1
|
Hooijmans MT, Jeneson JA, Jørstad HT, Bakermans AJ. Exercise MR of Skeletal Muscles, the Heart, and the Brain. J Magn Reson Imaging 2025; 61:535-560. [PMID: 38726984 PMCID: PMC11706321 DOI: 10.1002/jmri.29445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 01/11/2025] Open
Abstract
Magnetic resonance (MR) imaging (MRI) is routinely used to evaluate organ morphology and pathology in the human body at rest or in combination with pharmacological stress as an exercise surrogate. With MR during actual physical exercise, we can assess functional characteristics of tissues and organs under real-life stress conditions. This is particularly relevant in patients with limited exercise capacity or exercise intolerance, and where complaints typically present only during physical activity, such as in neuromuscular disorders, inherited metabolic diseases, and heart failure. This review describes practical and physiological aspects of exercise MR of skeletal muscles, the heart, and the brain. The acute effects of physical exercise on these organs are addressed in the light of various dynamic quantitative MR readouts, including phosphorus-31 MR spectroscopy (31P-MRS) of tissue energy metabolism, phase-contrast MRI of blood flow and muscle contraction, real-time cine MRI of cardiac performance, and arterial spin labeling MRI of muscle and brain perfusion. Exercise MR will help advancing our understanding of underlying mechanisms that contribute to exercise intolerance, which often proceed structural and anatomical changes in disease. Its potential to detect disease-driven alterations in organ function, perfusion, and metabolism under physiological stress renders exercise MR stress testing a powerful noninvasive imaging modality to aid in disease diagnosis and risk stratification. Although not yet integrated in most clinical workflows, and while some applications still require thorough validation, exercise MR has established itself as a comprehensive and versatile modality for characterizing physiology in health and disease in a noninvasive and quantitative way. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jeroen A.L. Jeneson
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's Hospital/Division of Child HealthUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Harald T. Jørstad
- Department of CardiologyAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Adrianus J. Bakermans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Mahmud SZ, Bashir A. Repeatability assessment for simultaneous measurement of arterial blood flow, venous oxygen saturation, and muscle perfusion following dynamic exercise. NMR IN BIOMEDICINE 2023; 36:e4872. [PMID: 36349386 DOI: 10.1002/nbm.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The purpose of the present study was to demonstrate a new sequence and determine the repeatability of simultaneous dynamic measurements of blood flow, venous oxygen saturation (SvO2 ), and relative perfusion (change from resting perfusion) in calf muscle during recovery from plantar flexion exercise. The feasibility of near simultaneous measurement of bio-energetic parameters was also demonstrated. A sequence was developed to simultaneously measure arterial blood flow using flow-encoded projection, SvO2 using susceptibility-based oximetry, and relative perfusion using arterial spin labeling in combination with dynamic plantar flexion exercise. The parameters were determined at rest and during recovery from single leg plantar flexion exercise. Test-retest repeatability was analyzed using Bland-Altman analysis and intraclass correlation coefficients (ICC). The mitochondrial capacity of skeletal muscle was also measured immediately afterwards with dynamic phosphorus magnetic resonance spectroscopy. Eight healthy subjects participated in the study for test-retest repeatability. Popliteal artery blood flow at rest was 1.79 ± 0.58 ml/s and increased to 11.18 ± 3.02 ml/s immediately after exercise. Popliteal vein SvO2 decreased to 45.93% ± 6.5% from a resting value of 70.46% ± 4.76% following exercise. Relative perfusion (change from rest value) was 51.83 ± 15.00 ml/100 g/min at the cessation of exercise. The recovery of blood flow and SvO2 was modeled as a single exponential with time constants of 38.03 ± 6.91 and 71.19 ± 14.53 s, respectively. All the measured parameters exhibited good repeatability with ICC ranging from 0.8 to 0.95. Bioenergetics measurements were within normal range, demonstrating the feasibility of near simultaneous measurement of hemodynamic and energetic parameters. Clinical feasibility was assessed with Barth syndrome patients, demonstrating reduced oxygen extraction from the blood and reduced mitochondrial oxidative capacity compared with healthy controls. The proposed protocol allows rapid imaging of multiple parameters in skeletal muscle that might be affected in disease.
Collapse
Affiliation(s)
- Sultan Z Mahmud
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
3
|
Taso M, Aramendía-Vidaurreta V, Englund EK, Francis S, Franklin S, Madhuranthakam AJ, Martirosian P, Nayak KS, Qin Q, Shao X, Thomas DL, Zun Z, Fernández-Seara MA. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn Reson Med 2023; 89:1754-1776. [PMID: 36747380 DOI: 10.1002/mrm.29609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Erin K Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Francis
- Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham, UK
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ananth J Madhuranthakam
- Department of Radiology, Advanced Imaging Research Center, and Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Petros Martirosian
- Section on Experimental Radiology, Department of Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
4
|
Caroca S, Villagran D, Chabert S. Four functional magnetic resonance imaging techniques for skeletal muscle exploration, a systematic review. Eur J Radiol 2021; 144:109995. [PMID: 34628310 DOI: 10.1016/j.ejrad.2021.109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The study of muscle health has become more relevant lately, due to global aging and a higher incidence of musculoskeletal pathologies. Current exploration techniques, such as electromyography, do not provide accurate spatial information. OBJECTIVE The objective of this work is to perform a systematic review of the literature to synthesize the contributions that can offer functional MRI techniques commonly used in neuroimaging, applied to skeletal muscle: Blood Oxygen Level Dependent (BOLD), IntraVoxel Incoherent Motion (IVIM), Arterial Spin Labeling (ASL) and Dynamic Contrast Enhanced (DCE). EVIDENCE ACQUISITION Web of Science and Medline databases were searched, over the last 10 years, focused on the use of BOLD, ASL, IVIM or DCE in skeletal muscle. EVIDENCE SYNTHESIS 59 articles were included after applying the selection criteria. 37 studies were performed in healthy subjects, and 22 in patients with different pathologies: in peripheral arterial disease, systemic sclerosis, diabetes, osteoporosis, adolescent idiopathic scoliosis, and dermatomyositis. Reference values in healthy subjects still vary in some cases. CONCLUSION The studies show the feasibility of implementing functional MRI through BOLD, ASL, IVIM or DCE imaging in several muscles and their possible utility in different pathologies. A synthesis of how to implement such exploration is given here. CLINICAL IMPACT These four techniques are based on sequences already present in clinical MRI scanners, therefore, their use for functional muscle exploration does not require additional investment. These techniques allow visualization and quantification of parameters associated with the vascular health of the muscles and represent interesting support for musculoskeletal exploration.
Collapse
Affiliation(s)
- Sergio Caroca
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile
| | - Diego Villagran
- Servicio de Imagenología, Hospital Carlos van Buren, Valparaíso, Chile
| | - Steren Chabert
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile; CINGS, Centro de Investigación y Desarrollo en INGeniería en Salud, Universidad de Valparaiso, Valparaíso, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Chile.
| |
Collapse
|
5
|
Haddock B, Hansen SK, Lindberg U, Nielsen JL, Frandsen U, Aagaard P, Larsson HBW, Suetta C. Exercise-induced fluid shifts are distinct to exercise mode and intensity: a comparison of blood flow-restricted and free-flow resistance exercise. J Appl Physiol (1985) 2021; 130:1822-1835. [PMID: 33914664 DOI: 10.1152/japplphysiol.01012.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MRI can provide fundamental tools in decoding physiological stressors stimulated by training paradigms. Acute physiological changes induced by three diverse exercise protocols known to elicit similar levels of muscle hypertrophy were evaluated using muscle functional magnetic resonance imaging (mfMRI). The study was a cross-over study with participants (n = 10) performing three acute unilateral knee extensor exercise protocols to failure and a work matched control exercise protocol. Participants were scanned after each exercise protocol; 70% 1 repetition maximum (RM) (FF70); 20% 1RM (FF20); 20% 1RM with blood flow restriction (BFR20); free-flow (FF) control work matched to BFR20 (FF20WM). Post exercise mfMRI scans were used to obtain interleaved measures of muscle R2 (indicator of edema), R2' (indicator of deoxyhemoglobin), muscle cross sectional area (CSA) blood flow, and diffusion. Both BFR20 and FF20 exercise resulted in a larger acute decrease in R2, decrease in R2', and expansion of the extracellular compartment with slower rates of recovery. BFR20 caused greater acute increases in muscle CSA than FF20WM and FF70. Only BFR20 caused acute increases in intracellular volume. Postexercise muscle blood flow was higher after FF70 and FF20 exercise than BFR20. Acute changes in mean diffusivity were similar across all exercise protocols. This study was able to differentiate the acute physiological responses between anabolic exercise protocols. Low-load exercise protocols, known to have relatively higher energy contributions from glycolysis at task failure, elicited a higher mfMRI response. Noninvasive mfMRI represents a promising tool for decoding mechanisms of anabolic adaptation in muscle.NEW & NOTEWORTHY Using muscle functional MRI (mfMRI), this study was able to differentiate the acute physiological responses following three established hypertrophic resistance exercise strategies. Low-load exercise protocols performed to failure, with or without blood flow restriction, resulted in larger changes in R2 (i.e. greater T2-shifts) with a slow rate of return to baseline indicative of myocellular fluid shifts. These data were cross evaluated with interleaved measures of macrovascular blood flow, water diffusion, muscle cross sectional area (i.e. acute macroscopic muscle swelling), and intracellular water fraction measured using MRI.
Collapse
Affiliation(s)
- Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sofie K Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Lindberg Nielsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Henrik B W Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Medicine Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Haddock B, Hansen SK, Lindberg U, Nielsen JL, Frandsen U, Aagaard P, Larsson HBW, Suetta C. Physiological responses of human skeletal muscle to acute blood flow restricted exercise assessed by multimodal MRI. J Appl Physiol (1985) 2020; 129:748-759. [PMID: 32853108 DOI: 10.1152/japplphysiol.00171.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Important physiological quantities for investigating muscle hypertrophy include blood oxygenation, cell swelling, and changes in blood flow. The purpose of this study was to compare the acute changes of these parameters in human skeletal muscle induced by low-load (20% 1-RM) blood flow-restricted (BFR-20) knee extensor exercise compared with free-flow work-matched (FF-20WM) and free-flow 50% 1-RM (FF-50) knee extensor exercise using multimodal magnetic resonance imaging (MRI). Subjects (n = 11) completed acute exercise sessions for each exercise mode in an MRI scanner, where interleaved measures of muscle R2 (indicator of edema), [Formula: see text] (indicator of deoxyhemoglobin), macrovascular blood flow, and diffusion were performed before, between sets, and after the final set for each exercise protocol. BFR-20 exercise resulted in larger acute decreases in R2 and greater increases in cross-sectional area than FF-20WM and FF-50 (P < 0.01). Blood oxygenation decreased between sets during BFR-20, as indicated by a 13.6% increase in [Formula: see text] values (P < 0.01)), whereas they remained unchanged for FF-20WM and decreased during FF-50 exercise. Quadriceps blood flow between sets was highest for the heavier load (FF-50), averaging 305 mL/min, and lowest for BFR-20 at 123 ± 73 mL/min until post-exercise cuff release, where blood flow rates in BFR-20 exceeded both FF protocols (P < 0.01). Acute changes in diffusion rates were similar for all exercise protocols. This study was able to differentiate the acute exercise response of selected physiological factors associated with skeletal muscle hypertrophy. Marked differences in these parameters were found to exist between BFR and FF exercise conditions, which contribute to explain the anabolic potential of low-load blood flow restricted muscle exercise.NEW & NOTEWORTHY Acute changes in blood flow, diffusion, blood oxygenation, cross-sectional area, and the "T2 shift" are evaluated in human skeletal muscle in response to blood flow-restricted (BFR) and conventional free-flow knee extensor exercise performed in an MRI scanner. The acute physiological response to exercise was dependent on the magnitude of load and the application of BFR. Physiological variables changed markedly and established a steady state rapidly after the first of four exercise sets.
Collapse
Affiliation(s)
- Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sofie K Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Lindberg Nielsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Henrik B W Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
7
|
Mahmud SZ, Gladden LB, Kavazis AN, Motl RW, Denney TS, Bashir A. Simultaneous Measurement of Perfusion and T 2* in Calf Muscle at 7T with Submaximal Exercise using Radial Acquisition. Sci Rep 2020; 10:6342. [PMID: 32286372 PMCID: PMC7156440 DOI: 10.1038/s41598-020-63009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Impairments in oxygen delivery and consumption can lead to reduced muscle endurance and physical disability. Perfusion, a measure of microvascular blood flow, provides information on nutrient delivery. T2* provides information about relative tissue oxygenation. Changes in these parameters following stress, such as exercise, can yield important information about imbalance between delivery and consumption. In this study, we implemented novel golden angle radial MRI acquisition technique to simultaneously quantify muscle perfusion and T2* at 7T with improved temporal resolution, and demonstrated assessment of spatial and temporal changes in these parameters within calf muscles during recovery from plantar flexion exercise. Nine healthy subjects participated the studies. At rest, perfusion and T2* in gastrocnemius muscle group within calf muscle were 5 ± 2 mL/100 g/min and 21.1 ± 3 ms respectively. Then the subjects performed plantar flexion exercise producing a torque of ~8ft-lb. Immediately after the exercise, perfusion was elevated to 79.3 ± 9 mL/100 g/min and T2* was decreased by 6 ± 3%. The time constants for 50% perfusion and T2* recovery were 54.1 ± 10 s and 68.5 ± 7 s respectively. These results demonstrate successful simultaneous quantification of perfusion and T2* in skeletal muscle using the developed technique.
Collapse
Affiliation(s)
- Sultan Z Mahmud
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - L Bruce Gladden
- School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | | | - Robert W Motl
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
8
|
Wang Y, Zhang R, Zhang B, Wang C, Wang H, Zhang X, Zhao K, Yang M, Wang X, Zhang J. Simultaneous R2, R2' and R2* measurement of skeletal muscle in a rabbit model of unilateral artery embolization. Magn Reson Imaging 2019; 61:149-157. [PMID: 31129281 DOI: 10.1016/j.mri.2019.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/27/2023]
Abstract
PURPOSE To demonstrate the feasibility of using a susceptibility-based MRI technique with multi-echo gradient and spin echo (MEGSE) sequence to achieve simultaneous R2, R2' and R2* measurement and assess skeletal muscle oxygenation alternations in a rabbit model of unilateral artery embolization. MATERIALS AND METHODS Approved by the local institutional review board for experimental animal studies, nine New Zealand White rabbits were included in this study. The MEGSE sequence consists of embedding a set of gradient echoes around the echo of a single spin-echo sequence using several gradient echoes to collect the magnetization intensity during the formation and attenuation of spin-echo simultaneously after 180° radio frequency pulse. Within-session and between-day tests were conducted to evaluate the reproducibility of this skeletal muscle oxygenation alternations measurement. Furthermore, all the MEGSE scans of skeletal muscle were conducted using a 3-T clinical MRI scanner during resting state (before unilateral artery embolization operation, pre), 1 h after unilateral artery embolization operation (post1) and 2 h after unilateral artery embolization operation (post2) model to verify the feasibility and sensitivity of this method. RESULTS The within-session coefficient of variations (CVs) of R2, R2' and R2* measurements were 1.57%, 3.33% and 2.57%, while the between-day CVs of were 1.42%, 5.85% and 2.85%. In all rabbits, the mean R2 decreased significantly from 36.46 ± 1.03 s-1 (pre) to 30.58 ± 2.11 s-1 (post1,**P < 0.01, relative to pre) and 28.62 ± 1.53 s-1 (post2, **P < 0.01, relative to post1), and the mean R2' went up markedly from 9.88 ± 2.14 s-1 (pre) to 16.10 ± 2.74 s-1 (post1, **P < 0.01) and 17.33 ± 2.25 s-1 (post2, **P < 0.05). The mean R2* increased from 43.27 ± 3.75 s-1 (pre) to 47.90 ± 5.08 s-1 (post1, *P < 0.05) and to 48.04 ± 4.42 s-1 (post2, NS, P > 0.05). CONCLUSION This study demonstrates the feasibility of simultaneous R2, R2' and R2* measurement method for the evaluation of skeletal muscle ischemia. Besides, this study indicates the sensitivity of the R2 and R2' compared with R2* and especially the necessity of R2 and R2' measurement for the further evaluation of skeletal muscle ischemia which always causes both edema and hypoxia in a rabbit model of unilateral artery embolization.
Collapse
Affiliation(s)
- Yao Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Zhang
- College of Engineering, Peking University, Beijing, China
| | - Bihui Zhang
- Department of Interventional Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Chengyan Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Haochen Wang
- Department of Interventional Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Kai Zhao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Min Yang
- Department of Interventional Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Department of Radiology, Peking University First Hospital, Beijing, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
9
|
Englund EK, Rodgers ZB, Langham MC, Mohler ER, Floyd TF, Wehrli FW. Simultaneous measurement of macro- and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption. Magn Reson Med 2017; 79:846-855. [PMID: 28497497 DOI: 10.1002/mrm.26744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE To investigate the relationship between blood flow and oxygen consumption in skeletal muscle, a technique called "Velocity and Perfusion, Intravascular Venous Oxygen saturation and T2*" (vPIVOT) is presented. vPIVOT allows the quantification of feeding artery blood flow velocity, perfusion, draining vein oxygen saturation, and muscle T2*, all at 4-s temporal resolution. Together, the measurement of blood flow and oxygen extraction can yield muscle oxygen consumption ( V˙O2) via the Fick principle. METHODS In five subjects, vPIVOT-derived results were compared with those obtained from stand-alone sequences during separate ischemia-reperfusion paradigms to investigate the presence of measurement bias. Subsequently, in 10 subjects, vPIVOT was applied to assess muscle hemodynamics and V˙O2 following a bout of dynamic plantar flexion contractions. RESULTS From the ischemia-reperfusion paradigm, no significant differences were observed between data from vPIVOT and comparison sequences. After exercise, the macrovascular flow response reached a maximum 8 ± 3 s after relaxation; however, perfusion in the gastrocnemius muscle continued to rise for 101 ± 53 s. Peak V˙O2 calculated based on mass-normalized arterial blood flow or perfusion was 15.2 ± 6.7 mL O2 /min/100 g or 6.0 ± 1.9 mL O2 /min/100 g, respectively. CONCLUSIONS vPIVOT is a new method to measure blood flow and oxygen saturation, and therefore to quantify muscle oxygen consumption. Magn Reson Med 79:846-855, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emile R Mohler
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas F Floyd
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Wang C, Zhang R, Zhang X, Wang H, Zhao K, Jin L, Zhang J, Wang X, Fang J. Simultaneous dynamic R
2
, and measurement using periodic π pulse shifting multiecho asymmetric spin echo sequence moving estimation strategy: A feasibility study for lower extremity muscle. Magn Reson Med 2016; 77:766-773. [DOI: 10.1002/mrm.26126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Chengyan Wang
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing China
| | - Rui Zhang
- College of EngineeringPeking UniversityBeijing China
| | - Xiaodong Zhang
- Department of RadiologyPeking University First HospitalBeijing China
| | - He Wang
- Philips HealthcareSuzhou China
| | - Kai Zhao
- Department of RadiologyPeking University First HospitalBeijing China
| | | | - Jue Zhang
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing China
- College of EngineeringPeking UniversityBeijing China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing China
- Department of RadiologyPeking University First HospitalBeijing China
| | - Jing Fang
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing China
- College of EngineeringPeking UniversityBeijing China
| |
Collapse
|
11
|
Damon BM, Li K, Bryant ND. Magnetic resonance imaging of skeletal muscle disease. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:827-42. [PMID: 27430444 DOI: 10.1016/b978-0-444-53486-6.00041-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multifaceted pathology. The goals of this chapter are to describe and evaluate the use of quantitative magnetic resonance imaging (MRI) methods to characterize muscle pathology. The following criteria are used for this evaluation: objective measurement of continuously distributed variables; clear and well-understood relationship to the pathology of interest; sensitivity to improvement or worsening of clinical status; and the measurement properties of accuracy and precision. Two major classes of MRI methods meet all of these criteria: (1) MRI methods for measuring muscle contractile volume or cross-sectional area by combining structural MRI and quantitative fat-water MRI; and (2) an MRI method for characterizing the edema caused by inflammation, the measurement of the transverse relaxation time constant (T2). These methods are evaluated with respect to the four criteria listed above and examples from neuromuscular disorders are provided. Finally, these methods are summarized and synthesized and recommendations for additional quantitative MRI developments are made.
Collapse
Affiliation(s)
- Bruce M Damon
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Departments of Biomedical Engineering and Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Ke Li
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nathan D Bryant
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
12
|
Wang C, Zhang R, Zhang X, Wang H, Zhao K, Jin L, Zhang J, Wang X, Fang J. Noninvasive measurement of lower extremity muscle oxygen extraction fraction under cuff compression paradigm. J Magn Reson Imaging 2015; 43:1148-58. [PMID: 26527473 DOI: 10.1002/jmri.25074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/29/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To demonstrate the feasibility of using a susceptibility-based MRI technique with asymmetric spin-echo (ASE) sequence to assess the lower extremity muscle oxygen extraction fraction (OEF) alternations under cuff compression paradigm. METHODS Approved by the local institutional human study committee, nine healthy young volunteers participated in this study. All the ASE scans were conducted using a 3 Tesla clinical MRI scanner during resting state (pre), 1-3 min (post1) and 3-5 min (post2) after a pressure of 50 mmHg above individual systolic blood pressure imposed on the thigh. Moreover, near-infrared spectroscopy (NIRS) measurements were performed on the same day under the same cuff compression protocol to verify the accuracy of this susceptibility-based method. RESULTS In all volunteers, the mean MRI based OEF in gastrocnemius (GAS) muscle increased significantly from 0.28 ± 0.02 (pre) to 0.31 ± 0.03 (post1, P < 0.05) and 0.31 ± 0.03 (post2, P < 0.05). In addition, mean OEF in soleus (SOL) muscle went up from 0.31 ± 0.01 (pre) to 0.33 ± 0.03 (post1, P = 0.14) and 0.37 ± 0.04 (post2, P < 0.05). For comparison, NIRS measured 1-%HbO2 (percentage of deoxyhemoglobin concentration within total hemoglobin) in GAS rose significantly from 0.29 ± 0.03 (pre) to 0.31 ± 0.04 (post1, P < 0.05) and 0.31 ± 0.04 (post2, P < 0.05), which confirmed the accuracy of the MRI-based OEF. CONCLUSION This susceptibility-based OEF quantification technique together with cuff compression paradigm could provide a noninvasive, quantifiable and effective tool for measuring skeletal muscle oxygenation.
Collapse
Affiliation(s)
- Chengyan Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Zhang
- College of Engineering, Peking University, Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | | | - Kai Zhao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | | | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China
| |
Collapse
|
13
|
Csapo R, Malis V, Sinha U, Sinha S. Mapping of spatial and temporal heterogeneity of plantar flexor muscle activity during isometric contraction: correlation of velocity-encoded MRI with EMG. J Appl Physiol (1985) 2015; 119:558-68. [PMID: 26112239 PMCID: PMC4556836 DOI: 10.1152/japplphysiol.00275.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to assess the correlation between contraction-associated muscle kinematics as measured by velocity-encoded phase-contrast (VE-PC) magnetic resonance imaging (MRI) and activity recorded via electromyography (EMG), and to construct a detailed three-dimensional (3-D) map of the contractile behavior of the triceps surae complex from the MRI data. Ten axial-plane VE-PC MRI slices of the triceps surae and EMG data were acquired during submaximal isometric contractions in 10 subjects. MRI images were analyzed to yield the degree of contraction-associated muscle displacement on a voxel-by-voxel basis and determine the heterogeneity of muscle movement within and between slices. Correlational analyses were performed to determine the agreement between EMG data and displacements. Pearson's coefficients demonstrated good agreement (0.84 < r < 0.88) between EMG data and displacements. Comparison between different slices in the gastrocnemius muscle revealed significant heterogeneity in displacement values both in-plane and along the cranio-caudal axis, with highest values in the mid-muscle regions. By contrast, no significant differences between muscle regions were found in the soleus muscle. Substantial differences among displacements were also observed within slices, with those in static areas being only 17-39% (maximum) of those in the most mobile muscle regions. The good agreement between EMG data and displacements suggests that VE-PC MRI may be used as a noninvasive, high-resolution technique for quantifying and modeling muscle activity over the entire 3-D volume of muscle groups. Application to the triceps surae complex revealed substantial heterogeneity of contraction-associated muscle motion both within slices and between different cranio-caudal positions.
Collapse
Affiliation(s)
- Robert Csapo
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California-San Diego, San Diego, California; Institute of Sport Science, University of Innsbruck, Innsbruck, Austria; and
| | - Vadim Malis
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California-San Diego, San Diego, California
| | - Usha Sinha
- Department of Physics, San Diego State University, San Diego, California
| | - Shantanu Sinha
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California-San Diego, San Diego, California;
| |
Collapse
|
14
|
Buck AKW, Elder CP, Donahue MJ, Damon BM. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans. J Appl Physiol (1985) 2015; 119:280-9. [PMID: 26066829 DOI: 10.1152/japplphysiol.01027.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/08/2015] [Indexed: 12/23/2022] Open
Abstract
Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities.
Collapse
Affiliation(s)
- Amanda K W Buck
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Christopher P Elder
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Manus J Donahue
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry, Vanderbilt University, Nashville, Tennessee; Department of Neurology, Vanderbilt University, Nashville, Tennessee; Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee; and
| | - Bruce M Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
15
|
Towse TF, Childs BT, Sabin SA, Bush EC, Elder CP, Damon BM. Comparison of muscle BOLD responses to arterial occlusion at 3 and 7 Tesla. Magn Reson Med 2015; 75:1333-40. [PMID: 25884888 DOI: 10.1002/mrm.25562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE The purpose of this study was to determine the feasibility of muscle BOLD (mBOLD) imaging at 7 Tesla (T) by comparing the changes in R2* of muscle at 3 and 7T in response to a brief period of tourniquet-induced ischemia. METHODS Eight subjects (three male), aged 29.5 ± 6.1 years (mean ± standard deviation, SD), 167.0 ± 10.6 cm tall with a body mass of 62.0 ± 18.0 kg, participated in the study. Subjects reported to the lab on four separate occasions including a habituation session, two MRI scans, and in a subset of subjects, a session during which changes in blood flow and blood oxygenation were quantified using Doppler ultrasound (U/S) and near-infrared spectroscopy (NIRS) respectively. For statistical comparisons between 3 and 7T, R2* rate constants were calculated as R2* = 1/T2*. RESULTS The mean preocclusion R2* value was greater at 7T than at 3T (60.16 ± 2.95 vs. 35.17 ± 0.35 s(-1), respectively, P < 0.001). Also, the mean ΔR2 *END and ΔR2*POST values were greater for 7T than for 3T (-2.36 ± 0.25 vs. -1.24 ± 0.39 s(-1), respectively, Table 1). CONCLUSION Muscle BOLD contrast at 7T is as much as six-fold greater than at 3T. In addition to providing greater SNR and CNR, 7T mBOLD studies may offer further advantages in the form of greater sensitivity to pathological changes in the muscle microcirculation.
Collapse
Affiliation(s)
- Theodore F Towse
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin T Childs
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Shea A Sabin
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily C Bush
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher P Elder
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Bruce M Damon
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Filli L, Boss A, Wurnig MC, Kenkel D, Andreisek G, Guggenberger R. Dynamic intravoxel incoherent motion imaging of skeletal muscle at rest and after exercise. NMR IN BIOMEDICINE 2015; 28:240-246. [PMID: 25521711 DOI: 10.1002/nbm.3245] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/14/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this work was to demonstrate the feasibility of intravoxel incoherent motion imaging (IVIM) for non-invasive quantification of perfusion and diffusion effects in skeletal muscle at rest and following exercise. After IRB approval, eight healthy volunteers underwent diffusion-weighted MRI of the forearm at 3 T and eight different b values between 0 and 500 s/mm(2) with a temporal resolution of 57 s per dataset. Dynamic images were acquired before and after a standardized handgrip exercise. Diffusion (D) and pseudodiffusion (D*) coefficients as well as the perfusion fraction (FP ) were measured in regions of interest in the flexor digitorum superficialis and profundus (FDS/FDP), brachioradialis, and extensor carpi radialis longus and brevis muscles by using a multi-step bi-exponential analysis in MATLAB. Parametrical maps were calculated voxel-wise. Differences in D, D*, and FP between muscle groups and between time points were calculated using a repeated measures analysis of variance with post hoc Bonferroni tests. Mean values and standard deviations at rest were the following: D*, 28.5 ± 11.4 × 10(-3) mm(2) /s; FP , 0.03 ± 0.01; D, 1.45 ± 0.09 × 10(-3) mm(2) /s. Changes of IVIM parameters were clearly visible on the parametrical maps. In the FDS/FDP, D* increased by 289 ± 236% (p < 0.029), FP by 138 ± 58% (p < 0.01), and D by 17 ± 9% (p < 0.01). A significant increase of IVIM parameters could also be detected in the brachioradialis muscle, which however was significantly lower than in the FDS/FDP. After 20 min, all parameters were still significantly elevated in the FDS/FDP but not in the brachioradialis muscle compared with the resting state. The IVIM approach allows simultaneous quantification of muscle perfusion and diffusion effects at rest and following exercise. It may thus provide a useful alternative to other non-invasive methods such as arterial spin labeling. Possible fields of interest for this technique include perfusion-related muscle diseases, such as peripheral arterial occlusive disease.
Collapse
Affiliation(s)
- Lukas Filli
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Mathewson KW, Haykowsky MJ, Thompson RB. Feasibility and reproducibility of measurement of whole muscle blood flow, oxygen extraction, and VO2 with dynamic exercise using MRI. Magn Reson Med 2014; 74:1640-51. [PMID: 25533515 DOI: 10.1002/mrm.25564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/17/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE Develop an MRI method to estimate skeletal muscle oxygen consumption (VO2 ) with dynamic exercise using simultaneous measurement of venous blood flow (VBF) and venous oxygen saturation (SvO2 ). METHODS Real-time imaging of femoral VBF using a complex-difference method was interleaved with imaging of venous hemoglobin oxygen saturation (SvO2 ) using magnetic susceptometry to estimate muscle VO2 (Fick principle). Nine healthy subjects performed repeated 5-watt knee-extension (quadriceps) exercise within the bore of a 1.5 Tesla MRI scanner, for test/re-test comparison. VBF, SvO2 , and derived VO2 were estimated at baseline and immediately (<1 s) postexercise and every 2.4 s for 4 min. RESULTS Quadriceps muscle mass was 2.43 ± 0.31 kg. Mean baseline values were VBF = 0.13 ± 0.06 L/min/kg, SvO2 = 69.4 ± 10.1%, and VO2 = 6.8 ± 4.1 mL/min/kg. VBF, SvO2 , and VO2 values from peak exercise had good agreement between trials (VBF = 0.9 ± 0.1 versus 1.0 ± 0.1 L/min/kg, R(2) = 0.83, CV = 7.6%; SvO2 = 43.2 ± 13.5 versus 40.9 ± 13.1%, R(2) = 0.88, CV = 15.6%; VO2 = 95.7 ± 18.0 versus 108.9 ± 17.3 mL/min/kg, R(2) = 0.88, CV = 12.3%), as did the VO2 recovery time constant (26.1 ± 3.5 versus 26.0 ± 4.0 s, R(2) = 0.85, CV = 6.0%). CV = coefficient of variation. CONCLUSION Rapid imaging of VBF and SvO2 for the estimation of whole muscle VO2 is compatible with dynamic exercise for the estimation of peak values and recovery dynamics following exercise with good reproducibility.
Collapse
Affiliation(s)
- Kory W Mathewson
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mark J Haykowsky
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Vanhatalo A, Jones AM, Blackwell JR, Winyard PG, Fulford J. Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia. J Appl Physiol (1985) 2014; 117:1460-70. [PMID: 25301896 DOI: 10.1152/japplphysiol.00096.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We tested the hypothesis that the time constants (τ) of postexercise T2* MRI signal intensity (an index of O2 delivery) and muscle [PCr] (an index of metabolic perturbation, measured by (31)P-MRS) in hypoxia would be accelerated after dietary nitrate (NO3 (-)) supplementation. In a double-blind crossover design, eight moderately trained subjects underwent 5 days of NO3 (-) (beetroot juice, BR; 8.2 mmol/day NO3 (-)) and placebo (PL; 0.003 mmol/day NO3 (-)) supplementation in four conditions: normoxic PL (N-PL), hypoxic PL (H-PL; 13% O2), normoxic NO3 (-) (N-BR), and hypoxic NO3 (-) (H-BR). The single-leg knee-extension protocol consisted of 10 min of steady-state exercise and 24 s of high-intensity exercise. The [PCr] recovery τ was greater in H-PL (30 ± 4 s) than H-BR (22 ± 4 s), N-PL (24 ± 4 s) and N-BR (22 ± 4 s) (P < 0.05) and the maximal rate of mitochondrial ATP resynthesis (Qmax) was lower in the H-PL (1.12 ± 0.16 mM/s) compared with H-BR (1.35 ± 0.26 mM/s), N-PL (1.47 ± 0.28 mM/s), and N-BR (1.40 ± 0.21 mM/s) (P < 0.05). The τ of postexercise T2* signal intensity was greater in H-PL (47 ± 14 s) than H-BR (32 ± 10 s), N-PL (38 ± 9 s), and N-BR (27 ± 6 s) (P < 0.05). The postexercise [PCr] and T2* recovery τ were correlated in hypoxia (r = 0.60; P < 0.05), but not in normoxia (r = 0.28; P > 0.05). These findings suggest that the NO3 (-)-NO2 (-)-NO pathway is a significant modulator of muscle energetics and O2 delivery during hypoxic exercise and subsequent recovery.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom;
| | - Andrew M Jones
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - James R Blackwell
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Paul G Winyard
- University of Exeter Medical School, Exeter, United Kingdom, University of Exeter, Exeter, United Kingdom; and
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Li K, Dortch RD, Welch EB, Bryant ND, Buck AKW, Towse TF, Gochberg DF, Does MD, Damon BM, Park JH. Multi-parametric MRI characterization of healthy human thigh muscles at 3.0 T - relaxation, magnetization transfer, fat/water, and diffusion tensor imaging. NMR IN BIOMEDICINE 2014; 27:1070-84. [PMID: 25066274 PMCID: PMC4153695 DOI: 10.1002/nbm.3159] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 05/11/2023]
Abstract
Muscle diseases commonly have clinical presentations of inflammation, fat infiltration, fibrosis, and atrophy. However, the results of existing laboratory tests and clinical presentations are not well correlated. Advanced quantitative MRI techniques may allow the assessment of myo-pathological changes in a sensitive and objective manner. To progress towards this goal, an array of quantitative MRI protocols was implemented for human thigh muscles; their reproducibility was assessed; and the statistical relationships among parameters were determined. These quantitative methods included fat/water imaging, multiple spin-echo T2 imaging (with and without fat signal suppression, FS), selective inversion recovery for T1 and quantitative magnetization transfer (qMT) imaging (with and without FS), and diffusion tensor imaging. Data were acquired at 3.0 T from nine healthy subjects. To assess the repeatability of each method, the subjects were re-imaged an average of 35 days later. Pre-testing lifestyle restrictions were applied to standardize physiological conditions across scans. Strong between-day intra-class correlations were observed in all quantitative indices except for the macromolecular-to-free water pool size ratio (PSR) with FS, a metric derived from qMT data. Two-way analysis of variance revealed no significant between-day differences in the mean values for any parameter estimate. The repeatability was further assessed with Bland-Altman plots, and low repeatability coefficients were obtained for all parameters. Among-muscle differences in the quantitative MRI indices and inter-class correlations among the parameters were identified. There were inverse relationships between fractional anisotropy (FA) and the second eigenvalue, the third eigenvalue, and the standard deviation of the first eigenvector. The FA was positively related to the PSR, while the other diffusion indices were inversely related to the PSR. These findings support the use of these T1 , T2 , fat/water, and DTI protocols for characterizing skeletal muscle using MRI. Moreover, the data support the existence of a common biophysical mechanism, water content, as a source of variation in these parameters.
Collapse
Affiliation(s)
- Ke Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Skinner JT, Robison RK, Elder CP, Newton AT, Damon BM, Quarles CC. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain. Magn Reson Imaging 2014; 32:1171-80. [PMID: 25179133 DOI: 10.1016/j.mri.2014.08.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/30/2014] [Accepted: 08/08/2014] [Indexed: 11/28/2022]
Abstract
Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation.
Collapse
Affiliation(s)
- Jack T Skinner
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ryan K Robison
- Barrow Neurological Institute, St. Joseph's Hospital, Phoenix, AZ, USA
| | - Christopher P Elder
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Monroe Carol Children's Hospital, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce M Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Phoenix, AZ, USA
| | - C Chad Quarles
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
21
|
Zheng J, Hasting MK, Zhang X, Coggan A, An H, Snozek D, Curci J, Mueller MJ. A pilot study of regional perfusion and oxygenation in calf muscles of individuals with diabetes with a noninvasive measure. J Vasc Surg 2013; 59:419-26. [PMID: 24080129 DOI: 10.1016/j.jvs.2013.07.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To assess alterations in the regional perfusion and oxygenation of the calf muscles in individuals with diabetes. METHODS Age-matched individuals with (n = 5) and without diabetes (n = 6) were investigated. Skeletal muscle perfusion, oxygen extraction fraction, and oxygen consumption rate were measured by newly developed noncontrast magnetic resonance imaging (MRI) techniques. The subjects lay supine on the MRI table with their foot firmly strapped to a custom-built isometric exercise device. The measurements were performed at rest and during an isometric plantar flexion muscle contraction. RESULTS Individuals without diabetes had up to a 10-fold increase in muscle perfusion, 25% elevation in muscle oxygen extraction fraction, and a 12-fold increase in oxygen consumption rate in the calf during the plantar flexion isometric contraction. In patients with diabetes, the increases in these parameters were only up to sixfold, 2%, and sixfold, respectively. Exercise oxygen consumption rate was inversely associated with blood HbA1c levels (r(2) = .91). CONCLUSIONS This is the first study to quantify regional skeletal muscle oxygenation in patients with diabetes using noncontrast MRI and warrants additional study. Attenuation of perfusion and oxygenation during exercise may have implications for understanding diabetic complications in the lower extremities.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo.
| | - Mary K Hasting
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Mo; Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Mo
| | - Xiaodong Zhang
- Department of Radiology, University of North Carolina, Chapel Hill, NC
| | - Andrew Coggan
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo
| | - Hongyu An
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo
| | - Darrah Snozek
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo
| | - John Curci
- Department of Surgery, Washington University School of Medicine, St. Louis, Mo
| | - Michael J Mueller
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo; Program in Physical Therapy, Washington University School of Medicine, St. Louis, Mo
| |
Collapse
|
22
|
Zheng J, An H, Coggan AR, Zhang X, Bashir A, Muccigrosso D, Peterson LR, Gropler RJ. Noncontrast skeletal muscle oximetry. Magn Reson Med 2013; 71:318-25. [PMID: 23424006 DOI: 10.1002/mrm.24669] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/04/2012] [Accepted: 01/09/2013] [Indexed: 11/09/2022]
Abstract
PURPOSE The objective of this study was to develop a new noncontrast method to directly quantify regional skeletal muscle oxygenation. METHODS The feasibility of the method was examined in five healthy volunteers using a 3 T clinical MRI scanner, at rest and during a sustained isometric contraction. The perfusion of skeletal muscle of the calf was measured using an arterial spin labeling method, whereas the oxygen extraction fraction of the muscle was measured using a susceptibility-based MRI technique. RESULTS In all volunteers, the perfusion in soleus muscle increased significantly from 6.5 ± 2.0 mL (100 g min)(-1) at rest to 47.9 ± 7.7 mL (100 g min)(-1) during exercise (P < 0.05). Although the corresponding oxygen extraction fraction did not change significantly, the rate of oxygen consumption increased from 0.43 ± 0.13 to 4.2 ± 1.5 mL (100 g min)(-1) (P < 0.05). Similar results were observed in gastrocnemius muscle but with greater oxygen extraction fraction increase than the soleus muscle. CONCLUSION This is the first MR oximetry developed for quantification of regional skeletal muscle oxygenation. A broad range of medical conditions could benefit from these techniques, including cardiology, gerontology, kinesiology, and physical therapy.
Collapse
Affiliation(s)
- Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Williams SE, Heemskerk AM, Welch EB, Li K, Damon BM, Park JH. Quantitative effects of inclusion of fat on muscle diffusion tensor MRI measurements. J Magn Reson Imaging 2013; 38:1292-7. [PMID: 23418124 DOI: 10.1002/jmri.24045] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/17/2012] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the minimum water percentage in a muscle region of interest that would allow diffusion tensor (DT-) MRI data to reflect the diffusion properties of pure muscle accurately. MATERIALS AND METHODS Proton density-weighted images with and without fat saturation were obtained at the mid-thigh in four subjects. Co-registered DT-MR images were used to calculate the diffusion tensor's eigenvalues and fractional anisotropy. RESULTS The eigenvalues transitioned monotonically as a function of water signal percentage from values near to those expected for pure fat to those for pure muscle. Also, the fractional anisotropy transitioned monotonically from 0.50 (fat) to 0.20 (muscle). For water signal percentages >55%, none of the diffusion indices differed significantly from those for regions of >90% muscle. CONCLUSION Accounting for the T1 and T2 values of muscle and fat and the pulse sequence properties, it is concluded that, as a conservative estimate, regions must contain at least 76% muscle tissue to reflect the diffusion properties of pure muscle accurately.
Collapse
Affiliation(s)
- Sarah E Williams
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wright KL, Seiberlich N, Jesberger JA, Nakamoto DA, Muzic RF, Griswold MA, Gulani V. Simultaneous magnetic resonance angiography and perfusion (MRAP) measurement: initial application in lower extremity skeletal muscle. J Magn Reson Imaging 2013; 38:1237-44. [PMID: 23389970 DOI: 10.1002/jmri.24020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/07/2012] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To obtain a simultaneous 3D magnetic resonance angiography and perfusion (MRAP) using a single acquisition and to demonstrate MRAP in the lower extremities. A time-resolved contrast-enhanced exam was used in MRAP to simultaneously acquire a contrast-enhanced MR angiography (MRA) and dynamic contrast-enhanced (DCE) perfusion, which currently requires separate acquisitions and thus two contrast doses. MRAP can be used to assess large and small vessels in vascular pathologies such as peripheral arterial disease. MATERIALS AND METHODS MRAP was performed on 10 volunteers following unilateral plantar flexion exercise (one leg exercised and one rested) on two separate days. Data were acquired after administration of a single dose of contrast agent using an optimized sampling strategy, parallel imaging, and partial-Fourier acquisition to obtain a high spatial resolution, 3D-MRAP frame every 4 seconds. Two radiologists assessed MRAs for image quality, a signal-to-noise ratio (SNR) analysis was performed, and pharmacokinetic modeling yielded perfusion (K(trans) ). RESULTS MRA images had high SNR and radiologist-assessed diagnostic quality. Mean K(trans) ± standard error were 0.136 ± 0.009, 0.146 ± 0.012, and 0.191 ± 0.012 min(-1) in the resting tibialis anterior, gastrocnemius, and soleus, respectively, which significantly increased with exercise to 0.291 ± 0.018, 0.270 ± 0.019, and 0.338 ± 0.022 min(-1) . Bland-Altman analysis showed good repeatability. CONCLUSION MRAP provides simultaneous high-resolution MRA and quantitative DCE exams to assess large and small vessels with a single contrast dose. Application in skeletal muscle shows quantitative, repeatable perfusion measurements, and the ability to measure physiological differences.
Collapse
Affiliation(s)
- Katherine L Wright
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA; Case Center for Imaging Research, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Tellis CM, Rosen CA, Carroll TL, Fierro M, Sciote JJ. In vivo oxygen consumption and hemoglobin levels in human thyroarytenoid muscle. Laryngoscope 2011; 121:2429-34. [PMID: 22020893 DOI: 10.1002/lary.22225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS Visible light spectroscopy (VLS) is the technology behind the Food and Drug Administration-approved TSTAT device that is used to monitor tissue oxygen (StO(2)) and relative total hemoglobin (rtHb) levels by measuring reflected visible light. The purpose of this novel, pilot study was to determine if VLS is a reliable and valid method of measuring StO(2) and rtHb levels in the human thyroarytenoid/lateral cricoarytenoid (TA-LCA) muscle complex, thus providing information about vocal fold muscle physiology. STUDY DESIGN Pre-test/post-test with mulitple baselines and two conditions. METHODS VLS measurements were taken at baseline, during exercise, and following recovery on six subjects using both noncontact channel-port endoscope (endo-probe) and laryngeal electromyography (LEMG) needle-guided techniques. RESULTS The average baseline StO(2) was 69% (standard deviation [SD] = 3.6%) for the LEMG-guided probe and was 71.5% (SD = 2.8%) for the endo-probe. During phonation, the StO(2) for the LEMG-guided probe dropped to 59% (SD = 7%; P = .04). Mean rtHb measured by the LEMG probe rose from a baseline of 144 μM (SD = 165 μM) to 214 μM (SD = 166 μM, P = .34) during phonation and back to 149 μM (SD = 139 μM, P = .85) after recovery. Mean rtHb as measured using the endo-probe at baseline and after recovery was 104 μM (SD = 30 μM, P = .76). CONCLUSIONS VLS can be used to measure changes in StO(2) and rtHb levels pre- and postexercise in the human TA-LCA muscle complex.
Collapse
Affiliation(s)
- Cari M Tellis
- Speech-Language Pathology Department, Misericordia University, Dallas, Pennsylvania 18612, USA.
| | | | | | | | | |
Collapse
|