1
|
Cao P, Zhu X, Tang S, Leynes A, Jakary A, Larson PEZ. Shuffled magnetization-prepared multicontrast rapid gradient-echo imaging. Magn Reson Med 2017; 79:62-70. [PMID: 29080236 DOI: 10.1002/mrm.26986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE To develop a novel acquisition and reconstruction method for magnetization-prepared 3-dimensional multicontrast rapid gradient-echo imaging, using Hankel matrix completion in combination with compressed sensing and parallel imaging. METHODS A random k-space shuffling strategy was implemented in simulation and in vivo human experiments at 7 T for 3-dimensional inversion recovery, T2 /diffusion preparation, and magnetization transfer imaging. We combined compressed sensing, based on total variation and spatial-temporal low-rank regularizations, and parallel imaging with pixel-wise Hankel matrix completion, allowing the reconstruction of tens of multicontrast 3-dimensional images from 3- or 6-min scans. RESULTS The simulation result showed that the proposed method can reconstruct signal-recovery curves in each voxel and was robust for typical in vivo signal-to-noise ratio with 16-times acceleration. In vivo studies achieved 4 to 24 times accelerations for inversion recovery, T2 /diffusion preparation, and magnetization transfer imaging. Furthermore, the contrast was improved by resolving pixel-wise signal-recovery curves after magnetization preparation. CONCLUSIONS The proposed method can improve acquisition efficiencies for magnetization-prepared MRI and tens of multicontrast 3-dimensional images could be recovered from a single scan. Furthermore, it was robust against noise, applicable for recovering multi-exponential signals, and did not require any previous knowledge of model parameters. Magn Reson Med 79:62-70, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Peng Cao
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Xucheng Zhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Andrew Leynes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Tamir JI, Uecker M, Chen W, Lai P, Alley MT, Vasanawala SS, Lustig M. T 2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 2017; 77:180-195. [PMID: 26786745 PMCID: PMC4990508 DOI: 10.1002/mrm.26102] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/21/2015] [Accepted: 12/06/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE A new acquisition and reconstruction method called T2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T2 Shuffling reduces blurring and recovers many images at multiple T2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). THEORY AND METHODS The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. RESULTS Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. CONCLUSION The proposed T2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jonathan I. Tamir
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Martin Uecker
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Weitian Chen
- Global Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Peng Lai
- Global Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Marcus T. Alley
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Deng Z, Pang J, Yang W, Yue Y, Sharif B, Tuli R, Li D, Fraass B, Fan Z. Four-dimensional MRI using three-dimensional radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Magn Reson Med 2015; 75:1574-85. [PMID: 25981762 DOI: 10.1002/mrm.25753] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a four-dimensional MRI (4D-MRI) technique to characterize the average respiratory tumor motion for abdominal radiotherapy planning. METHODS A continuous spoiled gradient echo sequence was implemented with 3D radial trajectory and 1D self-gating for respiratory motion detection. Data were retrospectively sorted into different respiratory phases based on their temporal locations within a respiratory cycle, and each phase was reconstructed by means of a self-calibrating CG-SENSE program. Motion phantom, healthy volunteer and patient studies were performed to validate the respiratory motion detected by the proposed method against that from a 2D real-time protocol. RESULTS The proposed method successfully visualized the respiratory motion in phantom and human subjects. The 4D-MRI and real-time 2D-MRI yielded comparable superior-inferior (SI) motion amplitudes (intraclass correlation = 0.935) with up-to one pixel mean absolute differences in SI displacements over 10 phases and high cross-correlation between phase-resolved displacements (phantom: 0.985; human: 0.937-0.985). Comparable anterior-posterior and left-right displacements of the tumor or gold fiducial between 4D and real-time 2D-MRI were also observed in the two patients, and the hysteresis effect was shown in their 3D trajectories. CONCLUSION We demonstrated the feasibility of the proposed 4D-MRI technique to characterize abdominal respiratory motion, which may provide valuable information for radiotherapy planning.
Collapse
Affiliation(s)
- Zixin Deng
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Jianing Pang
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Radiology and Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Wensha Yang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yong Yue
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Behzad Sharif
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Benedick Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|