1
|
Tachikawa Y, Hamano H, Yoshikai H, Ikeda K, Maki Y, Hirata K, Takahashi Y, Matake K. Three-dimensional multicontrast blood imaging with a single acquisition: Simultaneous non-contrast-enhanced MRA and vessel wall imaging in the thoracic aorta. Magn Reson Med 2022; 88:617-632. [PMID: 35436368 DOI: 10.1002/mrm.29217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/22/2022] [Accepted: 02/13/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate MRA and vessel wall imaging (VWI) image quality in the thoracic aorta using a novel method named BRIDGE (bright and dark blood images with multishot gradient-echo EPI). METHODS The BRIDGE method consists of 3D multishot gradient-echo EPI acquisition using pulse gating, navigator gating, and magnetization preparation with a T2 -preparation pulse and a nonselective inversion-recovery pulse. The BRIDGE and conventional methods (noncontrast MRA based on 3D turbo-field-echo [TFE] and VWI based on 3D turbo spin echo with variable refocusing flip angle [VRFA-TSE]) were performed in 10 healthy volunteers and 10 patients. The SNR, contrast-to-noise ratio (CNR), and sharpness in the thoracic aorta were compared for MRA evaluation. The values of SNRlumen , SNRwall , CNRwall-lumen , contrast ratio (CR)lumen-muscle , coefficient of variation, sharpness, lumen area, and wall area in the thoracic aorta were compared for VWI evaluation. Two radiologists independently performed qualitative image-analysis assessments. RESULTS When MRA and VWI were acquired, the acquisition time was 26.6% to 27.8% shorter with BRIDGE than the conventional method. In the MRA evaluation, BRIDGE and TFE methods were comparable. In the VWI evaluation, BRIDGE was superior to the VRFA-TSE method in blood suppression and evaluation of the ascending aorta. Because the blood signal suppression of BRIDGE is based on the T1 value of blood, the blood signal can be suppressed more uniformly than with the VRFA-TSE method, regardless of age, blood flow velocity, or vascular anatomy. CONCLUSION The BRIDGE method can provide both MRA, to assess vascular anatomy and luminal changes, and VWI, to assess the vessel wall and detect vulnerable plaques, in a single scan.
Collapse
Affiliation(s)
- Yoshihiko Tachikawa
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | | | - Hikaru Yoshikai
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | - Kento Ikeda
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | - Yasunori Maki
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | - Kazuhide Hirata
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | | | - Kunishige Matake
- Department of Radiology, Karatsu Red Cross Hospital, Saga, Japan
| |
Collapse
|
2
|
Edelman RR, Leloudas N, Pang J, Koktzoglou I. Dark blood cardiovascular magnetic resonance of the heart, great vessels, and lungs using electrocardiographic-gated three-dimensional unbalanced steady-state free precession. J Cardiovasc Magn Reson 2021; 23:127. [PMID: 34724939 PMCID: PMC8559409 DOI: 10.1186/s12968-021-00808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, we reported a novel neuroimaging technique, unbalanced T1 Relaxation-Enhanced Steady-State (uT1RESS), which uses a tailored 3D unbalanced steady-state free precession (3D uSSFP) acquisition to suppress the blood pool signal while minimizing bulk motion sensitivity. In the present work, we hypothesized that 3D uSSFP might also be useful for dark blood imaging of the chest. To test the feasibility of this approach, we performed a pilot study in healthy subjects and patients undergoing cardiovascular magnetic resonance (CMR). MAIN BODY The study was approved by the hospital institutional review board. Thirty-one adult subjects were imaged at 1.5 T, including 5 healthy adult subjects and 26 patients (44 to 86 years, 10 female) undergoing a clinically indicated CMR. Breath-holding was used in 29 subjects and navigator gating in 2 subjects. For breath-hold acquisitions, the 3D uSSFP pulse sequence used a high sampling bandwidth, asymmetric readout, and single-shot along the phase-encoding direction, while 3 shots were acquired for navigator-gated scans. To minimize signal dephasing from bulk motion, electrocardiographic (ECG) gating was used to synchronize the data acquisition to the diastolic phase of the cardiac cycle. To further reduce motion sensitivity, the moment of the dephasing gradient was set to one-fifth of the moment of the readout gradient. Image quality using 3D uSSFP was good-to-excellent in all subjects. The blood pool signal in the thoracic aorta was uniformly suppressed with sharp delineation of the aortic wall including two cases of ascending aortic aneurysm and two cases of aortic dissection. Compared with variable flip angle 3D turbo spin-echo, 3D uSSFP showed improved aortic wall sharpness. It was also more efficient, permitting the acquisition of 24 slices in each breath-hold versus 16 slices with 3D turbo spin-echo and a single slice with dual inversion 2D turbo spin-echo. In addition, lung and mediastinal lesions appeared highly conspicuous compared with the low blood pool signals within the heart and blood vessels. In two subjects, navigator-gated 3D uSSFP provided excellent delineation of cardiac morphology in double oblique multiplanar reformations. CONCLUSION In this pilot study, we have demonstrated the feasibility of using ECG-gated 3D uSSFP for dark blood imaging of the heart, great vessels, and lungs. Further study will be required to fully optimize the technique and to assess clinical utility.
Collapse
Affiliation(s)
- Robert R. Edelman
- Department of Radiology, Northshore University HealthSystem, Evanston, IL USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Walgreen Building, G534, 2650 Ridge Avenue, Evanston, IL 60201 USA
| | - Nondas Leloudas
- Department of Radiology, Northshore University HealthSystem, Evanston, IL USA
| | - Jianing Pang
- Siemens Medical Solutions USA Inc., Chicago, IL USA
| | - Ioannis Koktzoglou
- Department of Radiology, Northshore University HealthSystem, Evanston, IL USA
- Radiology, Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| |
Collapse
|
3
|
Edy E, Rankin AJ, Lees JS, Barrientos PH, Woodward R, Stoumpos S, Koktzoglou I, Edelman RR, Radjenovic A, Mark PB, Roditi GH. Cardiovascular magnetic resonance for the detection of descending thoracic aorta calcification in patients with end-stage renal disease. J Cardiovasc Magn Reson 2021; 23:85. [PMID: 34162405 PMCID: PMC8223384 DOI: 10.1186/s12968-021-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vascular calcification is an independent predictor of cardiovascular disease in patients with chronic kidney disease. Computed tomography (CT) is the gold-standard for detecting vascular calcification. Radial volumetric-interpolated breath-hold examination (radial-VIBE), a free-breathing gradient-echo cardiovascular magnetic resonance (CMR) sequence, has advantages over CT as it is ionising radiation-free. However, its capability in detecting thoracic aortic calcification (TAC) has not been investigated. This study aims to compare radial-VIBE to CT for the detection of TAC in the descending aorta of patients with end-stage renal disease (ESRD) using semi-automated methods, and to investigate the association between TAC and coronary artery calcification (CAC). METHODS Paired cardiac CT and radial-VIBE CMR scans from ESRD patients participating in 2 prospective studies were obtained. Calcification volume was quantified using semi-automated methods in a 9 cm segment of the thoracic aorta. Correlation and agreement between TAC volume measured on CMR and CT were assessed with Spearman's correlation coefficient (ρ), linear regression, Bland-Altman plots and intraclass correlation coefficient (ICC). Association between CAC Agatston score and TAC volume determined by CT and CMR was measured with Spearman's correlation coefficient. RESULTS Scans from 96 participants were analysed. Positive correlation was found between CMR and CT calcification volume [ρ = 0.61, 95% confidence interval (CI) 0.45-0.73]. ICC for consistency was 0.537 (95% CI 0.378-0.665). Bland-Altman plot revealed that compared to CT, CMR volumes were systematically higher at low calcification volume, and lower at high calcification volume. CT did not detect calcification in 41.7% of participants, while radial-VIBE CMR detected signal which the semi-quantitative algorithm reported as calcification in all of those individuals. Instances of suboptimal radial-VIBE CMR image quality were deemed to be the major contributors to the discrepancy. Correlations between CAC Agatston score and TAC volume measured by CT and CMR were ρ = 0.404 (95% CI 0.214-0.565) and ρ = 0.211 (95% CI 0.008-0.396), respectively. CONCLUSION Radial-VIBE CMR can detect TAC with strong positive association to CT, albeit with the presence of proportional bias. Quantification of vascular calcification by radial-VIBE remains a promising area for future research, but improvements in image quality are necessary.
Collapse
Affiliation(s)
- Elbert Edy
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Alastair J Rankin
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
- Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jennifer S Lees
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
- Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Pauline Hall Barrientos
- Department of Clinical Physics and Bioengineering, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Rosemary Woodward
- Clinical Research Imaging, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Sokratis Stoumpos
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
- Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ioannis Koktzoglou
- Radiology, NorthShore University HealthSystem, Evanston, IL, 60201, USA
- Radiology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Robert R Edelman
- Radiology, NorthShore University HealthSystem, Evanston, IL, 60201, USA
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aleksandra Radjenovic
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
- Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Giles H Roditi
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Radiology, NHS Greater Glasgow and Clyde, Glasgow, UK
| |
Collapse
|
4
|
Hu Z, Christodoulou AG, Wang N, Shaw JL, Song SS, Maya MM, Ishimori ML, Forbess LJ, Xiao J, Bi X, Han F, Li D, Fan Z. Magnetic resonance multitasking for multidimensional assessment of cardiovascular system: Development and feasibility study on the thoracic aorta. Magn Reson Med 2020; 84:2376-2388. [PMID: 32301164 DOI: 10.1002/mrm.28275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop an MR multitasking-based multidimensional assessment of cardiovascular system (MT-MACS) with electrocardiography-free and navigator-free data acquisition for a comprehensive evaluation of thoracic aortic diseases. METHODS The MT-MACS technique adopts a low-rank tensor image model with a cardiac time dimension for phase-resolved cine imaging and a T2 -prepared inversion-recovery dimension for multicontrast assessment. Twelve healthy subjects and 2 patients with thoracic aortic diseases were recruited for the study at 3 T, and both qualitative (image quality score) and quantitative (contrast-to-noise ratio between lumen and wall, lumen and wall area, and aortic strain index) analyses were performed in all healthy subjects. The overall image quality was scored based on a 4-point scale: 3, excellent; 2, good; 1, fair; and 0, poor. Statistical analysis was used to test the measurement agreement between MT-MACS and its corresponding 2D references. RESULTS The MT-MACS images reconstructed from acquisitions as short as 6 minutes demonstrated good or excellent image quality for bright-blood (2.58 ± 0.46), dark-blood (2.58 ± 0.50), and gray-blood (2.17 ± 0.53) contrast weightings, respectively. The contrast-to-noise ratios for the three weightings were 49.2 ± 12.8, 20.0 ± 5.8 and 2.8 ± 1.8, respectively. There were good agreements in the lumen and wall area (intraclass correlation coefficient = 0.993, P < .001 for lumen; intraclass correlation coefficient = 0.969, P < .001 for wall area) and strain (intraclass correlation coefficient = 0.947, P < .001) between MT-MACS and conventional 2D sequences. CONCLUSION The MT-MACS technique provides high-quality, multidimensional images for a comprehensive assessment of the thoracic aorta. Technical feasibility was demonstrated in healthy subjects and patients with thoracic aortic diseases. Further clinical validation is warranted.
Collapse
Affiliation(s)
- Zhehao Hu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Jaime L Shaw
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlee S Song
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marcel M Maya
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mariko L Ishimori
- Department of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lindsy J Forbess
- Department of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jiayu Xiao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Fei Han
- Siemens Healthcare, Los Angeles, California
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| |
Collapse
|
5
|
Hajhosseiny R, Bahaei TS, Prieto C, Botnar RM. Molecular and Nonmolecular Magnetic Resonance Coronary and Carotid Imaging. Arterioscler Thromb Vasc Biol 2020; 39:569-582. [PMID: 30760017 DOI: 10.1161/atvbaha.118.311754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is the leading cause of cardiovascular morbidity and mortality. Over the past 2 decades, increasing research attention is converging on the early detection and monitoring of atherosclerotic plaque. Among several invasive and noninvasive imaging modalities, magnetic resonance imaging (MRI) is emerging as a promising option. Advantages include its versatility, excellent soft tissue contrast for plaque characterization and lack of ionizing radiation. In this review, we will explore the recent advances in multicontrast and multiparametric imaging sequences that are bringing the aspiration of simultaneous arterial lumen, vessel wall, and plaque characterization closer to clinical feasibility. We also discuss the latest advances in molecular magnetic resonance and multimodal atherosclerosis imaging.
Collapse
Affiliation(s)
- Reza Hajhosseiny
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,National Heart and Lung Institute, Imperial College London, United Kingdom (R.H.)
| | - Tamanna S Bahaei
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.)
| | - Claudia Prieto
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile (C.P., R.M.B.)
| | - René M Botnar
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile (C.P., R.M.B.)
| |
Collapse
|
6
|
Affiliation(s)
- Ying Wang
- Department of Nuclear Medicine, First Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Michael T Osborne
- Department of Radiology, Massachusetts General Hospital, Boston, MA.,Cardiology Division, Massachusetts General Hospital, Boston, MA
| | - Brian Tung
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaming Li
- Department of Nuclear Medicine, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Superficial and multiple calcifications and ulceration associate with intraplaque hemorrhage in the carotid atherosclerotic plaque. Eur Radiol 2018; 28:4968-4977. [PMID: 29876705 PMCID: PMC6223859 DOI: 10.1007/s00330-018-5535-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/18/2018] [Accepted: 05/11/2018] [Indexed: 01/09/2023]
Abstract
Objective Intraplaque hemorrhage (IPH) and ulceration of carotid atherosclerotic plaques have been associated with vulnerability while calcification has been conventionally thought protective. However, studies suggested calcification size and location may increase plaque vulnerability. This study explored the association between calcium configurations and ulceration with IPH. Methods One hundred thirty-seven consecutive symptomatic patients scheduled for carotid endarterectomy were recruited. CTA and CTP were performed prior to surgery. Plaque samples were collected for histology. According to the location, calcifications were categorized into superficial, deep and mixed types; according to the size and number, calcifications were classified as thick and thin, multiple and single. Results Seventy-one plaques had IPH (51.8%) and 83 had ulceration (60.6%). The appearance of IPH and ulceration was correlated (r = 0.49; p < 0.001). The incidence of multiple, superficial and thin calcifications was significantly higher in lesions with IPH and ulceration compared with those without. After adjusting factors including age, stenosis and ulceration, the presence of calcification [OR (95% CI), 3.0 (1.1-8.2), p = 0.035], multiple calcification [3.9 (1.4-10.9), p = 0.009] and superficial calcification [3.4 (1.1-10.8), p = 0.001] were all associated with IPH. ROC analysis showed that the AUC of superficial and multiple calcifications in detecting IPH was 0.63 and 0.66, respectively (p < 0.05). When the ulceration was combined, AUC increased significantly to 0.82 and 0.83, respectively. Results also showed that patients with lesions of both ulceration and IPH have significantly reduced brain perfusion in the area ipsilateral to the infarction. Conclusions Superficial and multiple calcifications and ulceration were associated with carotid IPH, and they may be a surrogate for higher risk lesions. Key Points • CTA-defined superficial and multiple calcifications in carotid atherosclerotic plaques are independently associated with the presence of intraplaque hemorrhage. • The combination of superficial and multiple calcifications and ulceration is highly predictive of carotid intraplaque hemorrhage. • Patients with lesions of both ulceration and intraplaque hemorrhage have significantly reduced brain perfusion in the area ipsilateral to the infarction.
Collapse
|
8
|
Li B, Li H, Kong H, Dong L, Zhang J, Fang J. Compressed sensing based simultaneous black- and gray-blood carotid vessel wall MR imaging. Magn Reson Imaging 2017; 38:214-223. [DOI: 10.1016/j.mri.2017.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
9
|
Langham MC, Desjardins B, Englund EK, Mohler ER, Floyd TF, Wehrli FW. Rapid High-resolution, Self-registered, Dual Lumen-contrast MRI Method for Vessel-wall Assessment in Peripheral Artery Disease:: A Preliminary Investigation. Acad Radiol 2016; 23:457-67. [PMID: 26916248 DOI: 10.1016/j.acra.2015.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES Contrast-enhanced angiographic evaluation by magnetic resonance imaging (MRI) and computed tomography (CT) is the reference standard for assessing peripheral artery disease (PAD). However, because PAD and diabetes often coexist, the prevalence of renal insufficiency is a major challenge to contrast-based angiography. The objective of this work is to describe and demonstrate a new application of three-dimensional double-echo steady-state (3D DESS) as a noncontrast vascular MRI method for evaluating peripheral atherosclerosis at 3 Tesla (3T). MATERIALS AND METHODS A water-selective 3D DESS pulse sequence was designed to simultaneously collect two steady-state free-precession signals (free induction decay and Echo) yielding "black blood" (BB) and "gray blood" (GB) images. For completeness Bloch equation, simulations were performed to characterize DESS signals of various tissues including blood at different velocities and to assess two healthy subjects for the purpose of pulse sequence optimization. Exploratory studies were performed as an add-on protocol to an existing study involving patients with PAD. To evaluate the method's specificity for detecting calcification, images from select patients were compared against CT angiography. RESULTS Simulations agreed qualitatively with in vivo images supporting DESS' potential for generating distinct lumen contrast (GB vs BB). Lesions representing calcium were easily identifiable on the basis of signal void occurring on both image types and were confirmed by CT angiography. Further, BB allowed visualization of stent restenosis, and data suggest its ability to visualize acute thrombus by virtue of T2 weighting. CONCLUSION Preliminary investigation and results suggest noncontrast 3D DESS to have the potential to improve diagnosis of PAD patients by providing detailed structural assessment of vessel-wall architecture.
Collapse
|
10
|
Li H, Li B, Huang W, Dong L, Zhang J. Flow artifact removal in carotid wall imaging based on black and gray-blood dual-contrast images subtraction. Magn Reson Med 2016; 77:1612-1618. [PMID: 27018428 DOI: 10.1002/mrm.26218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop and validate a dual-contrast image subtraction (DCIS) strategy for eliminating the flow artifacts in black-blood carotid MRI. METHODS Twelve patients with carotid stenosis and eight healthy volunteers were imaged using the black and gray-blood dual-contrast imaging based on the relaxation-enhanced compressed sensing three-dimensional motion-sensitizing driven equilibrium prepared rapid-gradient-echo (RECS-3D MERGE) sequence. Subtraction of black-blood images (BBIs) and gray-blood images (GBIs), together with a preweighting procedure, was performed to eliminate the residual blood signal in BBIs. A wavelet denoising procedure was applied to offset the noise amplification. In addition to the lumen signal-to-noise ratio (SNR) and wall-lumen contrast-to-noise ratio (CNR), the signal variance ratio (SVR) and contrast variance ratio (CVR) were also used to evaluate the blood suppression efficiency. RESULTS By choosing the weighting factor of one, the lumen SNR of DCIS images was approximately 1% of that of the original BBIs, and the CNR showed a 91.4% improvement as compared with the BBIs. The median of the lumen SVR decreased to zero, and the CVR increased to 123% of that of the BBIs. CONCLUSIONS DCIS is demonstrated to be an effective strategy for sufficiently removing the residual flow signal from black-blood carotid MRI. Magn Reson Med 77:1612-1618, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hao Li
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bo Li
- College of Engineering, Peking University, Beijing, China
| | - Wenjian Huang
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li Dong
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jue Zhang
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China
| |
Collapse
|
11
|
Xie G, Bi X, Liu J, Yang Q, Natsuaki Y, Conte AH, Liu X, Li K, Li D, Fan Z. Three-dimensional coronary dark-blood interleaved with gray-blood (cDIG) magnetic resonance imaging at 3 tesla. Magn Reson Med 2015; 75:997-1007. [PMID: 25858528 DOI: 10.1002/mrm.25585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023]
Abstract
PURPOSE Three-dimensional (3D) dark-blood MRI has shown great potential in coronary artery plaque evaluation. However, substantial variability in quantification could result from superficial calcification because of its low signal. To address this issue, a 3D coronary dark-blood interleaved with gray-blood (cDIG) technique was developed. METHODS cDIG is based on a balanced steady-state free precession readout combined with a local re-inversion-based double-inversion-recovery (LocReInv-DIR) preparation. The LocReInv-DIR is applied every two RR intervals. Dark-blood and gray-blood contrasts are collected in the first and second RR interval, respectively. To improve the respiratory gating efficiency, two independent navigators were developed to separately gate the respiratory motion for the two interleaved acquisitions. In vivo experiments in eight healthy subjects and one patient were conducted to validate the technique. RESULTS cDIG provided dual-contrasts without compromise in scan time. The dark-blood images with cDIG demonstrated excellent wall and lumen signal performances and morphological measurements. Advantageously, cDIG yielded a second contrast that was shown to help identify the superficial calcification in the coronary plaque of a patient. CONCLUSION A novel technique was developed for obtaining 3D coronary vessel wall and gray lumen images. The additional contrast may aid in identifying calcified nodules and thus potentially improve the evaluation of coronary plaque burden.
Collapse
Affiliation(s)
- Guoxi Xie
- Shenzhen Key Lab for MRI, BCMIIS, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoming Bi
- Siemens Healthcare, Los Angeles, California, USA
| | - Jiabin Liu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Yang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | | - Xin Liu
- Shenzhen Key Lab for MRI, BCMIIS, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Kuncheng Li
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
12
|
Fan Z, Yu W, Xie Y, Dong L, Yang L, Wang Z, Conte AH, Bi X, An J, Zhang T, Laub G, Shah PK, Zhang Z, Li D. Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility. J Cardiovasc Magn Reson 2014; 16:53. [PMID: 25184808 PMCID: PMC4222690 DOI: 10.1186/s12968-014-0053-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Multi-contrast weighted imaging is a commonly used cardiovascular magnetic resonance (CMR) protocol for characterization of carotid plaque composition. However, this approach is limited in several aspects including low slice resolution, long scan time, image mis-registration, and complex image interpretation. In this work, a 3D CMR technique, named Multi-contrast Atherosclerosis Characterization (MATCH), was developed to mitigate the above limitations. METHODS MATCH employs a 3D spoiled segmented fast low angle shot readout to acquire data with three different contrast weightings in an interleaved fashion. The inherently co-registered image sets, hyper T1-weighting, gray blood, and T2-weighting, are used to detect intra-plaque hemorrhage (IPH), calcification (CA), lipid-rich necrotic core (LRNC), and loose-matrix (LM). The MATCH sequence was optimized by computer simulations and testing on four healthy volunteers and then evaluated in a pilot study of six patients with carotid plaque, using the conventional multi-contrast protocol as a reference. RESULTS On MATCH images, the major plaque components were easy to identify. Spatial co-registration between the three image sets with MATCH was particularly helpful for the reviewer to discern co-existent components in an image and appreciate their spatial relation. Based on Cohen's kappa tests, moderate to excellent agreement in the image-based or artery-based component detection between the two protocols was obtained for LRNC, IPH, CA, and LM, respectively. Compared with the conventional multi-contrast protocol, the MATCH protocol yield significantly higher signal contrast ratio for IPH (3.1±1.3 vs. 0.4±0.3, p<0.001) and CA (1.6±1.5 vs. 0.7±0.6, p=0.012) with respect to the vessel wall. CONCLUSIONS To the best of our knowledge, the proposed MATCH sequence is the first 3D CMR technique that acquires spatially co-registered multi-contrast image sets in a single scan for characterization of carotid plaque composition. Our pilot clinical study suggests that the MATCH-based protocol may outperform the conventional multi-contrast protocol in several respects. With further technical improvements and large-scale clinical validation, MATCH has the potential to become a CMR method for assessing the risk of plaque disruption in a clinical workup.
Collapse
Affiliation(s)
- Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yu
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Dong
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lixin Yang
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhanhong Wang
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | | | - Xiaoming Bi
- MR R&D, Siemens Healthcare, Los Angeles, CA, USA
| | - Jing An
- MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Tianjing Zhang
- MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Gerhard Laub
- MR R&D, Siemens Healthcare, Los Angeles, CA, USA
| | - Prediman Krishan Shah
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Atherosclerosis Prevention and Management Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhaoqi Zhang
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
3D coronary dark-blood interleaved with gray-blood (cDIG) MRI. J Cardiovasc Magn Reson 2014. [PMCID: PMC4044142 DOI: 10.1186/1532-429x-16-s1-p217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Teng Z, Sadat U, Wang W, Bahaei NS, Chen S, Young VE, Graves MJ, Gillard JH. Intraplaque stretch in carotid atherosclerotic plaque--an effective biomechanical predictor for subsequent cerebrovascular ischemic events. PLoS One 2013; 8:e61522. [PMID: 23626694 PMCID: PMC3634006 DOI: 10.1371/journal.pone.0061522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/11/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Stretch is a mechanical parameter, which has been proposed previously to affect the biological activities in different tissues. This study explored its utility in determining plaque vulnerability. METHODS One hundred and six patients with mild to moderate carotid stenosis were recruited in this study (53 symptomatic and 53 asymptomatic). High resolution, multi-sequence magnetic resonance (MR) imaging was performed to delineate various plaque components. Finite element method was used to predict high stretch concentration within the plaque. RESULTS During a two-year follow-up, 11 patients in symptomatic group and 3 in asymptomatic group experienced recurrent cerebrovascular events. Plaque stretch at systole and stretch variation during one cardiac cycle was greater in symptomatic group than those in the asymptomatic. Within the symptomatic group, a similar trend was observed in patients with recurrent events compared to those without. CONCLUSION Plaques with high stretch concentration and large stretch variation are associated with increased risk of future cerebrovascular events.
Collapse
Affiliation(s)
- Zhongzhao Teng
- University Department of Radiology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|