1
|
Zhang K, Huang D, Shah NJ. Comparison of Resting-State Brain Activation Detected by BOLD, Blood Volume and Blood Flow. Front Hum Neurosci 2018; 12:443. [PMID: 30467468 PMCID: PMC6235966 DOI: 10.3389/fnhum.2018.00443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/15/2018] [Indexed: 01/04/2023] Open
Abstract
Resting-state brain activity has been widely investigated using blood oxygenation level dependent (BOLD) contrast techniques. However, BOLD signal changes reflect a combination of the effects of cerebral blood flow (CBF), cerebral blood volume (CBV), as well as the cerebral metabolic rate of oxygen (CMRO2). In this study, resting-state brain activation was detected and compared using the following techniques: (a) BOLD, using a gradient-echo echo planar imaging (GE-EPI) sequence; (b) CBV-weighted signal, acquired using gradient and spin echo (GRASE) based vascular space occupancy (VASO); and (c) CBF, using pseudo-continuous arterial spin labeling (pCASL). Reliable brain networks were detected using VASO and ASL, including sensorimotor, auditory, primary visual, higher visual, default mode, salience and left/right executive control networks. Differences between the resting-state activation detected with ASL, VASO and BOLD could potentially be due to the different temporal signal-to-noise ratio (tSNR) and the short post-labeling delay (PLD) in ASL, along with differences in the spin-echo readout of VASO. It is also possible that the dynamics of spontaneous fluctuations in BOLD, CBV and CBF could differ due to biological reasons, according to their location within the brain.
Collapse
Affiliation(s)
- Ke Zhang
- Institute of Neuroscience and Medicine INM-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Dengfeng Huang
- Institute of Neuroscience and Medicine INM-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine INM-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Suzuki Y, van Osch MJP, Fujima N, Okell TW. Optimization of the spatial modulation function of vessel-encoded pseudo-continuous arterial spin labeling and its application to dynamic angiography. Magn Reson Med 2018; 81:410-423. [PMID: 30230589 DOI: 10.1002/mrm.27418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/09/2018] [Accepted: 06/01/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE In vessel-encoded pseudo-continuous arterial spin labeling (ve-pCASL), vessel-selective labeling is achieved by modulation of the inversion efficiency across space. However, the spatial transition between the labeling and control conditions is rather gradual, which can cause partial labeling of vessels, reducing SNR-efficiency and necessitating complex postprocessing to decode the vessel-selective signals. The purpose of this study is to optimize the pCASL labeling parameters to obtain a sharper spatial inversion profile of the labeling and thereby minimizing the risk of partial labeling of untargeted arteries. METHODS Bloch simulations were performed to investigate how the inversion profile was influenced by the pCASL labeling parameters: the maximum (Gmax ) and mean (Gmean ) labeling gradient were varied for ve-pCASL with unipolar and bipolar gradients. The findings in the simulation study were subsequently confirmed in an in vivo volunteer study. Moreover, conventional and optimized settings were compared for 4D-MRA using four-cycle Hadamard ve-pCASL; the visualization of arteries and the presence of the partial labeling were assessed by an expert observer. RESULTS When using unipolar gradient, lower Gmean resulted in a steeper spatial transition, whereas the width of the control region was broader for higher Gmax . The in vivo study confirmed these findings. When using bipolar gradients, the control region was always very narrow. Qualitative comparison of the 4D-MRA demonstrated lower occurrence of partial labeling when using the optimized gradient parameters. CONCLUSION The shape of the ve-pCASL inversion profile can be optimized by changing Gmean and Gmax to reduce partial labeling of untargeted arteries.
Collapse
Affiliation(s)
- Yuriko Suzuki
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Hokkaido, Japan
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Lin Z, Li Y, Su P, Mao D, Wei Z, Pillai JJ, Moghekar A, van Osch M, Ge Y, Lu H. Non-contrast MR imaging of blood-brain barrier permeability to water. Magn Reson Med 2018; 80:1507-1520. [PMID: 29498097 DOI: 10.1002/mrm.27141] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/05/2018] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Many brain diseases are associated with an alteration in blood-brain barrier (BBB) and its permeability. Current methods using contrast agent are primarily sensitive to major leakage of BBB to macromolecules, but may not detect subtle changes in BBB permeability. The present study aims to develop a novel non-contrast MRI technique for the assessment of BBB permeability to water. METHODS The central principle is that by measuring arterially labeled blood spins that are drained into cerebral veins, water extraction fraction (E) and permeability-surface-area product (PS) of BBB can be determined. Four studies were performed. We first demonstrated the proof-of-principle using conventional ASL with very long post-labeling delays (PLD). Next, a new sequence, dubbed water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST), and its Look-Locker (LL) version were developed. Finally, we demonstrated that the sensitivity of the technique can be significantly enhanced by acquiring the data under mild hypercapnia. RESULTS By combining a strong background suppression with long PLDs (2500-4500 ms), ASL spins were reliably detected in the superior sagittal sinus (SSS), demonstrating the feasibility of measuring this signal. The WEPCAST sequence eliminated partial voluming effects of tissue perfusion and allowed quantitative estimation of E = 95.5 ± 1.1% and PS = 188.9 ± 13.4 mL/100 g/min, which were in good agreement with literature reports. LL-WEPCAST sequence shortened the scan time from 19 min to 5 min while providing results consistent with multiple single-PLD acquisitions. Mild hypercapnia increased SNR by 78 ± 25% without causing a discomfort in participants. CONCLUSION A new non-contrast technique for the assessment of global BBB permeability was developed, which may have important clinical applications.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pan Su
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deng Mao
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthias van Osch
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands
| | - Yulin Ge
- Department of Radiology, New York University Langone Medical Center, New York, New York
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| |
Collapse
|
4
|
MacDonald ME, Frayne R. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR IN BIOMEDICINE 2015; 28:767-791. [PMID: 26010775 DOI: 10.1002/nbm.3322] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Cerebrovascular imaging is of great interest in the understanding of neurological disease. MRI is a non-invasive technology that can visualize and provide information on: (i) the structure of major blood vessels; (ii) the blood flow velocity in these vessels; and (iii) the microcirculation, including the assessment of brain perfusion. Although other medical imaging modalities can also interrogate the cerebrovascular system, MR provides a comprehensive assessment, as it can acquire many different structural and functional image contrasts whilst maintaining a high level of patient comfort and acceptance. The extent of examination is limited only by the practicalities of patient tolerance or clinical scheduling limitations. Currently, MRI methods can provide a range of metrics related to the cerebral vasculature, including: (i) major vessel anatomy via time-of-flight and contrast-enhanced imaging; (ii) blood flow velocity via phase contrast imaging; (iii) major vessel anatomy and tissue perfusion via arterial spin labeling and dynamic bolus passage approaches; and (iv) venography via susceptibility-based imaging. When designing an MRI protocol for patients with suspected cerebral vascular abnormalities, it is appropriate to have a complete understanding of when to use each of the available techniques in the 'MR angiography toolkit'. In this review article, we: (i) overview the relevant anatomy, common pathologies and alternative imaging modalities; (ii) describe the physical principles and implementations of the above listed methods; (iii) provide guidance on the selection of acquisition parameters; and (iv) describe the existing and potential applications of MRI to the cerebral vasculature and diseases. The focus of this review is on obtaining an understanding through the application of advanced MRI methodology of both normal and abnormal blood flow in the cerebrovascular arteries, capillaries and veins.
Collapse
Affiliation(s)
- Matthew Ethan MacDonald
- Biomedical Engineering, Radiology, and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Frayne
- Biomedical Engineering, Radiology, and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|