1
|
Shao X, Zhang Z, Ma X, Liu F, Guo H, Ugurbil K, Wu X. Parallel-transmission spatial spectral pulse design with local specific absorption rate control: Demonstration for robust uniform water-selective excitation in the human brain at 7 T. Magn Reson Med 2025; 93:1238-1255. [PMID: 39481025 DOI: 10.1002/mrm.30346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE To propose a novel method for parallel-transmission (pTx) spatial-spectral pulse design and demonstrate its utility for robust uniform water-selective excitation (water excitation) across the entire brain. THEORY AND METHODS Our design problem is formulated as a magnitude-least-squares minimization with joint RF and k-space optimization under explicit specific-absorption-rate constraints. For improved robustness against off-resonance effects, the spectral component of the excitation target is prescribed to have a water passband and a fat stopband. A two-step algorithm was devised to solve our design problem, with Step 1 aiming to solve a reduced problem to find a sensible start point for Step 2 to solve the original problem. The efficacy of our pulse design was evaluated in simulation, phantom, and human experiments using the commercial Nova head coil. Universal pulses were also designed based on a 10-subject training data set to demonstrate the utility of our method for plug-and-play pTx. RESULTS For kT-points and spiral nonselective parameterizations, our design method outperformed the pTx interleaved binomial approach, reducing RMS error by up to about 35% for water excitation and about 97% for fat suppression (over a 200-Hz bandwidth) while decreasing local specific absorption rate by about 30%. Both our subject-specific and universal pulses improved water excitation, restoring signal loss in the cerebellum while suppressing fat signal even in regions of large susceptibility-induced off-resonances. CONCLUSION Demonstrated useful for 4D (3D spatial, one-dimensional spectral) pTx spatial-spectral pulse design, our proposed method provides an effective solution for robust volumetric uniform water excitation, holding a promise to many ultrahigh-field applications.
Collapse
Affiliation(s)
- Xin Shao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhe Zhang
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Ma
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Eisen CK, Liebig P, Herrler J, Ritter D, Lévy S, Uder M, Nagel AM, Grodzki D. Fast online spectral-spatial pulse design for subject-specific fat saturation in cervical spine and foot imaging at 1.5 T. MAGMA (NEW YORK, N.Y.) 2024; 37:257-272. [PMID: 38366129 PMCID: PMC10995033 DOI: 10.1007/s10334-024-01149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design. METHODS The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations. RESULTS Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds. DISCUSSION An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.
Collapse
Affiliation(s)
- Christian Karl Eisen
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Patrick Liebig
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Jürgen Herrler
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Dieter Ritter
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Simon Lévy
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Grodzki
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| |
Collapse
|
3
|
Tkotz K, Liebert A, Gast LV, Zeiger P, Uder M, Zaiss M, Nagel AM. Multi-echo-based fat artifact correction for CEST MRI at 7 T. Magn Reson Med 2024; 91:481-496. [PMID: 37753844 DOI: 10.1002/mrm.29863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE CEST MRI is influenced by fat signal, which can reduce the apparent CEST contrast or lead to pseudo-CEST effects. Our goal was to develop a fat artifact correction based on multi-echo fat-water separation that functions stably for 7 T knee MRI data. METHODS Our proposed algorithm utilizes the full complex data and a phase demodulation with an off-resonance map estimation based on the Z-spectra prior to fat-water separation to achieve stable fat artifact correction. Our method was validated and compared to multi-echo-based methods originally proposed for 3 T by Bloch-McConnell simulations and phantom measurements. Moreover, the method was applied to in vivo 7 T knee MRI examinations and compared to Gaussian fat saturation and a published single-echo Z-spectrum-based fat artifact correction method. RESULTS Phase demodulation prior to fat-water separation reduced the occurrence of fat-water swaps. Utilizing the complex signal data led to more stable correction results than working with magnitude data, as was proposed for 3 T. Our approach reduced pseudo-nuclear Overhauser effects compared to the other correction methods. Thus, the mean asymmetry contrast at 3.5 ppm in cartilage over five volunteers increased from -9.2% (uncorrected) and -10.6% (Z-spectrum-based) to -1.5%. Results showed higher spatial stability than with the fat saturation pulse. CONCLUSION Our work demonstrates the feasibility of multi-echo-based fat-water separation with an adaptive fat model for fat artifact correction for CEST MRI at 7 T. Our approach provided better fat artifact correction throughout the entire spectrum and image than the fat saturation pulse or Z-spectrum-based correction method for both phantom and knee imaging results.
Collapse
Affiliation(s)
- Katharina Tkotz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrzej Liebert
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paula Zeiger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
5
|
Lévy S, Herrler J, Liebert A, Tkotz K, Fabian MS, Eisen C, Grodzki D, Uder M, Dörfler A, Zaiss M, Nagel AM. Clinically compatible subject-specific dynamic parallel transmit pulse design for homogeneous fat saturation and water-excitation at 141657T: Proof-of-concept for 14165CEST MRI of the brain. Magn Reson Med 2022; 89:77-94. [PMID: 36128895 DOI: 10.1002/mrm.29412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST MRI. METHODS "Universal" kT -points (for FS) and spiral non-selective (for WE) trajectories were optimized offline for flip angle (FA) homogeneity. Routines to optimize the pulse shape online, based on the subject's fields maps, were implemented (target FA of 110°/0° for FS, 0°/5° for WE at fat/water frequencies). The pulses were inserted in a CEST sequence with a pTx readout. The different fat suppression schemes and their effects on CEST contrasts were compared in 12 volunteers at 7T. RESULTS With a 25%-shorter pulse duration, pTx FS largely improved the FA homogeneity (root-mean-square-error (RMSE) = 12.3° vs. 53.4° with circularly-polarized mode, at the fat frequency). However, the spectral selectivity was degraded mainly in the cerebellum and close to the sinuses (RMSE = 5.8° vs. 0.2° at the water frequency). Similarly, pTx WE showed a trade-off between FA homogeneity and spectral selectivity compared to pTx non-selective pulses (RMSE = 0.9° and 1.1° at the fat and water frequencies, vs. 4.6° and 0.5°). In the brain, CEST metrics were reduced by up to 31.9% at -3.3 ppm with pTx FS, suggesting a mitigated lipid-induced bias. CONCLUSION This clinically compatible implementation of dynamic pTx pulses improved the fat suppression homogeneity at 7T taking into account the subject-specific B0 heterogeneities online. This study highlights the lipid-induced biases on the CEST z-spectrum. The results are promising for body applications where B0 heterogeneities and fat are more substantial.
Collapse
Affiliation(s)
- Simon Lévy
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Jürgen Herrler
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Andrzej Liebert
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Katharina Tkotz
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Moritz S Fabian
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Christian Eisen
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - David Grodzki
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arnd Dörfler
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Moritz Zaiss
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Armin M Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
He X, Auerbach EJ, Garwood M, Kobayashi N, Wu X, Metzger GJ. Parallel transmit optimized 3D composite adiabatic spectral-spatial pulse for spectroscopy. Magn Reson Med 2021; 86:17-32. [PMID: 33497006 PMCID: PMC8545499 DOI: 10.1002/mrm.28682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE To develop a 3D composite adiabatic spectral-spatial pulse for refocusing in spin-echo spectroscopy acquisitions and to compare its performance against standard acquisition methods. METHODS A 3D composite adiabatic pulse was designed by modulating a train of parallel transmit-optimized 2D subpulses with an adiabatic envelope. The spatial and spectral profiles were simulated and validated by experiments to demonstrate the feasibility of the design in both single and double spin-echo spectroscopy acquisitions. Phantom and in vivo studies were performed to evaluate the pulse performance and compared with semi-LASER with respect to localization performance, sequence timing, signal suppression, and specific absorption rate. RESULTS Simultaneous 2D spatial localization with water and lipid suppression was achieved with the designed refocusing pulse, allowing high-quality spectra to be acquired with shorter minimum TE/TR, reduced SAR, as well as adaptation to spatially varying B0 and B 1 + field inhomogeneities in both prostate and brain studies. CONCLUSION The proposed composite pulse can serve as a more SAR efficient alternative to conventional localization methods such as semi-LASER at ultrahigh field for spin echo-based spectroscopy studies. Subpulse parallel-transmit optimization provides the flexibility to manage the tradeoff among multiple design criteria to accommodate different field strengths and applications.
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Naoharu Kobayashi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
7
|
Sun H, Fessler JA, Noll DC, Nielsen JF. Joint Design of Excitation k-Space Trajectory and RF Pulse for Small-Tip 3D Tailored Excitation in MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:468-79. [PMID: 26390450 PMCID: PMC4792784 DOI: 10.1109/tmi.2015.2478880] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We propose a new method for the joint design of k-space trajectory and RF pulse in 3D small-tip tailored excitation. Designing time-varying RF and gradient waveforms for a desired 3D target excitation pattern in MRI poses a non-linear, non-convex, constrained optimization problem with relatively large problem size that is difficult to solve directly. Existing joint pulse design approaches are therefore typically restricted to predefined trajectory types such as EPI or stack-of-spirals that intrinsically satisfy the gradient maximum and slew rate constraints and reduce the problem size (dimensionality) dramatically, but lead to suboptimal excitation accuracy for a given pulse duration. Here we use a 2nd-order B-spline basis that can be fitted to an arbitrary k-space trajectory, and allows the gradient constraints to be implemented efficiently. We show that this allows the joint optimization problem to be solved with quite general k-space trajectories. Starting from an arbitrary initial trajectory, we first approximate the trajectory using B-spline basis, and then optimize the corresponding coefficients. We evaluate our method in simulation using four different k-space initializations: stack-of-spirals, SPINS, KT-points, and a new method based on KT-points. In all cases, our approach leads to substantial improvement in excitation accuracy for a given pulse duration. We also validated our method for inner-volume excitation using phantom experiments. The computation is fast enough for online applications.
Collapse
Affiliation(s)
- Hao Sun
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jeffrey A. Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - Douglas C. Noll
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
8
|
Zhao F, Nielsen JF, Swanson SD, Fessler JA, Noll DC. Simultaneous fat saturation and magnetization transfer contrast imaging with steady-state incoherent sequences. Magn Reson Med 2014; 74:739-46. [PMID: 25252173 DOI: 10.1002/mrm.25475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE This work combines an n-dimensional fat sat(uration) radiofrequency (RF) pulse with steady-state incoherent (SSI) pulse sequences, e.g., spoiled gradient-echo sequence, to simultaneously produce B0 insensitive fat suppression and magnetization transfer (MT) contrast. This pulse is then referred to as "fat sat and MT contrast pulse." THEORY We discuss the features of the fat sat and MT contrast pulse and the MT sensitivities of the SSI sequences when combining with fat sat. Moreover, we also introduce an adapted RF spoiling scheme for SSI sequences with fat sat. METHODS Simulations and phantom experiments were conducted to demonstrate the adapted RF spoiling. Fat suppression and MT effects are shown in 3T phantom experiments and in vivo experiments, including brain imaging, cartilage imaging, and angiography. RESULTS To ensure that the sequence reaches steady state, the adapted RF spoiling is required for fat sat SSI sequences. Fat sat and MT contrast pulse works robustly with field inhomogeneity and also produces MT contrasts. CONCLUSION SSI sequences with fat sat and MT contrast pulse and adapted RF spoiling can robustly produce fat suppressed and MT contrast images in the presence of field inhomogeneity.
Collapse
Affiliation(s)
- Feng Zhao
- Biomedical Engineering Department, The University of Michigan, Ann Arbor, Michigan, USA
| | - Jon-Fredrik Nielsen
- Biomedical Engineering Department, The University of Michigan, Ann Arbor, Michigan, USA
| | - Scott D Swanson
- Radiology Department, The University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A Fessler
- Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas C Noll
- Biomedical Engineering Department, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|