1
|
Klawer EME, van Houdt PJ, Simonis FFJ, van den Berg CAT, Pos FJ, Heijmink SWTPJ, Isebaert S, Haustermans K, van der Heide UA. Improved repeatability of dynamic contrast-enhanced MRI using the complex MRI signal to derive arterial input functions: a test-retest study in prostate cancer patients. Magn Reson Med 2019; 81:3358-3369. [PMID: 30656738 PMCID: PMC6590420 DOI: 10.1002/mrm.27646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
Purpose The arterial input function (AIF) is a major source of uncertainty in tracer kinetic (TK) analysis of dynamic contrast‐enhanced (DCE)‐MRI data. The aim of this study was to investigate the repeatability of AIFs extracted from the complex signal and of the resulting TK parameters in prostate cancer patients. Methods Twenty‐two patients with biopsy‐proven prostate cancer underwent a 3T MRI exam twice. DCE‐MRI data were acquired with a 3D spoiled gradient echo sequence. AIFs were extracted from the magnitude of the signal (AIFMAGN), phase (AIFPHASE), and complex signal (AIFCOMPLEX). The Tofts model was applied to extract Ktrans, kep and ve. Repeatability of AIF curve characteristics and TK parameters was assessed with the within‐subject coefficient of variation (wCV). Results The wCV for peak height and full width at half maximum for AIFCOMPLEX (7% and 8%) indicated an improved repeatability compared to AIFMAGN (12% and 12%) and AIFPHASE (12% and 7%). This translated in lower wCV values for Ktrans (11%) with AIFCOMPLEX in comparison to AIFMAGN (24%) and AIFPHASE (15%). For kep, the wCV was 16% with AIFMAGN, 13% with AIFPHASE, and 13% with AIFCOMPLEX. Conclusion Repeatability of AIFPHASE and AIFCOMPLEX is higher than for AIFMAGN, resulting in a better repeatability of TK parameters. Thus, use of either AIFPHASE or AIFCOMPLEX improves the robustness of quantitative analysis of DCE‐MRI in prostate cancer.
Collapse
Affiliation(s)
- Edzo M E Klawer
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra J van Houdt
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank F J Simonis
- Department of Radiation Oncology, Imaging Division, University Medical Center, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiation Oncology, Imaging Division, University Medical Center, Utrecht, The Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Sofie Isebaert
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Karin Haustermans
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Chen Y, Fu Y, Li X, Chen H, Wang Z, Zhang H. Peptide-functionalized NaGdF4 nanoparticles for tumor-targeted magnetic resonance imaging and effective therapy. RSC Adv 2019; 9:17093-17100. [PMID: 35519897 PMCID: PMC9064544 DOI: 10.1039/c9ra02135c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
Metallic nanoparticles showed potent efficacy for diagnosis and therapy of cancer, but their clinical applications are limited by their poor tumor-targeting ability. Herein, peptide-functionalized 9 nm NaGdF4 nanoparticles (termed as, NaGdF4@bp-peptide NPs) have been synthesized through the Gd–phosphate coordination reaction of the spherical NaGdF4 nanoparticles with phosphopeptides (sequence: KLAKLAKKLAKLAKG(p-S)GAKRGARSTA, p-S means phosphorylated serine) including a p32 protein binding motif incorporating a cell-penetrating function, and a proapoptotic domain. The NaGdF4@bp-peptide NPs are ready to be efficiently internalized by cancer cells; they show a much higher cytotoxicity in MCF-7 breast cancer cells than the casein phosphopeptide (CPP) modified NaGdF4 nanoparticles (termed as, NaGdF4@CPP NPs). Using mouse-bearing MCF-7 breast cancer as a model system, the in vivo experimental results demonstrate that NaGdF4@bp-peptide NPs have integration of T1-weighted magnetic resonance imaging (MRI) contrast and tumor-targeting functionalities, and are able to suppress tumor growth without causing systemic toxicity. NaGdF4@bp-peptide nanoparticles have been used as a T1-weighted MR contrast agent with active-tumor targeting and antitumor ability.![]()
Collapse
Affiliation(s)
- Yixin Chen
- Department of Radiology
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Yu Fu
- Department of Radiology
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Xiaodong Li
- Department of Radiology
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Huimao Zhang
- Department of Radiology
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| |
Collapse
|
3
|
Chen H, Li X, Liu F, Zhang H, Wang Z. Renal Clearable Peptide Functionalized NaGdF 4 Nanodots for High-Efficiency Tracking Orthotopic Colorectal Tumor in Mouse. Mol Pharm 2017; 14:3134-3141. [PMID: 28727430 DOI: 10.1021/acs.molpharmaceut.7b00361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effective delivery of bioimaging probes to a selected cancerous tissue has extensive significance for biological studies and clinical investigations. Herein, the peptide functionalized NaGdF4 nanodots (termed as, pPeptide-NaGdF4 nanodots) have been prepared for highly efficient magnetic resonance imaging (MRI) of tumor by formation of Gd-phosphonate coordinate bonds among hydrophobic NaGdF4 nanodots (4.2 nm in diameter) with mixed phosphorylated peptide ligands including a tumor targeting phosphopeptide and a cell penetrating phosphopeptide. The tumor targeting pPeptide-NaGdF4 nanodots have paramagnetic property with ultrasmall hydrodynamic diameter (HD, c.a., 7.3 nm) which greatly improves their MRI contrast ability of tumor and facilitates renal clearance. In detail, the capability of the pPeptide-NaGdF4 nanodots as high efficient contrast agent for in vivo MRI is evaluated successfully through tracking small drug induced orthotopic colorectal tumor (c.a., 195 mm3 in volume) in mouse.
Collapse
Affiliation(s)
- Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xiaodong Li
- Department of Radiology, The First Hospital of Jilin University , Changchun 130021, P. R. China
| | - Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University , Changchun 130021, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
4
|
Hectors SJ, Besa C, Wagner M, Jajamovich GH, Haines GK, Lewis S, Tewari A, Rastinehad A, Huang W, Taouli B. DCE-MRI of the prostate using shutter-speed vs. Tofts model for tumor characterization and assessment of aggressiveness. J Magn Reson Imaging 2017; 46:837-849. [PMID: 28092414 DOI: 10.1002/jmri.25631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/27/2016] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To quantify Tofts model (TM) and shutter-speed model (SSM) perfusion parameters in prostate cancer (PCa) and noncancerous peripheral zone (PZ) and to compare the diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to Prostate Imaging and Reporting and Data System (PI-RADS) classification for the assessment of PCa aggressiveness. MATERIALS AND METHODS Fifty PCa patients (mean age 60 years old) who underwent MRI at 3.0T followed by prostatectomy were included in this Institutional Review Board-approved retrospective study. DCE-MRI parameters (Ktrans , ve , kep [TM&SSM] and intracellular water molecule lifetime τi [SSM]) were determined in PCa and PZ. Differences in DCE-MRI parameters between PCa and PZ, and between models were assessed using Wilcoxon signed-rank tests. Receiver operating characteristic (ROC) analysis for differentiation between PCa and PZ was performed for individual and combined DCE-MRI parameters. Diagnostic performance of DCE-MRI parameters for identification of aggressive PCa (Gleason ≥8, grade group [GG] ≥3 or pathology stage pT3) was assessed using ROC analysis and compared with PI-RADSv2 scores. RESULTS DCE-MRI parameters were significantly different between TM and SSM and between PZ and PCa (P < 0.037). Diagnostic performances of TM and SSM for differentiation of PCa from PZ were similar (highest AUC TM: Ktrans +kep 0.76, SSM: τi +kep 0.80). PI-RADS outperformed TM and SSM DCE-MRI for identification of Gleason ≥8 lesions (AUC PI-RADS: 0.91, highest AUC DCE-MRI: Ktrans +τi SSM 0.61, P = 0.002). The diagnostic performance of PI-RADS and DCE-MRI for identification of GG ≥3 and pT3 PCa was not significantly different (P > 0.213). CONCLUSION SSM DCE-MRI did not increase the diagnostic performance of DCE-MRI for PCa characterization. PI-RADS outperformed both TM and SSM DCE-MRI for identification of aggressive cancer. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:837-849.
Collapse
Affiliation(s)
- Stefanie J Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cecilia Besa
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Guido H Jajamovich
- Applied Mathematics and Modeling, Scientific Informatics Department, Merck Sharp & Dohme, Boston, Massachusetts, USA
| | - George K Haines
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sara Lewis
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ashutosh Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ardeshir Rastinehad
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Simonis FF, Sbrizzi A, Beld E, Lagendijk JJ, van den Berg CA. Improving the arterial input function in dynamic contrast enhanced MRI by fitting the signal in the complex plane. Magn Reson Med 2015; 76:1236-45. [DOI: 10.1002/mrm.26023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Frank F.J. Simonis
- Department of Radiotherapy; Imaging Division, University Medical Center Utrecht; Utrecht the Netherlands
| | - Alessandro Sbrizzi
- Department of Radiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - Ellis Beld
- Department of Radiotherapy; Imaging Division, University Medical Center Utrecht; Utrecht the Netherlands
| | - Jan J.W. Lagendijk
- Department of Radiotherapy; Imaging Division, University Medical Center Utrecht; Utrecht the Netherlands
| | - Cornelis A.T. van den Berg
- Department of Radiotherapy; Imaging Division, University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|