipid and water signals. Our approach exploits a reconstruction similar to the simultaneous-multi-slice method to separate the lipid and water images, thus avoiding undesired lipid artifacts in brain images. The lipid-water separation is based on the known spatial shift of the lipid signal, which can be detected by the multi-channel coils sensitivity profiles. Our study shows robust human imaging, offering greater flexibility to reduce the SAR, shorten the repetition time or increase the volume coverage with substantial benefit for brain functional studies.
Collapse
|
9
|
Jona G, Furman‐Haran E, Schmidt R. Realistic head-shaped phantom with brain-mimicking metabolites for 7 T spectroscopy and spectroscopic imaging. NMR IN BIOMEDICINE 2021; 34:e4421. [PMID: 33015864 PMCID: PMC7757235 DOI: 10.1002/nbm.4421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Moving to ultra-high fields (≥7 T), the inhomogeneity of both RF (B1 ) and static (B0 ) magnetic fields increases, which further motivates us to design a realistic head-shaped phantom, especially for spectroscopic imaging. Such phantoms provide images similar to the human brain and serve as a reliable tool for developing and examining methods in MRI. This study aims to develop and characterize a realistic head-shaped phantom filled with brain-mimicking metabolites for MRS and magnetic resonance spectroscopic imaging in a 7 T MRI scanner. METHODS A 3D head-shaped container with three sections-mimicking brain, muscle and precranial lipid-was constructed. The phantom was designed to provide robustness to heating, mechanical damage and leakage, with easy refilling. The head's shape and the agarose mixture were optimized to provide B0 and B1 distributions and T1 /T2 relaxation values similar to those of human brain. Eight brain-tissue-mimicking metabolites were included for spectroscopy. The phantom was evaluated for localized spectroscopy, fast spectroscopic imaging and fat suppression. RESULTS The B0 and B1 maps showed distribution similar to that of human brain, with increased B0 inhomogeneity near the nasal and ear areas and reduced B1 in the temporal lobe and brain stem regions, as expected in vivo. The metabolites' concentrations were verified by single-voxel spectroscopy, showing an average deviation of 11%. Fast spectroscopic imaging and imaging with fat suppression were demonstrated. CONCLUSION A 3D head-shaped phantom for human brain imaging and spectroscopic imaging in 7 T MRI was demonstrated, making it a realistic phantom for methodology development at 7 T.
Collapse
Affiliation(s)
- Ghil Jona
- Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Edna Furman‐Haran
- Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
- The Azrieli National Institute for Human Brain Imaging and ResearchWeizmann Institute of ScienceRehovotIsrael
| | - Rita Schmidt
- The Azrieli National Institute for Human Brain Imaging and ResearchWeizmann Institute of ScienceRehovotIsrael
- Neurobiology DepartmentWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
10
|
Kumaragamage C, De Feyter HM, Brown P, McIntyre S, Nixon TW, de Graaf RA. ECLIPSE utilizing gradient-modulated offset-independent adiabaticity (GOIA) pulses for highly selective human brain proton MRSI. NMR IN BIOMEDICINE 2021; 34:e4415. [PMID: 33001485 PMCID: PMC9472321 DOI: 10.1002/nbm.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
A multitude of extracranial lipid suppression methods exist for proton MRSI acquisitions. Popular and emerging lipid suppression methods each have their inherent set of advantages and disadvantages related to the achievable level of lipid suppression, RF power deposition, insensitivity to B1+ field and lipid T1 heterogeneity, brain coverage, spatial selectivity, chemical shift displacement (CSD) errors and the reliability of spectroscopic data spanning the observed 0.9-4.7 ppm band. The utility of elliptical localization with pulsed second order fields (ECLIPSE) was previously demonstrated with a greater than 100-fold in extracranial lipid suppression and low power requirements utilizing 3 kHz bandwidth AFP pulses. Like all gradient-based localization methods, ECLIPSE is sensitive to CSD errors, resulting in a modified metabolic profile in edge-of-ROI voxels. In this work, ECLIPSE is extended with 15 kHz bandwidth second order gradient-modulated RF pulses based on the gradient offset-independent adiabaticity (GOIA) algorithm to greatly reduce CSD and improve spatial selectivity. An adiabatic double spin-echo ECLIPSE inner volume selection (TE = 45 ms) MRSI method and an ECLIPSE outer volume suppression (TE = 3.2 ms) FID-MRSI method were implemented. Both GOIA-ECLIPSE MRSI sequences provided artifact-free metabolite spectra in vivo, with a greater than 100-fold in lipid suppression and less than 2.6 mm in-plane CSD and less than 3.3 mm transition width for edge-of-ROI voxels, representing an ~5-fold improvement compared with the parent, nongradient-modulated method. Despite the 5-fold larger bandwidth, GOIA-ECLIPSE only required a 1.9-fold increase in RF power. The highly robust lipid suppression combined with low CSD and sharp ROI edge transitions make GOIA-ECLIPSE an attractive alternative to commonly employed lipid suppression methods. Furthermore, the low RF power deposition demonstrates that GOIA-ECLIPSE is very well suited for high field (≥3 T) MRSI applications.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Fardanesh R, Marino MA, Avendano D, Leithner D, Pinker K, Thakur SB. Proton MR spectroscopy in the breast: Technical innovations and clinical applications. J Magn Reson Imaging 2019; 50:1033-1046. [PMID: 30848037 DOI: 10.1002/jmri.26700] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/20/2019] [Indexed: 01/27/2023] Open
Abstract
Proton magnetic resonance spectroscopy (MRS) is a promising noninvasive diagnostic technique for investigation of breast cancer metabolism. Spectroscopic imaging data may be obtained following contrast-enhanced MRI by applying the point-resolved spectroscopy sequence (PRESS) or the stimulated echo acquisition mode (STEAM) sequence from the MR voxel encompassing the breast lesion. Total choline signal (tCho) measured in vivo using either a qualitative or quantitative approach has been used as a diagnostic test in the workup of malignant breast lesions. In addition to tCho metabolites, other relevant metabolites, including multiple lipids, can be detected and monitored. MRS has been heavily investigated as an adjunct to morphologic and dynamic MRI to improve diagnostic accuracy in breast cancer, obviating unnecessary benign biopsies. Besides its use in the staging of breast cancer, other promising applications have been recently investigated, including the assessment of treatment response and therapy monitoring. This review provides guidance on spectroscopic acquisition and quantification methods and highlights current and evolving clinical applications of proton MRS. Level of Evidence 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Reza Fardanesh
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Adele Marino
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Italy
| | - Daly Avendano
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Sunitha B Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
12
|
Vidya Shankar R, Chang JC, Hu HH, Kodibagkar VD. Fast data acquisition techniques in magnetic resonance spectroscopic imaging. NMR IN BIOMEDICINE 2019; 32:e4046. [PMID: 30637822 DOI: 10.1002/nbm.4046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) is an important technique for assessing the spatial variation of metabolites in vivo. The long scan times in MRSI limit clinical applicability due to patient discomfort, increased costs, motion artifacts, and limited protocol flexibility. Faster acquisition strategies can address these limitations and could potentially facilitate increased adoption of MRSI into routine clinical protocols with minimal addition to the current anatomical and functional acquisition protocols in terms of imaging time. Not surprisingly, a lot of effort has been devoted to the development of faster MRSI techniques that aim to capture the same underlying metabolic information (relative metabolite peak areas and spatial distribution) as obtained by conventional MRSI, in greatly reduced time. The gain in imaging time results, in some cases, in a loss of signal-to-noise ratio and/or in spatial and spectral blurring. This review examines the current techniques and advances in fast MRSI in two and three spatial dimensions and their applications. This review categorizes the acceleration techniques according to their strategy for acquisition of the k-space. Techniques such as fast/turbo-spin echo MRSI, echo-planar spectroscopic imaging, and non-Cartesian MRSI effectively cover the full k-space in a more efficient manner per TR . On the other hand, techniques such as parallel imaging and compressed sensing acquire fewer k-space points and employ advanced reconstruction algorithms to recreate the spatial-spectral information, which maintains statistical fidelity in test conditions (ie no statistically significant differences on voxel-wise comparisions) with the fully sampled data. The advantages and limitations of each state-of-the-art technique are reviewed in detail, concluding with a note on future directions and challenges in the field of fast spectroscopic imaging.
Collapse
Affiliation(s)
- Rohini Vidya Shankar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - John C Chang
- Banner M D Anderson Cancer Center, Gilbert, AZ, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Houchun H Hu
- Department of Radiology and Medical Imaging, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Alizai H, Chang G, Regatte RR. MR Imaging of the Musculoskeletal System Using Ultrahigh Field (7T) MR Imaging. PET Clin 2019; 13:551-565. [PMID: 30219187 DOI: 10.1016/j.cpet.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MR imaging is an indispensable instrument for the diagnosis of musculoskeletal diseases. In vivo MR imaging at 7T offers many advantages, including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. There are also however technical challenges of imaging at a higher field strength compared with 1.5 and 3T MR imaging systems. We discuss the many potential opportunities as well as the challenges presented by 7T MR imaging systems and highlight recent developments in in vivo research imaging of musculoskeletal applications in general and cartilage, skeletal muscle, and bone in particular.
Collapse
Affiliation(s)
- Hamza Alizai
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| | - Gregory Chang
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Ravinder R Regatte
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
14
|
Hangel G, Strasser B, Považan M, Heckova E, Hingerl L, Boubela R, Gruber S, Trattnig S, Bogner W. Ultra-high resolution brain metabolite mapping at 7 T by short-TR Hadamard-encoded FID-MRSI. Neuroimage 2018; 168:199-210. [DOI: 10.1016/j.neuroimage.2016.10.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022] Open
|
15
|
Li Y, Lafontaine M, Chang S, Nelson SJ. Comparison between Short and Long Echo Time Magnetic Resonance Spectroscopic Imaging at 3T and 7T for Evaluating Brain Metabolites in Patients with Glioma. ACS Chem Neurosci 2018; 9:130-137. [PMID: 29035503 DOI: 10.1021/acschemneuro.7b00286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Three-dimensional proton magnetic resonance spectroscopic imaging (MRSI) is a powerful non-invasive tool for characterizing spatial variations in metabolic profiles for patients with glioma. Metabolic parameters obtained using this technique have been shown to predict treatment response, disease progression, and transformation to a more malignant phenotype. The availability of ultra-high-field MR systems has the potential to improve the characterization of metabolites. The purpose of this study was to compare the metabolite profiles acquired with conventional long echo time (TE) MRSI at 3T with those obtained with short TE MRSI at 3T and 7T in patients with glioma. The data acquisition parameters were optimized separately for each echo time and field strength to obtain volumetric coverage within clinically feasible data acquisition times of 5-10 min. While a higher field strength did provide better detection of metabolites with overlapping peaks, spatial coverage was reduced and the use of inversion recovery to reduce lipid precluded the detection of lipid in regions of necrosis. For serial evaluation of large, heterogeneous lesions, the use of 3T short TE MRSI may thus be preferred. Despite the limited number of metabolites that it is able to detect, the use of 3T long TE MRSI gives the best contrast in choline/N-acetyl aspartate between normal appearing brain and tumor and also allows the separate detection of lactate and lipid. It may therefore be preferred for serial evaluation of patients with high-grade glioma and for detection of malignant transformation in patients with low-grade glioma.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology
and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Marisa Lafontaine
- Department of Radiology
and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Susan Chang
- Department of Neurological Surgery, University of California, San Francisco, California 94122, United States
| | - Sarah J. Nelson
- Department of Radiology
and Biomedical Imaging, University of California, San Francisco, California 94143, United States
- Department of Bioengineering and Therapeutic
Sciences, University of California, San Francisco, California 94158, United States
| |
Collapse
|
16
|
Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 2017; 168:181-198. [PMID: 28712992 DOI: 10.1016/j.neuroimage.2017.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei (1H, 31P, 13C).
Collapse
Affiliation(s)
- Anke Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany; Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
17
|
Hangel G, Strasser B, Považan M, Gruber S, Chmelík M, Gajdošík M, Trattnig S, Bogner W. Lipid suppression via double inversion recovery with symmetric frequency sweep for robust 2D-GRAPPA-accelerated MRSI of the brain at 7 T. NMR IN BIOMEDICINE 2015; 28:1413-25. [PMID: 26370781 PMCID: PMC4973691 DOI: 10.1002/nbm.3386] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 05/06/2023]
Abstract
This work presents a new approach for high-resolution MRSI of the brain at 7 T in clinically feasible measurement times. Two major problems of MRSI are the long scan times for large matrix sizes and the possible spectral contamination by the transcranial lipid signal. We propose a combination of free induction decay (FID)-MRSI with a short acquisition delay and acceleration via in-plane two-dimensional generalised autocalibrating partially parallel acquisition (2D-GRAPPA) with adiabatic double inversion recovery (IR)-based lipid suppression to allow robust high-resolution MRSI. We performed Bloch simulations to evaluate the magnetisation pathways of lipids and metabolites, and compared the results with phantom measurements. Acceleration factors in the range 2-25 were tested in a phantom. Five volunteers were scanned to verify the value of our MRSI method in vivo. GRAPPA artefacts that cause fold-in of transcranial lipids were suppressed via double IR, with a non-selective symmetric frequency sweep. The use of long, low-power inversion pulses (100 ms) reduced specific absorption rate requirements. The symmetric frequency sweep over both pulses provided good lipid suppression (>90%), in addition to a reduced loss in metabolite signal-to-noise ratio (SNR), compared with conventional IR suppression (52-70%). The metabolic mapping over the whole brain slice was not limited to a rectangular region of interest. 2D-GRAPPA provided acceleration up to a factor of nine for in vivo FID-MRSI without a substantial increase in g-factors (<1.1). A 64 × 64 matrix can be acquired with a common repetition time of ~1.3 s in only 8 min without lipid artefacts caused by acceleration. Overall, we present a fast and robust MRSI method, using combined double IR fat suppression and 2D-GRAPPA acceleration, which may be used in (pre)clinical studies of the brain at 7 T.
Collapse
Affiliation(s)
- Gilbert Hangel
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michal Považan
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marek Chmelík
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Gajdošík
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Považan M, Hangel G, Strasser B, Gruber S, Chmelik M, Trattnig S, Bogner W. Mapping of brain macromolecules and their use for spectral processing of 1 H-MRSI data with an ultra-short acquisition delay at 7 T. Neuroimage 2015. [DOI: 10.1016/j.neuroimage.2015.07.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Schaller B, Clarke WT, Neubauer S, Robson MD, Rodgers CT. Suppression of skeletal muscle signal using a crusher coil: A human cardiac (31) p-MR spectroscopy study at 7 tesla. Magn Reson Med 2015; 75:962-72. [PMID: 25924813 PMCID: PMC4762536 DOI: 10.1002/mrm.25755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/19/2022]
Abstract
Purpose The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T. Methods A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac 31P‐MRS at 7T. Results In a phantom, residual signals were 50 ± 10% with BISTRO (B1‐insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). Conclusion A crusher coil is an SAR‐efficient alternative for selectively suppressing skeletal muscle during cardiac 31P‐MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR‐prohibitive, without compromising skeletal muscle suppression. Magn Reson Med 75:962–972, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
Collapse
Affiliation(s)
- Benoit Schaller
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - William T Clarke
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Matthew D Robson
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher T Rodgers
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
20
|
Abstract
At ultra-high magnetic fields, such as 7T, MR imaging can noninvasively visualize the brain in unprecedented detail and through enhanced contrast mechanisms. The increased SNR and enhanced contrast available at 7T enable higher resolution anatomic and vascular imaging. Greater spectral separation improves detection and characterization of metabolites in spectroscopic imaging. Enhanced blood oxygen level-dependent contrast affords higher resolution functional MR imaging. Ultra-high-field MR imaging also facilitates imaging of nonproton nuclei such as sodium and phosphorus. These improved imaging methods may be applied to detect subtle anatomic, functional, and metabolic abnormalities associated with a wide range of neurologic disorders, including epilepsy, brain tumors, multiple sclerosis, Alzheimer disease, and psychiatric conditions. At 7T, however, physical and hardware limitations cause conventional MR imaging pulse sequences to generate artifacts, requiring specialized pulse sequences and new hardware solutions to maximize the high-field gain in signal and contrast. Practical considerations for ultra-high-field MR imaging include cost, siting, and patient experience.
Collapse
Affiliation(s)
- P Balchandani
- From the Translational and Molecular Imaging Institute (P.B.) Department of Radiology (P.B., T.P.N.), Icahn School of Medicine at Mount Sinai, New York, New York.
| | - T P Naidich
- Department of Radiology (P.B., T.P.N.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
21
|
Comparison of the artifacts caused by metallic implants in breast MRI using dual-echo dixon versus conventional fat-suppression techniques. AJR Am J Roentgenol 2014; 203:W307-14. [PMID: 25148189 DOI: 10.2214/ajr.13.10791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this article is to evaluate and compare the artifacts caused by metal implants in breast MR images acquired with dual-echo Dixon and two conventional fat-suppression techniques. SUBJECTS AND METHODS Two types of biopsy markers were embedded into a uniform fat-water emulsion. T1-weighted gradient-echo images were acquired on a clinical 3-T MRI scanner with three different fat-suppression techniques-conventional or quick fat saturation, spectrally selective adiabatic inversion recovery (SPAIR), and dual-echo Dixon-and the 3D volumes of artifacts were measured. Among the subjects of a clinical breast MRI study using the same scanner, five patients were found to have one or more metal implants. The artifacts in Dixon and SPAIR fat-suppressed images were evaluated by three radiologists, and the results were compared with those of the phantom study. RESULTS In the phantom study, the artifacts appeared as interleaved bright and dark rings on SPAIR and quick-fat-saturation images, whereas they appeared as dark regions with a thin bright rim on Dixon images. The artifacts imaged with the Dixon technique had the smallest total volume. However, the reviewers found larger artifact diameters on patient images using the Dixon sequence because only the central region was recognized as an artifact on the SPAIR images. CONCLUSION Metal implants introduce artifacts of different types and sizes, according to the different fat-suppression techniques used. The dual-echo Dixon technique produces a larger central void, allowing the implant to be easily identified, but presents a smaller overall artifact volume by obscuring less area in the image, according to a quantitative phantom study.
Collapse
|
22
|
Boer VO, van de Lindt T, Luijten PR, Klomp DWJ. Lipid suppression for brain MRI and MRSI by means of a dedicated crusher coil. Magn Reson Med 2014; 73:2062-8. [PMID: 24947343 DOI: 10.1002/mrm.25331] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 05/07/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023]
Abstract
PURPOSE Lipid suppression in MR brain imaging and spectroscopy has been a long-standing problem for which various techniques have been developed. Most methods are based on inversion recovery or spatially or spectrally selective excitation of the lipid signal followed by dephasing. All techniques require additional RF pulses, gradient crushers and delays, which increase the duration and complexity of sequences. In addition, the lipid signal is poorly shimmed, and is composed of different resonance frequencies that have different relaxation properties. METHODS In this work, a novel approach for suppression of extra cranial lipids is presented, by means of an outer volume crusher coil. It is based on the principle of surface spoiling gradients, which generate a very local and inhomogeneous magnetic field in the outer layer of the head, and thereby destroys the phase coherence of the extra cranial signals. RESULTS Dephasing of the signal can be incorporated in almost any sequence because it requires only a short pulse of the coil, and does not require additional RF pulses or delays. Examples of lipid suppression are shown in both gradient echo imaging and spectroscopic imaging. CONCLUSION Outer volume crushing allows for simple fat suppression and boosts scanning efficiency, which is particularly beneficial at ultra-high field strengths.
Collapse
Affiliation(s)
- Vincent O Boer
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Tessa van de Lindt
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
23
|
Li Y, Larson P, Chen AP, Lupo JM, Ozhinsky E, Kelley D, Chang SM, Nelson SJ. Short-echo three-dimensional H-1 MR spectroscopic imaging of patients with glioma at 7 Tesla for characterization of differences in metabolite levels. J Magn Reson Imaging 2014; 41:1332-41. [PMID: 24935758 DOI: 10.1002/jmri.24672] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the feasibility of using a short echo time, three-dimensional H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7 Tesla (T) to assess the metabolic signature of lesions for patients with glioma. METHODS Twenty-nine patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (echo time = 30 ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (∼10 min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). RESULTS Levels of glutamine, myo-inositol, glycine, and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared with those in the NAWM (P < 0.05), while N-acetyl aspartate to tCr were significantly decreased (P < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (P = 0.0137), while glutamate to tCr was significantly reduced (P = 0.0012). CONCLUSION The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Le Y, Kipfer H, Majidi S, Holz S, Dale B, Geppert C, Kroeker R, Lin C. Application of time-resolved angiography with stochastic trajectories (twist)-dixon in dynamic contrast-enhanced (dce) breast mri. J Magn Reson Imaging 2013; 38:1033-42. [DOI: 10.1002/jmri.24062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/10/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yuan Le
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Hal Kipfer
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Shadie Majidi
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Stephanie Holz
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Brian Dale
- Siemens Medical Solutions; USA, MR R&D, Morrisville North Carolina USA
| | | | | | - Chen Lin
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| |
Collapse
|
25
|
Posse S, Otazo R, Dager SR, Alger J. MR spectroscopic imaging: principles and recent advances. J Magn Reson Imaging 2013; 37:1301-25. [PMID: 23188775 PMCID: PMC11927461 DOI: 10.1002/jmri.23945] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/11/2012] [Indexed: 02/27/2025] Open
Abstract
MR spectroscopic imaging (MRSI) has become a valuable tool for quantifying metabolic abnormalities in human brain, prostate, breast and other organs. It is used in routine clinical imaging, particularly for cancer assessment, and in clinical research applications. This article describes basic principles of commonly used MRSI data acquisition and analysis methods and their impact on clinical applications. It also highlights technical advances, such as parallel imaging and newer high-speed MRSI approaches that are becoming viable alternatives to conventional MRSI methods. Although the main focus is on (1) H-MRSI, the principles described are applicable to other MR-compatible nuclei. This review of the state-of-the-art in MRSI methodology provides a framework for critically assessing the clinical utility of MRSI and for defining future technical development that is expected to lead to increased clinical use of MRSI. Future technical development will likely focus on ultra-high field MRI scanners, novel hyperpolarized contrast agents using metabolically active compounds, and ultra-fast MRSI techniques because these technologies offer unprecedented sensitivity and specificity for probing tissue metabolic status and dynamics.
Collapse
Affiliation(s)
- Stefan Posse
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| | | | | | | |
Collapse
|
26
|
Zhu H, Soher BJ, Ouwerkerk R, Schär M, Barker PB. Spin-echo magnetic resonance spectroscopic imaging at 7 T with frequency-modulated refocusing pulses. Magn Reson Med 2013; 69:1217-25. [PMID: 22692894 PMCID: PMC3443531 DOI: 10.1002/mrm.24357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 11/08/2022]
Abstract
Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7 T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high-order shimming and determine optimum radiofrequency transmit level, respectively. One sequence ("Hahn-MRSI") used reduced flip angle (90°) refocusing pulses for lower radiofrequency power deposition, while the other sequence used adiabatic fast passage refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In four normal subjects, adiabatic fast passage-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, pulse repetition time, echo time, and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible.
Collapse
Affiliation(s)
- He Zhu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Brian J. Soher
- Duke University Medical Center, Department of Radiology, DUMC Box 3808, Durham, NC 27710
| | - Ronald Ouwerkerk
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| |
Collapse
|
27
|
Ye Y, Hu J, Haacke EM. Robust selective signal suppression using binomial off-resonant rectangular (BORR) pulses. J Magn Reson Imaging 2013; 39:195-202. [PMID: 23589344 DOI: 10.1002/jmri.24149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/01/2013] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To study the selective signal suppression capability of a binomial off-resonant rectangular (BORR) radiofrequency pulse method. MATERIALS AND METHODS The BORR pulse consists of two consecutive rectangular pulses with a phase difference of π. The exact solution of the Bloch equations was used to simulate its frequency response. The BORR pulse was implemented in a gradient echo sequence and tested on phantoms, the knee, and the breast. RESULTS The frequency response of the BORR pulse acquired on the phantom confirmed the theory. Broad suppression bands ensured high suppression efficiency and robustness in both in vitro and in vivo scans compared with other saturation pulses. CONCLUSION The BORR pulse method provides a simple, efficient, and robust selective signal suppression alternative for three-dimensional short TR (repetition time) imaging.
Collapse
Affiliation(s)
- Yongquan Ye
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
28
|
Balchandani P, Glover G, Pauly J, Spielman D. Improved slice-selective adiabatic excitation. Magn Reson Med 2013; 71:75-82. [PMID: 23401184 DOI: 10.1002/mrm.24630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/17/2012] [Accepted: 12/16/2012] [Indexed: 11/06/2022]
Abstract
PURPOSE The purpose of this work is to design an improved Slice-selective Tunable-flip AdiaBatic Low peak-power Excitation (STABLE) pulse with shorter duration and increased off-resonance immunity to make it suitable for use in a greater range of applications and at higher field strengths. An additional aim is to design a variant of this pulse to achieve B1 -insensitive, fat-suppressed excitation. METHODS The adiabatic SLR algorithm was used to generate a more uniform spectral pulse envelope for this improved radiofrequency pulse for adiabatic slice-selective excitation, called STABLE-2. Pulse parameters were adjusted to design a version of STABLE-2 with a spectral null centered on lipids. RESULTS In vivo images obtained of the human brain at 3 and 7 T demonstrate that STABLE-2 provides robust, uniform, slice-selective excitation over a range of B1 values. Phantom and in vivo knee images obtained at 3 T demonstrate the effectiveness of STABLE-2 for fat suppression. CONCLUSIONS STABLE-2 achieves B1 -insensitive slice-selective excitation while providing greater off-resonance immunity and a shorter pulse duration, when compared to the original STABLE pulse. In particular, the 9.8-ms STABLE-2 pulse provides slice selectivity over 120 Hz whereas the 21-ms STABLE pulse is limited to 80 Hz off-resonance. B1 -Insensitive fat-suppressed excitation may also be achieved by using a variant of this pulse.
Collapse
Affiliation(s)
- Priti Balchandani
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
29
|
Bogner W, Gruber S, Trattnig S, Chmelik M. High-resolution mapping of human brain metabolites by free induction decay (1)H MRSI at 7 T. NMR IN BIOMEDICINE 2012; 25:873-82. [PMID: 22190245 DOI: 10.1002/nbm.1805] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 05/26/2011] [Accepted: 09/27/2011] [Indexed: 05/06/2023]
Abstract
This work describes a new approach for high-spatial-resolution (1)H MRSI of the human brain at 7 T. (1)H MRSI at 7 T using conventional approaches, such as point-resolved spectroscopy and stimulated echo acquisition mode with volume head coils, is limited by technical difficulties, including chemical shift displacement errors, B(0)/B(1) inhomogeneities, a high specific absorption rate and decreased T(2) relaxation times. The method presented here is based on free induction decay acquisition with an ultrashort acquisition delay (TE*) of 1.3 ms. This allows full signal detection with negligible T(2) decay or J-modulation. Chemical shift displacement errors were reduced to below 5% per part per million in the in-slice direction and were eliminated in-plane. The B(1) sensitivity was reduced significantly and further corrected using flip angle maps. Specific absorption rate requirements were well below the limit (~20 % = 0.7 W/kg). The suppression of subcutaneous lipid signals was achieved by substantially improving the point-spread function. High-quality metabolic mapping of five important brain metabolites was achieved with high in-plane resolution (64 × 64 matrix with a 3.4 × 3.4 × 12 mm(3) nominal voxel size) in four healthy subjects. The ultrashort TE* increased the signal-to-noise ratio of J-coupled resonances, such as glutamate and myo-inositol, several-fold to enable the mapping of even these metabolites with high resolution. Four measurement repetitions in one healthy volunteer provided proof of the good reproducibility of this method. The high spatial resolution allowed the visualization of several anatomical structures on metabolic maps. Free induction decay MRSI is insensitive to T(2) decay, J-modulation, B(1) inhomogeneities and chemical shift displacement errors, and overcomes specific absorption rate restrictions at ultrahigh magnetic fields. This makes it a promising method for high-resolution (1)H MRSI at 7 T and above.
Collapse
Affiliation(s)
- W Bogner
- Department of Radiology, MR Center of Excellence, Medical University Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
30
|
Moser E, Stahlberg F, Ladd ME, Trattnig S. 7-T MR--from research to clinical applications? NMR IN BIOMEDICINE 2012; 25:695-716. [PMID: 22102481 DOI: 10.1002/nbm.1794] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 08/25/2011] [Accepted: 08/31/2011] [Indexed: 05/31/2023]
Abstract
Over 20,000 MR systems are currently installed worldwide and, although the majority operate at magnetic fields of 1.5 T and below (i.e. about 70%), experience with 3-T (in high-field clinical diagnostic imaging and research) and 7-T (research only) human MR scanners points to a future in functional and metabolic MR diagnostics. Complementary to previous studies, this review attempts to provide an overview of ultrahigh-field MR research with special emphasis on emerging clinical applications at 7 T. We provide a short summary of the technical development and the current status of installed MR systems. The advantages and challenges of ultrahigh-field MRI and MRS are discussed with special emphasis on radiofrequency inhomogeneity, relaxation times, signal-to-noise improvements, susceptibility effects, chemical shifts, specific absorption rate and other safety issues. In terms of applications, we focus on the topics most likely to gain significantly from 7-T MR, i.e. brain imaging and spectroscopy and musculoskeletal imaging, but also body imaging, which is particularly challenging. Examples are given to demonstrate the advantages of susceptibility-weighted imaging, time-of-flight MR angiography, high-resolution functional MRI, (1)H and (31)P MRSI in the human brain, sodium and functional imaging of cartilage and the first results (and artefacts) using an eight-channel body array, suggesting future areas of research that should be intensified in order to fully explore the potential of 7-T MR systems for use in clinical diagnosis.
Collapse
Affiliation(s)
- Ewald Moser
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
31
|
Le Y, Kroeker R, Kipfer HD, Lin C. Development and evaluation of TWIST Dixon for dynamic contrast-enhanced (DCE) MRI with improved acquisition efficiency and fat suppression. J Magn Reson Imaging 2012; 36:483-91. [PMID: 22544731 DOI: 10.1002/jmri.23663] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 03/07/2012] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To develop a new pulse sequence called time-resolved angiography with stochastic trajectories (TWIST) Dixon for dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS The method combines dual-echo Dixon to generate separated water and fat images with a k-space view-sharing scheme developed for 3D TWIST. The performance of TWIST Dixon was compared with a volume interpolated breathhold examination (VIBE) sequence paired with spectrally selective adiabatic inversion Recovery (SPAIR) and quick fat-sat (QFS) fat-suppression techniques at 3.0T using quantitative measurements of fat-suppression accuracy and signal-to-noise ratio (SNR) efficiency, as well as qualitative breast image evaluations. RESULTS The water fraction of a uniform phantom was calculated from the following images: 0.66 ± 0.03 for TWIST Dixon; 0.56 ± 0.23 for VIBE-SPAIR, and 0.53 ± 0.14 for VIBE-QFS, while the reference value is 0.70 measured by spectroscopy. For phantoms with contrast (Gd-BOPTA) concentration ranging from 0-6 mM, TWIST Dixon also provides consistently higher SNR efficiency (3.2-18.9) compared with VIBE-SPAIR (2.8-16.8) and VIBE-QFS (2.4-12.5). Breast images acquired with TWIST Dixon at 3.0T show more robust and uniform fat suppression and superior overall image quality compared with VIBE-SPAIR. CONCLUSION The results from phantom and volunteer evaluation suggest that TWIST Dixon outperforms conventional methods in almost every aspect and it is a promising method for DCE-MRI and contrast-enhanced perfusion MRI, especially at higher field strength where fat suppression is challenging.
Collapse
Affiliation(s)
- Yuan Le
- Department of Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
32
|
Andronesi OC, Gagoski BA, Sorensen AG. Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition. Radiology 2011; 262:647-61. [PMID: 22187628 DOI: 10.1148/radiol.11110277] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To improve clinical three-dimensional (3D) MR spectroscopic imaging with more accurate localization and faster acquisition schemes. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. Data were acquired with a 3-T MR imager and a 32-channel head coil in phantoms, five healthy volunteers, and five patients with glioblastoma. Excitation was performed with localized adiabatic spin-echo refocusing (LASER) by using adiabatic gradient-offset independent adiabaticity wideband uniform rate and smooth truncation (GOIA-W[16,4]) pulses with 3.5-msec duration, 20-kHz bandwidth, 0.81-kHz amplitude, and 45-msec echo time. Interleaved constant-density spirals simultaneously encoded one frequency and two spatial dimensions. Conventional phase encoding (PE) (1-cm3 voxels) was performed after LASER excitation and was the reference standard. Spectra acquired with spiral encoding at similar and higher spatial resolution and with shorter imaging time were compared with those acquired with PE. Metabolite levels were fitted with software, and Bland-Altman analysis was performed. RESULTS Clinical 3D MR spectroscopic images were acquired four times faster with spiral protocols than with the elliptical PE protocol at low spatial resolution (1 cm3). Higher-spatial-resolution images (0.39 cm3) were acquired twice as fast with spiral protocols compared with the low-spatial-resolution elliptical PE protocol. A minimum signal-to-noise ratio (SNR) of 5 was obtained with spiral protocols under these conditions and was considered clinically adequate to reliably distinguish metabolites from noise. The apparent SNR loss was not linear with decreasing voxel sizes because of longer local T2* times. Improvement of spectral line width from 4.8 Hz to 3.5 Hz was observed at high spatial resolution. The Bland-Altman agreement between spiral and PE data is characterized by narrow 95% confidence intervals for their differences (0.12, 0.18 of their means). GOIA-W(16,4) pulses minimize chemical-shift displacement error to 2.1%, reduce nonuniformity of excitation to 5%, and eliminate the need for outer volume suppression. CONCLUSION The proposed adiabatic spiral 3D MR spectroscopic imaging sequence can be performed in a standard clinical MR environment. Improvements in image quality and imaging time could enable more routine acquisition of spectroscopic data than is possible with current pulse sequences.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Suite 2301, Boston, MA 02129, USA.
| | | | | |
Collapse
|
33
|
Boer VO, Klomp DWJ, Juchem C, Luijten PR, de Graaf RA. Multislice ¹H MRSI of the human brain at 7 T using dynamic B₀ and B₁ shimming. Magn Reson Med 2011; 68:662-70. [PMID: 22162089 DOI: 10.1002/mrm.23288] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/26/2011] [Accepted: 10/16/2011] [Indexed: 11/10/2022]
Abstract
Proton MR spectroscopic imaging of the human brain at ultra-high field (≥7 T) is challenging due to increased radio frequency power deposition, increased magnetic field B(0) inhomogeneity, and increased radio frequency magnetic field inhomogeneity. In addition, especially for multislice sequences, these effects directly inhibit the potential gains of higher magnetic field and can even cause a reduction in data quality. However, recent developments in dynamic B(0) magnetic field shimming and dynamic multitransmit radio frequency control allow for new acquisition strategies. Therefore, in this work, slice-by-slice B(0) and B(1) shimming was developed to optimize both B(0) magnetic field homogeneity and nutation angle over a large portion of the brain. Together with a low-power water and lipid suppression sequence and pulse-acquire spectroscopic imaging, a multislice MR spectroscopic imaging sequence is shown to be feasible at 7 T. This now allows for multislice metabolic imaging of the human brain with high sensitivity and high chemical shift resolution at ultra-high field.
Collapse
Affiliation(s)
- Vincent O Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Boer VO, Siero JCW, Hoogduin H, van Gorp JS, Luijten PR, Klomp DWJ. High-field MRS of the human brain at short TE and TR. NMR IN BIOMEDICINE 2011; 24:1081-1088. [PMID: 21308826 DOI: 10.1002/nbm.1660] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/16/2010] [Accepted: 12/02/2010] [Indexed: 05/30/2023]
Abstract
In vivo MRS of the human brain at 7 tesla allows identification of a large number of metabolites at higher spatial resolutions than currently possible at lower field strengths. However, several challenges complicate in vivo localization and artifact suppression in MRS at high spatial resolution within a clinically feasible scan time at 7 tesla. Published MRS sequences at 7 tesla suffer from long echo times, inherent signal-to-noise ratio (SNR) loss, large chemical shift displacement artifacts or long repetition times because of excessive radiofrequency (RF) power deposition. In the present study a pulse-acquire sequence was used that does not suffer from these high field drawbacks. A slice selective excitation combined with high resolution chemical shift imaging for in-plane localization was used to limit chemical shift displacement artifacts. The pulse-acquire approach resulted in a very short echo time of 1.4 ms. A cost function guided shimming algorithm was developed to constrain frequency offsets in the excited slice, therefore adiabatic frequency selective suppression could be employed to minimize artifacts from high intensity lipids and water signals in the excited slice. The high sensitivity at a TR of 1 s was demonstrated both on a supraventricular slice as well as in an area very close to the skull in the frontal cortex at a nominal spatial resolution of 0.25 cc within a feasible scan time.
Collapse
Affiliation(s)
- Vincent O Boer
- Department of Radiology, Radiotherapy and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Hetherington HP, Avdievich NI, Kuznetsov AM, Pan JW. RF shimming for spectroscopic localization in the human brain at 7 T. Magn Reson Med 2010; 63:9-19. [PMID: 19918903 DOI: 10.1002/mrm.22182] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spectroscopic imaging of the human head at short echo times (<or=15 ms) typically requires suppression of signals from extracerebral tissues. However, at 7 T, decreasing efficiency in B1+ generation (hertz/watt) and increasing spectral bandwidth result in dramatic increases in power deposition and increased chemical shift registration artifacts for conventional gradient-based in-plane localization. In this work, we describe a novel method using radiofrequency shimming and an eight-element transceiver array to generate a B1+ field distribution that excites a ring about the periphery of the head and leaves central brain regions largely unaffected. We have used this novel B1+ distribution to provide in-plane outer volume suppression (>98% suppression of extracerebral lipids) without the use of gradients. This novel B1+ distribution is used in conjunction with a double inversion recovery method to provide suppression of extracerebral resonances with T1s greater than 400 ms, while having negligible effect on metabolite ratios of cerebral resonances with T1s>1000 ms. Despite the use of two adiabatic pulses, the high efficiency of the ring distribution allows radiofrequency power deposition to be limited to 3-4 W for a pulse repetition time of 1.5 sec. The short echo time enabled the acquisition of images of the human brain, displaying glutamate, glutamine, macromolecules, and other major cerebral metabolites.
Collapse
Affiliation(s)
- Hoby P Hetherington
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
36
|
Avdievich NI, Pan JW, Baehring JM, Spencer DD, Hetherington HP. Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays. Magn Reson Med 2009; 62:17-25. [PMID: 19365851 DOI: 10.1002/mrm.21970] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in magnet technology have enabled the construction of ultrahigh-field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal-to-noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B(1) inhomogeneity. To overcome these limitations, we used an 8-channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8-element transceiver array provided both improved efficiency (17% less power for equivalent peak B(1)) and homogeneity (SD(B(1)) = +/-10% versus +/-22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J-modulating compounds such as glutamate, we developed a short TE sequence utilizing a single-slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma.
Collapse
Affiliation(s)
- N I Avdievich
- Department of Neurosurgery, Yale University, New Haven, CT, 06520, USA
| | | | | | | | | |
Collapse
|