1
|
Chai Y, Zhang RY. Exploring methodological frontiers in laminar fMRI. PSYCHORADIOLOGY 2024; 4:kkae027. [PMID: 39777367 PMCID: PMC11706213 DOI: 10.1093/psyrad/kkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
This review examines the methodological challenges and advancements in laminar functional magnetic resonance imaging (fMRI). With the advent of ultra-high-field MRI scanners, laminar fMRI has become pivotal in elucidating the intricate micro-architectures and functionalities of the human brain at a mesoscopic scale. Despite its profound potential, laminar fMRI faces significant challenges such as signal loss at high spatial resolution, limited specificity to laminar signatures, complex layer-specific analysis, the necessity for precise anatomical alignment, and prolonged acquisition times. This review discusses current methodologies, highlights typical challenges in laminar fMRI research, introduces innovative sequence and analysis methods, and outlines potential solutions for overcoming existing technical barriers. It aims to provide a technical overview of the field's current state, emphasizing both the impact of existing hurdles and the advancements that shape future prospects.
Collapse
Affiliation(s)
- Yuhui Chai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana 61801, Illinois, USA
| | - Ru-Yuan Zhang
- Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, the People Republic of China
| |
Collapse
|
2
|
Huber LR, Kronbichler L, Stirnberg R, Ehses P, Stöcker T, Fernández-Cabello S, Poser BA, Kronbichler M. Evaluating the capabilities and challenges of layer-fMRI VASO at 3T. APERTURE NEURO 2023; 3:10.52294/001c.85117. [PMID: 39991189 PMCID: PMC11845223 DOI: 10.52294/001c.85117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sub-millimeter functional imaging has the potential to capture cortical layer-specific functional information flow within and across brain systems. Recent sequence advancements of fMRI signal readout and contrast generations resulted in wide adaptation of layer-fMRI protocols across the global ultra-high-field (UHF) neuroimaging community. However, most layer-fMRI applications are confined to one of ≈100 privileged UHF imaging centers, and sequence contrasts with unwanted sensitivity to large draining veins. In this work, we propose the application of vein-signal free vascular space occupancy (VASO) layer-fMRI sequences at widely accessible 3T scanners. Specifically, we implement, characterize, and apply a cerebral blood volume (CBV)-sensitive VASO fMRI at a 3T scanner setup, as it is typically used in the majority of cognitive neuroscience and clinical neuroscience fMRI studies. We find that the longerT 2 * , and stronger relative T 1 contrast at 3T can account for some of the lower z-magnetization in the inversion-recovery VASO sequence compared to 7T and 9.4T. In the main series of experiments (N=16), we test the utility of this setup for motor tasks and find that -while being limited by thermal noise- 3T layer-fMRI VASO is feasible within conventional scan durations. In a series of auxiliary studies, we furthermore explore the generalizability of the developed layer-fMRI protocols for a larger range of study designs including: visual stimulation, whole brain movie watching paradigms, and cognitive tasks with weaker effect sizes. We hope that the developed imaging protocols will help to increase accessibility of vein-signal free layer-fMRI imaging tools to a wider community of neuroimaging centers.
Collapse
Affiliation(s)
| | - Lisa Kronbichler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, PMU, Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Centre, PMU, Salzburg, Austria
| | | | - Philipp Ehses
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Sara Fernández-Cabello
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Uni Oslo, Oslo, Norway
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Benedikt A Poser
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Martin Kronbichler
- Neuroscience Institute, Christian Doppler Medical Centre, PMU, Salzburg, Austria
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Uni Oslo, Oslo, Norway
| |
Collapse
|
3
|
Pfaffenrot V, Koopmans PJ. Magnetization transfer weighted laminar fMRI with multi-echo FLASH. Neuroimage 2022; 264:119725. [PMID: 36328273 DOI: 10.1016/j.neuroimage.2022.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Laminar functional magnetic resonance imaging (fMRI) using the gradient echo (GRE) blood oxygenation level dependent (BOLD) contrast is prone to signal changes arising from large unspecific venous vessels. Alternatives based on changes of cerebral blood volume (CBV) become more popular since it is expected that this hemodynamic response is dominant in microvasculature. One approach to sensitize the signal toward changes in CBV, and to simultaneously reduce unwanted extravascular (EV) BOLD blurring, is to selectively reduce gray matter (GM) signal via magnetization transfer (MT). In this work, we use off-resonant MT-pulses with a 3D FLASH readout to perform MT-prepared (MT-prep) laminar fMRI of the primary visual cortex (V1) at multiple echo times at 7 T. With a GRE-BOLD contrast without additional MT-weighting as reference, we investigated the influence of the MT-preparation on the shape and the echo time dependency of laminar profiles. Through numerical simulations, we optimized the sequence parameters to increase the sensitivity toward signal changes induced by changes in arterial CBV and to delineate the contributions of different compartments to the signal. We show that at 7 T, GM signals can be reduced by 30 %. Our laminar fMRI responses exhibit an increased signal change in the parenchyma at very short TE compared to a BOLD-only reference as a result of reduced EV signal intensity. By varying echo times, we could show that MT-prep results in less sensitivity toward unwanted signal changes based on changes in T2*. We conclude that when accounting for nuclear overhauser enhancement effects in blood, off-resonant MT-prep combined with efficient short TE readouts can become a promising method to reduce unwanted EV venous contributions in GRE-BOLD and/or to allow scanning at much shorter echo times without incurring a sensitivity penalty in laminar fMRI.
Collapse
Affiliation(s)
- Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Peter J Koopmans
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Huber LR, Poser BA, Kaas AL, Fear EJ, Dresbach S, Berwick J, Goebel R, Turner R, Kennerley AJ. Validating layer-specific VASO across species. Neuroimage 2021; 237:118195. [PMID: 34038769 DOI: 10.1016/j.neuroimage.2021.118195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.
Collapse
Affiliation(s)
- Laurentius Renzo Huber
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Benedikt A Poser
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Amanda L Kaas
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Elizabeth J Fear
- Hull-York-Medical-School (HYMS), University of York, York, United Kingdom
| | - Sebastian Dresbach
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Rainer Goebel
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Robert Turner
- Neurophysics Department Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
5
|
Callewaert B, Jones EAV, Himmelreich U, Gsell W. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11060926. [PMID: 34064194 PMCID: PMC8224283 DOI: 10.3390/diagnostics11060926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
Collapse
Affiliation(s)
- Bram Callewaert
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
| | - Elizabeth A. V. Jones
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
- CARIM, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Uwe Himmelreich
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- Correspondence:
| | - Willy Gsell
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
| |
Collapse
|
6
|
Johnson SE, McKnight CD, Lants SK, Juttukonda MR, Fusco M, Chitale R, Donahue PC, Claassen DO, Donahue MJ. Choroid plexus perfusion and intracranial cerebrospinal fluid changes after angiogenesis. J Cereb Blood Flow Metab 2020; 40:1658-1671. [PMID: 31500523 PMCID: PMC7370367 DOI: 10.1177/0271678x19872563] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have provided evidence that cortical brain ischemia may influence choroid plexus function, and such communication may be mediated by either traditional CSF circulation pathways and/or a possible glymphatic pathway. Here we investigated the hypothesis that improvements in arterial health following neoangiogenesis alter (i) intracranial CSF volume and (ii) choroid plexus perfusion in humans. CSF and tissue volume measurements were obtained from T1-weighted MRI, and cortical and choroid plexus perfusion were obtained from perfusion-weighted arterial spin labeling MRI, in patients with non-atherosclerotic intracranial stenosis (e.g. Moyamoya). Measurements were repeated after indirect surgical revascularization, which elicits cortical neoangiogenesis near the revascularization site (n = 23; age = 41.8 ± 13.4 years), or in a cohort of participants at two time points without interval surgeries (n = 10; age = 41.7 ± 10.7 years). Regression analyses were used to evaluate dependence of perfusion and volume on state (time 1 vs. 2). Post-surgery, neither CSF nor tissue volumes changed significantly. In surgical patients, cortical perfusion increased and choroid plexus perfusion decreased after surgery; in participants without surgeries, cortical perfusion reduced and choroid plexus perfusion increased between time points. Findings are discussed in the context of a homeostatic mechanism, whereby arterial health, paravascular flow, and/or ischemia can affect choroid plexus perfusion.
Collapse
Affiliation(s)
- Skylar E Johnson
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah K Lants
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Meher R Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Fusco
- Department of Neurosurgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rohan Chitale
- Department of Neurosurgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Paula C Donahue
- Department of Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Manus J Donahue, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim SG. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019; 187:17-31. [PMID: 29458187 PMCID: PMC6095829 DOI: 10.1016/j.neuroimage.2018.02.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The measurement of cerebral blood volume (CBV) has been the topic of numerous neuroimaging studies. To date, however, most in vivo imaging approaches can only measure CBV summed over all types of blood vessels, including arterial, capillary and venous vessels in the microvasculature (i.e. total CBV or CBVtot). As different types of blood vessels have intrinsically different anatomy, function and physiology, the ability to quantify CBV in different segments of the microvascular tree may furnish information that is not obtainable from CBVtot, and may provide a more sensitive and specific measure for the underlying physiology. This review attempts to summarize major efforts in the development of MRI techniques to measure arterial (CBVa) and venous CBV (CBVv) separately. Advantages and disadvantages of each type of method are discussed. Applications of some of the methods in the investigation of flow-volume coupling in healthy brains, and in the detection of pathophysiological abnormalities in brain diseases such as arterial steno-occlusive disease, brain tumors, schizophrenia, Huntington's disease, Alzheimer's disease, and hypertension are demonstrated. We believe that the continual development of MRI approaches for the measurement of compartment-specific CBV will likely provide essential imaging tools for the advancement and refinement of our knowledge on the exquisite details of the microvasculature in healthy and diseased brains.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Peiying Liu
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manus Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Qin Qin
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
8
|
A three-dimensional single-scan approach for the measurement of changes in cerebral blood volume, blood flow, and blood oxygenation-weighted signals during functional stimulation. Neuroimage 2017; 147:976-984. [DOI: 10.1016/j.neuroimage.2016.12.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 11/23/2022] Open
|
9
|
Rodrigues Barreto F, Mangia S, Garrido Salmon CE. Effects of reduced oxygen availability on the vascular response and oxygen consumption of the activated human visual cortex. J Magn Reson Imaging 2016; 46:142-149. [PMID: 27807911 DOI: 10.1002/jmri.25537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/18/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To identify the impact of reduced oxygen availability on the evoked vascular response upon visual stimulation in the healthy human brain by magnetic resonance imaging (MRI). MATERIALS AND METHODS Functional MRI techniques based on arterial spin labeling (ASL), blood oxygenation level-dependent (BOLD), and vascular space occupancy (VASO)-dependent contrasts were utilized to quantify the BOLD signal, cerebral blood flow (CBF), and volume (CBV) from nine subjects at 3T (7M/2F, 27.3 ± 3.6 years old) during normoxia and mild hypoxia. Changes in visual stimulus-induced oxygen consumption rates were also estimated with mathematical modeling. RESULTS Significant reductions in the extension of activated areas during mild hypoxia were observed in all three imaging contrasts: by 42.7 ± 25.2% for BOLD (n = 9, P = 0.002), 33.1 ± 24.0% for ASL (n = 9, P = 0.01), and 31.9 ± 15.6% for VASO images (n = 7, P = 0.02). Activated areas during mild hypoxia showed responses with similar amplitude for CBF (58.4 ± 18.7% hypoxia vs. 61.7 ± 16.1% normoxia, P = 0.61) and CBV (33.5 ± 17.5% vs. 25.2 ± 13.0%, P = 0.27), but not for BOLD (2.5 ± 0.8% vs. 4.1 ± 0.6%, P = 0.009). The estimated stimulus-induced increases of oxygen consumption were smaller during mild hypoxia as compared to normoxia (3.1 ± 5.0% vs. 15.5 ± 15.1%, P = 0.04). CONCLUSION Our results demonstrate an altered vascular and metabolic response during mild hypoxia upon visual stimulation. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:142-149.
Collapse
Affiliation(s)
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
10
|
Guidi M, Huber L, Lampe L, Gauthier CJ, Möller HE. Lamina-dependent calibrated BOLD response in human primary motor cortex. Neuroimage 2016; 141:250-261. [DOI: 10.1016/j.neuroimage.2016.06.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
|
11
|
Donahue MJ, Juttukonda MR, Watchmaker JM. Noise concerns and post-processing procedures in cerebral blood flow (CBF) and cerebral blood volume (CBV) functional magnetic resonance imaging. Neuroimage 2016; 154:43-58. [PMID: 27622397 DOI: 10.1016/j.neuroimage.2016.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/22/2016] [Accepted: 09/03/2016] [Indexed: 01/19/2023] Open
Abstract
Functional neuroimaging with blood oxygenation level-dependent (BOLD) contrast has emerged as the most popular method for evaluating qualitative changes in brain function in humans. At typical human field strengths (1.5-3.0T), BOLD contrast provides a measure of changes in transverse water relaxation rates in and around capillary and venous blood, and as such provides only a surrogate marker of brain function that depends on dynamic changes in hemodynamics (e.g., cerebral blood flow and volume) and metabolism (e.g., oxygen extraction fraction and the cerebral metabolic rate of oxygen consumption). Alternative functional neuroimaging methods that are specifically sensitive to these constituents of the BOLD signal are being developed and applied in a growing number of clinical and neuroscience applications of quantitative cerebral physiology. These methods require additional considerations for interpreting and quantifying their contrast responsibly. Here, an overview of two popular methods, arterial spin labeling and vascular space occupancy, is presented specifically in the context of functional neuroimaging. Appropriate post-processing and experimental acquisition strategies are summarized with the motivation of reducing sensitivity to noise and unintended signal sources and improving quantitative accuracy of cerebral hemodynamics.
Collapse
Affiliation(s)
- Manus J Donahue
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA; Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Meher R Juttukonda
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer M Watchmaker
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
12
|
Huber L, Ivanov D, Guidi M, Turner R, Uludağ K, Möller HE, Poser BA. Functional cerebral blood volume mapping with simultaneous multi-slice acquisition. Neuroimage 2016; 125:1159-1168. [DOI: 10.1016/j.neuroimage.2015.10.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023] Open
|
13
|
Rane S, Talati P, Donahue MJ, Heckers S. Inflow-vascular space occupancy (iVASO) reproducibility in the hippocampus and cortex at different blood water nulling times. Magn Reson Med 2015; 75:2379-87. [PMID: 26192478 DOI: 10.1002/mrm.25836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE Inflow-vascular space occupancy (iVASO) measures arterial cerebral blood volume (aCBV) using accurate blood water nulling (inversion time [TI]) when arterial blood reaches the capillary, i.e., at the arterial arrival time. This work assessed the reproducibility of iVASO measurements in the hippocampus and cortex at multiple TIs. METHODS The iVASO approach was implemented at multiple TIs in 10 healthy volunteers at 3 Tesla. aCBV values were measured at each TI in the left and right hippocampus, and the cortex. Reproducibility of aCBV measurements within scans (same day) and across sessions (different days) was assessed using the intraclass correlation coefficient (ICC). RESULTS Overall hippocampal aCBV was significantly higher than cortical aCBV, likely due to higher gray matter volume. Hippocampal ICC values were high at short TIs (≤914 ms; intrascan values = 0.80-0.96, interscan values = 0.61-0.91). Cortically, high ICC values were observed at intermediate TIs of 914 (intra: 0.93, inter: 0.87) and 1034 ms (intra: 0.96, inter: 0.86). The ICC values were comparable to established contrast-based CBV measures. CONCLUSION iVASO measurements are reproducible within and across sessions. TIs for iVASO measurements should be chosen carefully, taking into account heterogeneous arterial arrival times in different brain regions. Magn Reson Med 75:2379-2387, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Swati Rane
- Vanderbilt University Institute of Imaging Science, Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Pratik Talati
- Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Manus J Donahue
- Vanderbilt University Institute of Imaging Science, Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee.,Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Stephan Heckers
- Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
14
|
Jahanian H, Peltier S, Noll DC, Hernandez Garcia L. Arterial cerebral blood volume-weighted functional MRI using pseudocontinuous arterial spin tagging (AVAST). Magn Reson Med 2015; 73:1053-64. [PMID: 24753198 DOI: 10.1002/mrm.25220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 02/03/2023]
Abstract
PURPOSE Neurovascular regulation, including responses to neural activation that give rise to the blood oxygenation level-dependent (BOLD) effect, occurs mainly at the arterial and arteriolar level. The purpose of this study is to develop a framework for fast imaging of arterial cerebral blood volume (aCBV) signal suitable for functional imaging studies. METHODS A variant of the pseudocontinuous arterial spin tagging technique was developed in order to achieve a contrast that depends on aCBV with little contamination from perfusion signal by taking advantage of the kinetics of the tag through the vasculature. This technique tailors the tagging duration and repetition time for each subject. The proposed technique, called AVAST, is compared empirically with BOLD imaging and standard (perfusion-weighted) arterial spin labeling (ASL) technique, in a motor-visual activation paradigm. RESULTS The average Z-scores in the activated area obtained over all the subjects were 4.25, 5.52, and 7.87 for standard ASL, AVAST, and BOLD techniques, respectively. The aCBV contrast obtained from AVAST provided 80% higher average signal-to-noise ratio and 95% higher average contrast-to-noise ratio compared with that of the standard ASL measurements. CONCLUSION AVAST exhibits improved activation detection sensitivity and temporal resolution over the standard ASL technique, in functional MRI experiments, while preserving its quantitative nature and statistical advantages. AVAST particularly could be useful in clinical studies of pathological conditions, longitudinal studies of cognitive function, and studies requiring sustained periods of the condition.
Collapse
|
15
|
Cheng Y, van Zijl PCM, Pekar JJ, Hua J. Three-dimensional acquisition of cerebral blood volume and flow responses during functional stimulation in a single scan. Neuroimage 2014; 103:533-541. [PMID: 25152092 PMCID: PMC4252776 DOI: 10.1016/j.neuroimage.2014.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
In addition to the BOLD scan, quantitative functional MRI studies require measurement of both cerebral blood volume (CBV) and flow (CBF) dynamics. The ability to detect CBV and CBF responses in a single additional scan would shorten the total scan time and reduce temporal variations. Several approaches for simultaneous CBV and CBF measurement during functional MRI experiments have been proposed in two-dimensional (2D) mode covering one to three slices in one repetition time (TR). Here, we extended the principles from previous work and present a three-dimensional (3D) whole-brain MRI approach that combines the vascular-space-occupancy (VASO) and flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) techniques, allowing the measurement of CBV and CBF dynamics, respectively, in a single scan. 3D acquisitions are complicated for such a scan combination as the time to null blood signal during a steady state needs to be known. We estimated this using Bloch simulations and demonstrate that the resulting 3D acquisition can detect activation patterns and relative signal changes of quality comparable to that of the original separate scans. The same was found for temporal signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). This approach provides improved acquisition efficiency when both CBV and CBF responses need to be monitored during a functional task.
Collapse
Affiliation(s)
- Ying Cheng
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, Möller HE, Turner R. Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn Reson Med 2013; 72:137-48. [DOI: 10.1002/mrm.24916] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/04/2013] [Accepted: 07/16/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Laurentius Huber
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
| | - Dimo Ivanov
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
- Maastricht Brain Imaging Centre; Maastricht University; Maastricht The Netherlands
| | - Steffen N. Krieger
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
- Monash Biomedical Imaging; Monash University; Melbourne Victoria Australia
| | - Markus N. Streicher
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
| | - Toralf Mildner
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
| | - Benedikt A. Poser
- Maastricht Brain Imaging Centre; Maastricht University; Maastricht The Netherlands
- Department of Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu Hawaii USA
- Donders Institute; Centre for Cognitive Neuroimaging; Radboud University Nijmegen; Nijmegen The Netherlands
| | - Harald E. Möller
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
| | - Robert Turner
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
| |
Collapse
|
17
|
Lu H, Hua J, van Zijl PCM. Noninvasive functional imaging of cerebral blood volume with vascular-space-occupancy (VASO) MRI. NMR IN BIOMEDICINE 2013; 26:932-948. [PMID: 23355392 PMCID: PMC3659207 DOI: 10.1002/nbm.2905] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/29/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Functional MRI (fMRI) based on changes in cerebral blood volume (CBV) can probe directly vasodilatation and vasoconstriction during brain activation or physiologic challenges, and can provide important insights into the mechanism of blood oxygenation level-dependent (BOLD) signal changes. At present, the most widely used CBV fMRI technique in humans is called vascular-space-occupancy (VASO) MRI, and this article provides a technical review of this method. VASO MRI utilizes T1 differences between blood and tissue to distinguish between these two compartments within a voxel, and employs a blood-nulling inversion recovery sequence to yield an MR signal proportional to 1 - CBV. As such, vasodilatation will result in a VASO signal decrease and vasoconstriction will have the reverse effect. The VASO technique can be performed dynamically with a temporal resolution comparable with several other fMRI methods, such as BOLD or arterial spin labeling (ASL), and is particularly powerful when conducted in conjunction with these complementary techniques. The pulse sequence and imaging parameters of VASO can be optimized such that the signal change is predominantly of CBV origin, but careful considerations should be taken to minimize other contributions, such as those from the BOLD effect, cerebral blood flow (CBF) and cerebrospinal fluid (CSF). The sensitivity of the VASO technique is the primary disadvantage when compared with BOLD, but this technique is increasingly demonstrating its utility in neuroscientific and clinical applications.
Collapse
Affiliation(s)
- Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | |
Collapse
|
18
|
Abstract
Cerebral blood volume (CBV) changes significantly with brain activation, whether measured using positron emission tomography, functional magnetic resonance imaging (fMRI), or optical microscopy. If cerebral vessels are considered to be impermeable, the contents of the skull incompressible, and the skull itself inextensible, task- and hypercapnia-related changes of CBV could produce intolerable changes of intracranial pressure. Because it is becoming clear that CBV may be useful as a well-localized marker of neural activity changes, a resolution of this apparent paradox is needed. We have explored the idea that much of the change in CBV is facilitated by exchange of water between capillaries and surrounding tissue. To this end, we developed a novel hemodynamic boundary-value model and found approximate solutions using a numerical algorithm. We also constructed a macroscopic experimental model of a single capillary to provide biophysical insight. Both experiment and theory model capillary membranes as elastic and permeable. For a realistic change of input pressure, a relative pipe volume change of 21±5% was observed when using the experimental setup, compared with the value of approximately 17±1% when this quantity was calculated from the mathematical model. Volume, axial flow, and pressure changes are in the expected range.
Collapse
|
19
|
Hua J, Jones CK, Qin Q, van Zijl PCM. Implementation of vascular-space-occupancy MRI at 7T. Magn Reson Med 2012; 69:1003-13. [PMID: 22585570 DOI: 10.1002/mrm.24334] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/11/2012] [Accepted: 04/22/2012] [Indexed: 11/07/2022]
Abstract
Vascular-space-occupancy (VASO) MRI exploits the difference between blood and tissue T1 to null blood signal and measure cerebral blood volume changes using the residual tissue signal. VASO imaging is more difficult at higher field because of sensitivity loss due to the convergence of tissue and blood T1 values and increased contamination from blood-oxygenation-level-dependent (BOLD) effects. In addition, compared to 3T, 7T MRI suffers from increased geometrical distortions, e.g., when using echo-planar-imaging, and from increased power deposition, the latter especially problematic for the spin-echo-train sequences commonly used for VASO MRI. Third, non-steady-state blood spin effects become substantial at 7T when only a head coil is available for radiofrequency transmit. In this study, the magnetization-transfer-enhanced-VASO approach was applied to maximize tissue-blood signal difference, which boosted signal-to-noise ratio by 149% ± 13% (n = 7) compared to VASO. Second, a 3D fast gradient-echo sequence with low flip-angle (7°) and short echo-time (1.8 ms) was used to minimize the BOLD effect and to reduce image distortion and power deposition. Finally, a magnetization-reset technique was combined with a motion-sensitized-driven-equilibrium approach to suppress three types of non-steady-state spins. Our initial functional MRI results in normal human brains at 7T with this optimized VASO sequence showed better signal-to-noise ratio than at 3T.
Collapse
Affiliation(s)
- Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
20
|
Donahue MJ, Strother MK, Hendrikse J. Novel MRI approaches for assessing cerebral hemodynamics in ischemic cerebrovascular disease. Stroke 2012; 43:903-15. [PMID: 22343644 DOI: 10.1161/strokeaha.111.635995] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Changes in cerebral hemodynamics underlie a broad spectrum of ischemic cerebrovascular disorders. An ability to accurately and quantitatively measure hemodynamic (cerebral blood flow and cerebral blood volume) and related metabolic (cerebral metabolic rate of oxygen) parameters is important for understanding healthy brain function and comparative dysfunction in ischemia. Although positron emission tomography, single-photon emission tomography, and gadolinium-MRI approaches are common, more recently MRI approaches that do not require exogenous contrast have been introduced with variable sensitivity for hemodynamic parameters. The ability to obtain hemodynamic measurements with these new approaches is particularly appealing in clinical and research scenarios in which follow-up and longitudinal studies are necessary. The purpose of this review is to outline current state-of-the-art MRI methods for measuring cerebral blood flow, cerebral blood volume, and cerebral metabolic rate of oxygen and provide practical tips to avoid imaging pitfalls. MRI studies of cerebrovascular disease performed without exogenous contrast are synopsized in the context of clinical relevance and methodological strengths and limitations.
Collapse
Affiliation(s)
- Manus J Donahue
- Department of Radiology, Vanderbilt University, Nashville, TN, USA.
| | | | | |
Collapse
|
21
|
van Zijl PCM, Hua J, Lu H. The BOLD post-stimulus undershoot, one of the most debated issues in fMRI. Neuroimage 2012; 62:1092-102. [PMID: 22248572 DOI: 10.1016/j.neuroimage.2012.01.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/29/2011] [Accepted: 01/01/2012] [Indexed: 11/15/2022] Open
Abstract
This paper provides a brief overview of how we got involved in fMRI work and of our efforts to elucidate the mechanisms underlying BOLD signal changes. The phenomenon discussed here in particular is the post-stimulus undershoot (PSU), the interpretation of which has captivated many fMRI scientists and is still under debate to date. This controversy is caused both by the convoluted physiological origin of the BOLD effect, which allows many possible explanations, and the lack of comprehensive data in the early years. BOLD effects reflect changes in cerebral blood flow (CBF), volume (CBV), metabolic rate of oxygen (CMRO(2)), and hematocrit fraction (Hct). However, the size of such effects is modulated by vascular origin such as intravascular, extravascular, macro and microvascular, venular and capillary, the relative contributions of which depend not only on the spatial resolution of the measurements, but also on stimulus duration, on magnetic field strength and on whether spin echo (SE) or gradient echo (GRE) detection is used. The two most dominant explanations of the PSU have been delayed vascular compliance (first venular, later arteriolar, and recently capillary) and sustained increases in CMRO(2), while post-activation reduction in CBF is a distant third. MRI has the capability to independently measure CBF and arteriolar, venous, and total CBV contributions in humans and animals, which has been of great assistance in improving the understanding of BOLD phenomena. Using currently available MRI and optical data, we conclude that the predominant PSU origin is a sustained increase in CMRO(2). However, some contributions from delayed vascular compliance are likely, and small CBF undershoot contributions that are difficult to detect with current arterial spin labeling technology can also not be excluded. The relative contribution of these different processes, which are not mutually exclusive and can act together, is likely to vary with stimulus duration and type.
Collapse
Affiliation(s)
- Peter C M van Zijl
- The Russell H Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
22
|
Lu H, van Zijl PCM. A review of the development of Vascular-Space-Occupancy (VASO) fMRI. Neuroimage 2012; 62:736-42. [PMID: 22245650 DOI: 10.1016/j.neuroimage.2012.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/19/2011] [Accepted: 01/01/2012] [Indexed: 12/26/2022] Open
Abstract
Vascular-Space-Occupancy (VASO) fMRI is a non-invasive technique to detect brain activation based on changes in Cerebral Blood Volume (CBV), as opposed to conventional BOLD fMRI, which is based on changes in blood oxygenation. This technique takes advantage of the T1 difference between blood and surrounding tissue, and uses an inversion recovery pulse sequence to null blood signal while maintaining part of the tissue signal. The VASO signal intensity can thus be considered proportional to 1-CBV. When neural activation causes CBV to increase, the VASO signal will show a decrease, allowing the detection of activated regions in the brain. Activation-induced changes in VASO signal, ∆S/S, are in the order of -1%. Absolute quantification of ∆CBV requires additional assumptions on baseline CBV and water contents of the parenchyma and blood. The first VASO experiment was conducted approximately 10 years ago. The original goal of nulling the blood signal was to isolate and measure extravascular BOLD effects, thus a long TE of 50 ms was used in the inversion recovery experiment. Instead of a positive signal change, a slight decrease in signal was observed, which became more pronounced when TE was shortened to 10 ms. These findings led to the hypothesis of a CBV signal mechanism and the development of VASO fMRI. Since its discovery, VASO has been validated by comparison with MION-CBV studies in animals and has been used in humans and animals to understand metabolic and hemodynamic changes during brain activation and physiologic challenges. With recent development of more sensitive VASO acquisitions, the availability of arterial-based VASO sequences, and improvement in spatial coverage, this technique is finding its place in neuroscience and clinical studies.
Collapse
Affiliation(s)
- Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
23
|
Hua J, Qin Q, Pekar JJ, van Zijl PCM. Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent. NMR IN BIOMEDICINE 2011; 24:1313-25. [PMID: 21608057 PMCID: PMC3192228 DOI: 10.1002/nbm.1693] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/26/2010] [Accepted: 01/19/2011] [Indexed: 05/26/2023]
Abstract
Arterial cerebral blood volume (CBV(a) ) is a vital indicator of tissue perfusion and vascular reactivity. We extended the recently developed inflow vascular-space-occupancy (iVASO) MRI technique, which uses spatially selective inversion to suppress the signal from blood flowing into a slice, with a control scan to measure absolute CBV(a) using cerebrospinal fluid (CSF) for signal normalization. Images were acquired at multiple blood nulling times to account for the heterogeneity of arterial transit times across the brain, from which both CBV(a) and arterial transit times were quantified. Arteriolar CBV(a) was determined separately by incorporating velocity-dependent bipolar crusher gradients. Gray matter (GM) CBV(a) values (n=11) were 2.04 ± 0.27 and 0.76 ± 0.17 ml blood/100 ml tissue without and with crusher gradients (b=1.8 s/mm(2) ), respectively. Arterial transit times were 671 ± 43 and 785 ± 69 ms, respectively. The arterial origin of the signal was validated by measuring its T(2) , which was within the arterial range. The proposed approach does not require exogenous contrast agent administration, and provides a non-invasive alternative to existing blood volume techniques for mapping absolute CBV(a) in studies of brain physiology and neurovascular diseases.
Collapse
Affiliation(s)
- Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - James J. Pekar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - Peter C. M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| |
Collapse
|
24
|
Hua J, Qin Q, Donahue MJ, Zhou J, Pekar JJ, van Zijl PCM. Inflow-based vascular-space-occupancy (iVASO) MRI. Magn Reson Med 2011; 66:40-56. [PMID: 21695719 DOI: 10.1002/mrm.22775] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 01/24/2023]
Abstract
Vascular-space-occupancy (VASO) MRI, a blood nulling approach for assessing changes in cerebral blood volume (CBV), is hampered by low signal-to-noise ratio (SNR) because only 10-20% of tissue signal is recovered when using nonselective inversion for blood nulling. A new approach, called inflow-VASO (iVASO), is introduced in which only blood flowing into the slice has experienced inversion, thereby keeping tissue and cerebrospinal fluid (CSF) signal in the slice maximal and reducing CSF partial volume effects. SNR increases of 198% ± 12% and 334% ± 9% (mean ± SD, n = 7) with respect to VASO were found at TR values of 5 s and 2 s, respectively. When using inflow approaches, data interpretation is complicated by the fact that signal changes are affected by vascular transit times. An optimal TR-range (1.5-2.5 s) was derived in which the iVASO response during activation predominantly reflects arterial/arteriolar CBV (CBV(a)) changes. In this TR-range, perfusion contributions to the signal change are negligible because arterial label has not yet undergone capillary exchange, and arterial and precapillary blood signals are nulled. For TR = 2 s, the iVASO signal change upon visual stimulation corresponded to a CBV(a) increase of 58% ± 7%, in agreement with arteriolar CBV changes previously reported. The onset of the hemodynamic response for iVASO occurred 1.2 ± 0.5 s (n = 7) faster than for conventional VASO.
Collapse
Affiliation(s)
- Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IAL, Farrell JAD, Bogovic JA, Hua J, Chen M, Jarso S, Smith SA, Joel S, Mori S, Pekar JJ, Barker PB, Prince JL, van Zijl PCM. Multi-parametric neuroimaging reproducibility: a 3-T resource study. Neuroimage 2010; 54:2854-66. [PMID: 21094686 DOI: 10.1016/j.neuroimage.2010.11.047] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 11/25/2022] Open
Abstract
Modern MRI image processing methods have yielded quantitative, morphometric, functional, and structural assessments of the human brain. These analyses typically exploit carefully optimized protocols for specific imaging targets. Algorithm investigators have several excellent public data resources to use to test, develop, and optimize their methods. Recently, there has been an increasing focus on combining MRI protocols in multi-parametric studies. Notably, these have included innovative approaches for fusing connectivity inferences with functional and/or anatomical characterizations. Yet, validation of the reproducibility of these interesting and novel methods has been severely hampered by the limited availability of appropriate multi-parametric data. We present an imaging protocol optimized to include state-of-the-art assessment of brain function, structure, micro-architecture, and quantitative parameters within a clinically feasible 60-min protocol on a 3-T MRI scanner. We present scan-rescan reproducibility of these imaging contrasts based on 21 healthy volunteers (11 M/10 F, 22-61 years old). The cortical gray matter, cortical white matter, ventricular cerebrospinal fluid, thalamus, putamen, caudate, cerebellar gray matter, cerebellar white matter, and brainstem were identified with mean volume-wise reproducibility of 3.5%. We tabulate the mean intensity, variability, and reproducibility of each contrast in a region of interest approach, which is essential for prospective study planning and retrospective power analysis considerations. Anatomy was highly consistent on structural acquisition (~1-5% variability), while variation on diffusion and several other quantitative scans was higher (~<10%). Some sequences are particularly variable in specific structures (ASL exhibited variation of 28% in the cerebral white matter) or in thin structures (quantitative T2 varied by up to 73% in the caudate) due, in large part, to variability in automated ROI placement. The richness of the joint distribution of intensities across imaging methods can be best assessed within the context of a particular analysis approach as opposed to a summary table. As such, all imaging data and analysis routines have been made publicly and freely available. This effort provides the neuroimaging community with a resource for optimization of algorithms that exploit the diversity of modern MRI modalities. Additionally, it establishes a baseline for continuing development and optimization of multi-parametric imaging protocols.
Collapse
Affiliation(s)
- Bennett A Landman
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37235-1679, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chaichana KL, Kosztowski T, Niranjan A, Olivi A, Weingart JD, Laterra J, Brem H, Quiñones-Hinojosa A. Prognostic significance of contrast-enhancing anaplastic astrocytomas in adults. J Neurosurg 2010; 113:286-92. [PMID: 20302391 DOI: 10.3171/2010.2.jns091010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECT Patients harboring anaplastic astrocytomas (AAs) typically have a poor prognosis, with median survival times of approximately 3 years following resection. However, a significant variability in individual outcomes remains, with some patients surviving for a few months and others for several years. The ability to predict patient outcomes based on preoperative variables would help prognosticate survival and may also guide treatment strategies. The prognostic implications of a preoperative contrast-enhancing AA remain poorly understood. METHODS The medical records of all patients who underwent a craniotomy for a hemispheric AA from 1996 to 2006 at a single institution were retrospectively reviewed. Multivariate proportional hazards regression analysis was used to identify independent associations with recurrence and survival. The Kaplan-Meier method and log-rank analysis were used to plot and compare outcomes for patients with and without preoperative contrast enhancement. RESULTS One hundred sixty-five patients were available for analysis. The AAs were contrast enhancing in 102 patients (62%), and nonenhancing in 63 patients (38%). There were no significant differences in clinical and treatment-related variables between patients with and without contrast enhancement. After multivariate analysis, contrast enhancement was independently associated with decreased survival (p = 0.02) and increased recurrence (p = 0.04). The 5-year overall survival rates for patients with contrast-enhancing versus nonenhancing tumors were 31 and 38.5%, respectively. The 3-year rates of progression-free survival for patients with contrast-enhancing versus nonenhancing tumors were 32 and 56%, respectively. Interestingly, heterogeneously enhancing tumors appear to result in poorer outcomes as compared with other types of enhancement (such as ring enhancing, nodular, and others). Among patients with contrast-enhancing AAs, gross-total resection significantly delayed recurrence (p = 0.05) but did not significantly prolong survival (p = 0.52). CONCLUSIONS This study may provide insights into risk-stratifying patients with AAs, and most specifically those with AAs that enhance with contrast administration.
Collapse
Affiliation(s)
- Kaisorn L Chaichana
- Department of Neurosurgery, Neurology, and Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Poser BA, Norris DG. Application of whole-brain CBV-weighted fMRI to a cognitive stimulation paradigm: robust activation detection in a stroop task experiment using 3D GRASE VASO. Hum Brain Mapp 2010; 32:974-81. [PMID: 20578174 DOI: 10.1002/hbm.21083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/12/2010] [Accepted: 03/29/2010] [Indexed: 11/07/2022] Open
Abstract
Brain activation studies generally utilize blood oxygenation level dependent (BOLD) contrast, most commonly measured using the gradient-echo echo-planar imaging (EPI) technique. BOLD contrast arises from regional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and the local metabolic rate of oxygen consumption. An alternative to BOLD is the detection of activation through direct measurement of these parameters. A noninvasive approach to measure activation-related CBV changes is the vascular space occupancy (VASO) method, which exploits blood as an endogenous contrast agent by selectively nulling the magnetization of the water spins in the blood. Using a recently developed multislice variant of VASO that enables single-shot whole-brain coverage by virtue of a three-dimensional GRASE readout, we here present the first application of VASO to an fMRI study with a whole-brain cognitive task. Within acceptable measurement times (∼12 minutes), brain activation during a Stroop color-word matching task could be detected reliably both on the group (N = 12) and single subject level, as evident from a qualitative comparison with separately acquired BOLD data and literature reports.
Collapse
Affiliation(s)
- Benedikt A Poser
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.
| | | |
Collapse
|