1
|
Cao P, Jiang W, Chen C, Wang Y, Havenhill J. Self-navigated subspace reconstruction for real-time MR imaging of the vocal tract. Magn Reson Imaging 2024; 115:110243. [PMID: 39369913 DOI: 10.1016/j.mri.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE Real-time MRI offers a continuous and dynamic view of the object being imaged. Researchers have applied real-time MRI to speech production, which allows for the visualization of the vocal tract during speech. METHODS This study proposed applying self-navigated subspace reconstruction for real-time vocal tract imaging. We performed experiments on a clinical 3 T MRI using standard RF coils and rapid acquisition. Additionally, 1000 frames were compressed during reconstruction to a few principal components, and iterative low-rank approximation was performed on compressed k-space, in conjunction with the orthogonal basis estimation for the subspace. RESULTS The simulation study involving a 32-time acceleration showed that the proposed method produced a reasonably small root mean square error (RMSE) of 0.159, compared to 0.278 for sliding window reconstruction, 0.2527 for SToRM and 0.294 for low-rank reconstruction. The study also presented in vivo images of a typical sagittal image with a temporal resolution of 7 ms/frame or 21 ms/frame for the three-slice scan. CONCLUSION Our study presented a subspace reconstruction technique that does not require a navigator echo, which can be used for real-time MRI, particularly in speech imaging applications.
Collapse
Affiliation(s)
- Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Wenting Jiang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Changhe Chen
- Department of Linguistics, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yiang Wang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jonathan Havenhill
- Department of Linguistics, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
2
|
Lee JH, Kim JY, Ryu K, Al-Masni MA, Kim TH, Han D, Kim HG, Kim DH. JUST-Net: Jointly unrolled cross-domain optimization based spatio-temporal reconstruction network for accelerated 3D myelin water imaging. Magn Reson Med 2024; 91:2483-2497. [PMID: 38342983 DOI: 10.1002/mrm.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE We introduced a novel reconstruction network, jointly unrolled cross-domain optimization-based spatio-temporal reconstruction network (JUST-Net), aimed at accelerating 3D multi-echo gradient-echo (mGRE) data acquisition and improving the quality of resulting myelin water imaging (MWI) maps. METHOD An unrolled cross-domain spatio-temporal reconstruction network was designed. The main idea is to combine frequency and spatio-temporal image feature representations and to sequentially implement convolution layers in both domains. The k-space subnetwork utilizes shared information from adjacent frames, whereas the image subnetwork applies separate convolutions in both spatial and temporal dimensions. The proposed reconstruction network was evaluated for both retrospectively and prospectively accelerated acquisition. Furthermore, it was assessed in simulation studies and real-world cases with k-space corruptions to evaluate its potential for motion artifact reduction. RESULTS The proposed JUST-Net enabled highly reproducible and accelerated 3D mGRE acquisition for whole-brain MWI, reducing the acquisition time from fully sampled 15:23 to 2:22 min within a 3-min reconstruction time. The normalized root mean squared error of the reconstructed mGRE images increased by less than 4.0%, and the correlation coefficients for MWI showed a value of over 0.68 when compared to the fully sampled reference. Additionally, the proposed method demonstrated a mitigating effect on both simulated and clinical motion-corrupted cases. CONCLUSION The proposed JUST-Net has demonstrated the capability to achieve high acceleration factors for 3D mGRE-based MWI, which is expected to facilitate widespread clinical applications of MWI.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
- Artificial Intelligence and Robotics Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jae-Yoon Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kanghyun Ryu
- Artificial Intelligence and Robotics Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Mohammed A Al-Masni
- Department of Artificial Intelligence, Sejong University, Seoul, Republic of Korea
| | - Tae Hyung Kim
- Department of Computer Engineering, Hongik University, Seoul, Republic of Korea
| | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Hyun Gi Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Xu J, Zu T, Hsu YC, Wang X, Chan KWY, Zhang Y. Accelerating CEST imaging using a model-based deep neural network with synthetic training data. Magn Reson Med 2024; 91:583-599. [PMID: 37867413 DOI: 10.1002/mrm.29889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE To develop a model-based deep neural network for high-quality image reconstruction of undersampled multi-coil CEST data. THEORY AND METHODS Inspired by the variational network (VN), the CEST image reconstruction equation is unrolled into a deep neural network (CEST-VN) with a k-space data-sharing block that takes advantage of the inherent redundancy in adjacent CEST frames and 3D spatial-frequential convolution kernels that exploit correlations in the x-ω domain. Additionally, a new pipeline based on multiple-pool Bloch-McConnell simulations is devised to synthesize multi-coil CEST data from publicly available anatomical MRI data. The proposed network is trained on simulated data with a CEST-specific loss function that jointly measures the structural and CEST contrast. The performance of CEST-VN was evaluated on four healthy volunteers and five brain tumor patients using retrospectively or prospectively undersampled data with various acceleration factors, and then compared with other conventional and state-of-the-art reconstruction methods. RESULTS The proposed CEST-VN method generated high-quality CEST source images and amide proton transfer-weighted maps in healthy and brain tumor subjects, consistently outperforming GRAPPA, blind compressed sensing, and the original VN. With the acceleration factors increasing from 3 to 6, CEST-VN with the same hyperparameters yielded similar and accurate reconstruction without apparent loss of details or increase of artifacts. The ablation studies confirmed the effectiveness of the CEST-specific loss function and data-sharing block used. CONCLUSIONS The proposed CEST-VN method can offer high-quality CEST source images and amide proton transfer-weighted maps from highly undersampled multi-coil data by integrating the deep learning prior and multi-coil sensitivity encoding model.
Collapse
Affiliation(s)
- Jianping Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, People's Republic of China
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, People's Republic of China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Poojar P, Qian E, Fernandes TT, Nunes RG, Fung M, Quarterman P, Jambawalikar SR, Lignelli A, Geethanath S. Tailored magnetic resonance fingerprinting. Magn Reson Imaging 2023; 99:81-90. [PMID: 36764630 DOI: 10.1016/j.mri.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Neuroimaging of certain pathologies requires both multi-parametric qualitative and quantitative imaging. The role of the quantitative MRI (qMRI) is well accepted but suffers from long acquisition times leading to patient discomfort, especially in geriatric and pediatric patients. Previous studies show that synthetic MRI can be used in order to reduce the scan time and provide qMRI as well as multi-contrast data. However, this approach suffers from artifacts such as partial volume and flow. In order to increase the scan efficiency (the number of contrasts and quantitative maps acquired per unit time), we designed, simulated, and demonstrated rapid, simultaneous, multi-contrast qualitative (T1 weighted, T1 fluid attenuated inversion recovery (FLAIR), T2 weighted, water, and fat), and quantitative imaging (T1 and T2 maps) through the approach of tailored MR fingerprinting (TMRF) to cover whole-brain in approximately four minutes. We performed TMRF on in vivo four healthy human brains and in vitro ISMRM/NIST phantom and compared with vendor supplied gold standard (GS) and MRF sequences. All scans were performed on a 3 T GE Premier system and images were reconstructed offline using MATLAB. The reconstructed qualitative images were then subjected to custom DL denoising and gradient anisotropic diffusion denoising. The quantitative tissue parametric maps were reconstructed using a dense neural network to gain computational speed compared to dictionary matching. The grey matter and white matter tissues in qualitative and quantitative data for the in vivo datasets were segmented semi-automatically. The SNR and mean contrasts were plotted and compared across all three methods. The GS images show better SNR in all four subjects compared to MRF and TMRF (GS > TMRF>MRF). The T1 and T2 values of MRF are relatively overestimated as compared to GS and TMRF. The scan efficiency for TMRF is 1.72 min-1 which is higher compared to GS (0.32 min-1) and MRF (0.90 min-1).
Collapse
Affiliation(s)
- Pavan Poojar
- Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Columbia Magnetic Resonance Research Center, Columbia University in the city of New York, NY, USA
| | - Enlin Qian
- Columbia Magnetic Resonance Research Center, Columbia University in the city of New York, NY, USA
| | - Tiago T Fernandes
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rita G Nunes
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maggie Fung
- GE Healthcare Applied Sciences Laboratory East, New York, NY, USA
| | | | - Sachin R Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, Columbia University in the city of New York, NY, USA
| | - Angela Lignelli
- Department of Radiology, Columbia University Irving Medical Center, Columbia University in the city of New York, NY, USA
| | - Sairam Geethanath
- Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Columbia Magnetic Resonance Research Center, Columbia University in the city of New York, NY, USA.
| |
Collapse
|
5
|
Wang Z, She H, Zhang Y, Du YP. Parallel non-Cartesian spatial-temporal dictionary learning neural networks (stDLNN) for accelerating 4D-MRI. Med Image Anal 2023; 84:102701. [PMID: 36470148 DOI: 10.1016/j.media.2022.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Dynamic magnetic resonance imaging (MRI) acquisitions are relatively slow due to physical and physiological limitations. The spatial-temporal dictionary learning (DL) approach accelerates dynamic MRI by learning spatial-temporal correlations, but the regularization parameters need to be manually adjusted, the performance at high acceleration rate is limited, and the reconstruction can be time-consuming. Deep learning techniques have shown good performance in accelerating MRI due to the powerful representational capabilities of neural networks. In this work, we propose a parallel non-Cartesian spatial-temporal dictionary learning neural networks (stDLNN) framework that combines dictionary learning with deep learning algorithms and utilizes the spatial-temporal prior information of dynamic MRI data to achieve better reconstruction quality and efficiency. The coefficient estimation modules (CEM) are designed in the framework to adaptively adjust the regularization coefficients. Experimental results show that combining dictionary learning with deep neural networks and using spatial-temporal dictionaries can obviously improve the image quality and computational efficiency compared with the state-of-the-art non-Cartesian imaging methods for accelerating the 4D-MRI especially at high acceleration rate.
Collapse
Affiliation(s)
- Zhijun Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huajun She
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yufei Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yiping P Du
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
6
|
Li H, Yang M, Kim JH, Zhang C, Liu R, Huang P, Liang D, Zhang X, Li X, Ying L. SuperMAP: Deep ultrafast MR relaxometry with joint spatiotemporal undersampling. Magn Reson Med 2023; 89:64-76. [PMID: 36128884 PMCID: PMC9617769 DOI: 10.1002/mrm.29411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop an ultrafast and robust MR parameter mapping network using deep learning. THEORY AND METHODS We design a deep learning framework called SuperMAP that directly converts a series of undersampled (both in k-space and parameter-space) parameter-weighted images into several quantitative maps, bypassing the conventional exponential fitting procedure. We also present a novel technique to simultaneously reconstruct T1rho and T2 relaxation maps within a single scan. Full data were acquired and retrospectively undersampled for training and testing using traditional and state-of-the-art techniques for comparison. Prospective data were also collected to evaluate the trained network. The performance of all methods is evaluated using the parameter qualification errors and other metrics in the segmented regions of interest. RESULTS SuperMAP achieved accurate T1rho and T2 mapping with high acceleration factors (R = 24 and R = 32). It exploited both spatial and temporal information and yielded low error (normalized mean square error of 2.7% at R = 24 and 2.8% at R = 32) and high resemblance (structural similarity of 97% at R = 24 and 96% at R = 32) to the gold standard. The network trained with retrospectively undersampled data also works well for the prospective data (with a slightly lower acceleration factor). SuperMAP is also superior to conventional methods. CONCLUSION Our results demonstrate the feasibility of generating superfast MR parameter maps through very few undersampled parameter-weighted images. SuperMAP can simultaneously generate T1rho and T2 relaxation maps in a short scan time.
Collapse
Affiliation(s)
- Hongyu Li
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Jee Hun Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Chaoyi Zhang
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ruiying Liu
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Peizhou Huang
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Medical AI research center, SIAT, CAS, Shenzhen, China
| | - Xiaoliang Zhang
- Biomedical Engineering, University at Buffalo, State University at New York, Buffalo, NY, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Leslie Ying
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
- Biomedical Engineering, University at Buffalo, State University at New York, Buffalo, NY, USA
| |
Collapse
|
7
|
Ahmed AH, Zou Q, Nagpal P, Jacob M. Dynamic Imaging Using Deep Bi-Linear Unsupervised Representation (DEBLUR). IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2693-2703. [PMID: 35436187 PMCID: PMC9744437 DOI: 10.1109/tmi.2022.3168559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bilinear models such as low-rank and dictionary methods, which decompose dynamic data to spatial and temporal factor matrices are powerful and memory-efficient tools for the recovery of dynamic MRI data. Current bilinear methods rely on sparsity and energy compaction priors on the factor matrices to regularize the recovery. Motivated by deep image prior, we introduce a novel bilinear model, whose factor matrices are generated using convolutional neural networks (CNNs). The CNN parameters, and equivalently the factors, are learned from the undersampled data of the specific subject. Unlike current unrolled deep learning methods that require the storage of all the time frames in the dataset, the proposed approach only requires the storage of the factors or compressed representation; this approach allows the direct use of this scheme to large-scale dynamic applications, including free breathing cardiac MRI considered in this work. To reduce the run time and to improve performance, we initialize the CNN parameters using existing factor methods. We use sparsity regularization of the network parameters to minimize the overfitting of the network to measurement noise. Our experiments on free-breathing and ungated cardiac cine data acquired using a navigated golden-angle gradient-echo radial sequence show the ability of our method to provide reduced spatial blurring as compared to classical bilinear methods as well as a recent unsupervised deep-learning approach.
Collapse
|
8
|
Lee JH, Yi J, Kim JH, Ryu K, Han D, Kim S, Lee S, Kim DY, Kim DH. Accelerated 3D myelin water imaging using joint spatio-temporal reconstruction. Med Phys 2022; 49:5929-5942. [PMID: 35678751 DOI: 10.1002/mp.15788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To enable acceleration in 3D multi-echo gradient echo (mGRE) acquisition for myelin water imaging (MWI) by combining joint parallel imaging (JPI) and joint deep learning (JDL). METHODS We implemented a multistep reconstruction process using both advanced parallel imaging and deep learning network which can utilize joint spatiotemporal components between the multi-echo images to further accelerate 3D mGRE acquisition for MWI. In the first step, JPI was performed to estimate missing k-space lines. Next, JDL was implemented to reduce residual artifacts and produce high-fidelity reconstruction by using variable splitting optimization consisting of spatiotemporal denoiser block, data consistency block, and weighted average block. The proposed method was evaluated for MWI with 2D Cartesian uniform under-sampling for each echo, enabling scan times of up to approximately 2 min for 2 mm × 2 mm × 2 mm $2\ {\rm mm} \times 2\ {\rm mm} \times 2\ {\rm mm}$ 3D coverage. RESULTS The proposed method showed acceptable MWI quality with improved quantitative values compared to both JPI and JDL methods individually. The improved performance of the proposed method was demonstrated by the low normalized mean-square error and high-frequency error norm values of the reconstruction with high similarity to the fully sampled MWI. CONCLUSION Joint spatiotemporal reconstruction approach by combining JPI and JDL can achieve high acceleration factors for 3D mGRE-based MWI.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jaeuk Yi
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kanghyun Ryu
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Sewook Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seul Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Deog Young Kim
- Department of Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Rioux JA, Hewlett M, Davis C, Bowen CV, Brewer K, Clarke SE, Beyea SD. Mapping of fatty acid composition with free-breathing MR spectroscopic imaging and compressed sensing. NMR IN BIOMEDICINE 2021; 34:e4241. [PMID: 31898379 PMCID: PMC8244113 DOI: 10.1002/nbm.4241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing health problem, and a major challenge in NAFLD management is identifying which patients are at risk of progression to more serious disease. Simple measurements of liver fat content are not strong predictors of clinical outcome, but biomarkers related to fatty acid composition (ie, saturated vs. unsaturated fat) may be more effective. MR spectroscopic imaging (MRSI) methods allow spatially resolved, whole-liver measurements of chemical composition but are traditionally limited by slow acquisition times. In this work we present an accelerated MRSI acquisition based on spin echo single point imaging (SE-SPI), which, using appropriate sampling and compressed sensing reconstruction, allows free-breathing acquisition in a mouse model of fatty liver disease. After validating the technique's performance in oil/water phantoms, we imaged mice that had received a normal diet or a methionine and choline deficient (MCD) diet, some of which also received supplemental injections of iron to mimic hepatic iron overload. SE-SPI was more resistant to the line-broadening effects of iron than single-voxel spectroscopy measurements, and was consistently able to measure the amplitudes of low-intensity spectral peaks that are important to characterizing fatty acid composition. In particular, in the mice receiving the MCD diet, SE-SPI showed a significant decrease in a metric associated with unsaturated fat, which is consistent with the literature. This or other related metrics may therefore offer more a specific biomarker of liver health than fat content alone. This preclinical study is an important precursor to clinical testing of the proposed method. MR-based quantification of fatty acid composition may allow for improved characterization of non-alcoholic fatty liver disease. A spectroscopic imaging method with appropriate sampling strategy allows whole-liver mapping of fat composition metrics in a free-breathing mouse model. Changes in metrics like the surrogate unsaturation index (UIs) are visible in mice receiving a diet which induces fat accumulation in the liver, as compared to a normal diet; such metrics may prove useful in future clinical studies of liver disease.
Collapse
Affiliation(s)
- James A. Rioux
- Biomedical Translational Imaging CentreHalifaxNova ScotiaCanada
- Department of Diagnostic RadiologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Miriam Hewlett
- Biomedical Translational Imaging CentreHalifaxNova ScotiaCanada
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
| | - Christa Davis
- Biomedical Translational Imaging CentreHalifaxNova ScotiaCanada
| | - Chris V. Bowen
- Biomedical Translational Imaging CentreHalifaxNova ScotiaCanada
- Department of Diagnostic RadiologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- School of Biomedical EngineeringDalhousie UniversityHalifaxNova ScotiaCanada
| | - Kimberly Brewer
- Biomedical Translational Imaging CentreHalifaxNova ScotiaCanada
- Department of Diagnostic RadiologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- School of Biomedical EngineeringDalhousie UniversityHalifaxNova ScotiaCanada
| | - Sharon E. Clarke
- Biomedical Translational Imaging CentreHalifaxNova ScotiaCanada
- Department of Diagnostic RadiologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Steven D. Beyea
- Biomedical Translational Imaging CentreHalifaxNova ScotiaCanada
- Department of Diagnostic RadiologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- School of Biomedical EngineeringDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
10
|
Chen Q, She H, Du YP. Whole Brain Myelin Water Mapping in One Minute Using Tensor Dictionary Learning With Low-Rank Plus Sparse Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1253-1266. [PMID: 33439835 DOI: 10.1109/tmi.2021.3051349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The quantification of myelin water content in the brain can be obtained by the multi-echo [Formula: see text] weighted images ( [Formula: see text]WIs). To accelerate the long acquisition, a novel tensor dictionary learning algorithm with low-rank and sparse regularization (TDLLS) is proposed to reconstruct the [Formula: see text]WIs from the undersampled data. The proposed algorithm explores the local and nonlocal similarity and the global temporal redundancy in the real and imaginary parts of the complex relaxation signals. The joint application of the low-rank constraints on the dictionaries and the sparse constraints on the core coefficient tensors improves the performance of the tensor-based recovery. Parallel imaging is incorporated into the TDLLS algorithm (pTDLLS) for further acceleration. A pulse sequence is proposed to prospectively undersample the Ky-t space to obtain the whole brain high-quality myelin water fraction (MWF) maps within 1 minute at an undersampling rate (R) of 6.
Collapse
|
11
|
Mandava S, Keerthivasan MB, Martin DR, Altbach MI, Bilgin A. Improving subspace constrained radial fast spin echo MRI using block matching driven non-local low rank regularization. Phys Med Biol 2021; 66:04NT03. [PMID: 33333497 PMCID: PMC8321599 DOI: 10.1088/1361-6560/abd4b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subspace-constrained reconstruction methods restrict the relaxation signals (of size M) in the scene to a pre-determined subspace (of size K≪M) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T 2 mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.
Collapse
Affiliation(s)
- Sagar Mandava
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Mahesh B. Keerthivasan
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Diego R. Martin
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Maria I. Altbach
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Ali Bilgin
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Zhu Y, Liu Y, Ying L, Qiu Z, Liu Q, Jia S, Wang H, Peng X, Liu X, Zheng H, Liang D. A 4-minute solution for submillimeter whole-brain T 1ρ quantification. Magn Reson Med 2021; 85:3299-3307. [PMID: 33421224 DOI: 10.1002/mrm.28656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop a robust, accurate, and accelerated T1ρ quantification solution for submillimeter in vivo whole-brain imaging. METHODS A multislice T1ρ mapping solution (MS-T1ρ ) was developed based on a two-acquisition scheme using turbo spin echo with RF cycling to allow for whole-brain coverage with 0.8-mm in-plane resolution. A compressed sensing-based fast imaging method, SCOPE, was used to accelerate the MS-T1ρ acquisition time to a total scan time of 3 minutes 31 seconds. A phantom experiment was conducted to assess the accuracy of MS-T1ρ by comparing the T1ρ value obtained using MS-T1ρ with the reference value obtained using the standard single-slice T1ρ mapping method. In vivo scans of 13 volunteers were acquired prospectively to validate the robustness of MS-T1ρ . RESULTS In the phantom study, the T1ρ values obtained with MS-T1ρ were in good agreement with the reference T1ρ values (R2 = 0.9991) and showed high consistency throughout all slices (coefficient of variation = 2.2 ± 2.43%). In the in vivo experiments, T1ρ maps were successfully acquired for all volunteers with no visually noticeable artifacts. There was no significant difference in T1ρ values between MS-T1ρ acquisitions and fully sampled acquisitions for all brain tissues (p-value > .05). In the intraclass correlation coefficient and Bland-Altman analyses, the accelerated T1ρ measurements show moderate to good agreement to the fully sampled reference values. CONCLUSION The proposed MS-T1ρ solution allows for high-resolution whole-brain T1ρ mapping within 4 minutes and may provide a potential tool for investigating neural diseases.
Collapse
Affiliation(s)
- Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yuanyuan Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Leslie Ying
- Department of Biomedical Engineering and Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Zhilang Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qiegen Liu
- Department of Electronic Information Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Sen Jia
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Haifeng Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xi Peng
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
13
|
Menon RG, Zibetti MVW, Jain R, Ge Y, Regatte RR. Performance Comparison of Compressed Sensing Algorithms for Accelerating T 1ρ Mapping of Human Brain. J Magn Reson Imaging 2020; 53:1130-1139. [PMID: 33190362 DOI: 10.1002/jmri.27421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND 3D-T1ρ mapping is useful to quantify various neurologic disorders, but data are currently time-consuming to acquire. PURPOSE To compare the performance of five compressed sensing (CS) algorithms-spatiotemporal finite differences (STFD), exponential dictionary (EXP), 3D-wavelet transform (WAV), low-rank (LOW) and low-rank plus sparse model with spatial finite differences (L + S SFD)-for 3D-T1ρ mapping of the human brain with acceleration factors (AFs) of 2, 5, and 10. STUDY TYPE Retrospective. SUBJECTS Eight healthy volunteers underwent T1ρ imaging of the whole brain. FIELD STRENGTH/SEQUENCE The sequence was fully sampled 3D Cartesian ultrafast gradient echo sequence with a customized T1ρ preparation module on a clinical 3T scanner. ASSESSMENT The fully sampled data was undersampled by factors of 2, 5, and 10 and reconstructed with the five CS algorithms. Image reconstruction quality was evaluated and compared to the SENSE reconstruction of the fully sampled data (reference) and T1ρ estimation errors were assessed as a function of AF. STATISTICAL TESTS Normalized root mean squared errors (nRMSE) and median normalized absolute deviation (MNAD) errors were calculated to compare image reconstruction errors and T1ρ estimation errors, respectively. Linear regression plots, Bland-Altman plots, and Pearson correlation coefficients (CC) are shown. RESULTS For image reconstruction quality, at AF = 2, EXP transforms had the lowest mRMSE (1.56%). At higher AF values, STFD performed better, with the smallest errors (3.16% at AF = 5, 4.32% at AF = 10). For whole-brain quantitative T1ρ mapping, at AF = 2, EXP performed best (MNAD error = 1.62%). At higher AF values (AF = 5, 10), the STFD technique had the least errors (2.96% at AF = 5, 4.24% at AF = 10) and the smallest variance from the reference T1ρ estimates. DATA CONCLUSION This study demonstrates the use of different CS algorithms that may be useful in reducing the scan time required to perform volumetric T1ρ mapping of the brain. LEVEL OF EVIDENCE 2. TECHNICAL EFFICACY STAGE 1.
Collapse
Affiliation(s)
- Rajiv G Menon
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| | - Marcelo V W Zibetti
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Yulin Ge
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Mitchell DP, Hwang KP, Bankson JA, Jason Stafford R, Banerjee S, Takei N, Fuentes D. An information theory model for optimizing quantitative magnetic resonance imaging acquisitions. Phys Med Biol 2020; 65:225008. [PMID: 32947269 DOI: 10.1088/1361-6560/abb9f6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acquisition parameter selection is currently performed empirically for many quantitative MRI (qMRI) acquisitions. Tuning parameters for different scan times, tissues, and resolutions requires some amount of trial and error. There is an opportunity to quantitatively optimize these acquisition parameters in order to minimize variability of quantitative maps and post-processing techniques such as synthetic image generation. The objective of this work is to introduce and evaluate a quantitative method for selecting parameters that minimize image variability. An information theory framework was developed for this purpose and applied to a 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) signal model for qMRI. In this framework, mutual information is used to measure the information gained by a measurement as a function of acquisition parameters, quantifying the information content of potential acquisitions and allowing informed parameter selection. The information theory framework was tested on artificial data generated from a representative mathematical phantom, measurements acquired on a qMRI multiparametric imaging standard phantom, and in vivo measurements in a human brain. The phantom measurements showed that higher mutual information calculated by the model correlated with smaller coefficient of variation in the reconstructed parametric maps, and in vivo measurements demonstrated that information-based calibration of acquisition parameters resulted in a decrease in parametric map variability consistent with model predictions.
Collapse
Affiliation(s)
- Drew P Mitchell
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | | | | | | | | | | | | |
Collapse
|
15
|
Zibetti MVW, Johnson PM, Sharafi A, Hammernik K, Knoll F, Regatte RR. Rapid mono and biexponential 3D-T 1ρ mapping of knee cartilage using variational networks. Sci Rep 2020; 10:19144. [PMID: 33154515 PMCID: PMC7645759 DOI: 10.1038/s41598-020-76126-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/06/2020] [Indexed: 11/09/2022] Open
Abstract
In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T1ρ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA.
| | - Patricia M Johnson
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| | - Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| | | | - Florian Knoll
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| |
Collapse
|
16
|
Accelerated T2 Mapping of the Lumbar Intervertebral Disc: Highly Undersampled K-Space Data for Robust T2 Relaxation Time Measurement in Clinically Feasible Acquisition Times. Invest Radiol 2020; 55:695-701. [PMID: 32649331 DOI: 10.1097/rli.0000000000000690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
T2 mapping of the intervertebral disc (IVD) can depict quantitative changes reflecting biochemical change due to loss of glycosaminoglycan content. Conventional T2 mapping is usually performed using a 2-dimensional multi-echo-spin echo sequence (2D-MESE) with long acquisition times that are generally not compatible with clinical routine. This study investigates the applicability of GRAPPATINI, a T2 mapping sequence combining undersampling, model-based reconstruction, and parallel imaging, to offer clinically feasible acquisition times in T2 mapping of the lumbar IVD. MATERIALS AND METHODS Fifty-eight individuals (26 female; mean age, 23.3 ± 8.1 years) were prospectively studied at 3 T. GRAPPATINI was conducted with the same parameters as the 2D-MESE while shortening the acquisition time from 13:18 to 2:27 minutes. The setup was also validated in a phantom experiment using a 6.48-hour-long single echo-spin echo sequence as reference. The IVDs were manually segmented on 4 central slices. RESULTS The median nucleus pulposus showed a strong Pearson correlation coefficient between T2GRAPPATINI and T2MESE (rp = 0.919; P < 0.001). There was also a significant correlation for the ventral (rp = 0.241; P < 0.001) and posterior (rp = 0.418; P < 0.001) annular regions.In the single spin-echo phantom experiment, the most accurate T2 estimation was achieved using T2GRAPPATINI with a median absolute deviation of 15.3 milliseconds as compared with T2MESE with 26.5 milliseconds. CONCLUSIONS GRAPPATINI facilitates precise T2 mapping at 3 T in accordance with clinical standards and reference methods using the same parameters while shortening acquisition times from 13:18 to 2:27 minutes with the same parameters.
Collapse
|
17
|
Dynamic MRI reconstruction exploiting blind compressed sensing combined transform learning regularization. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2018.12.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Johnson CP, Thedens DR, Kruger SJ, Magnotta VA. Three-Dimensional GRE T 1ρ mapping of the brain using tailored variable flip-angle scheduling. Magn Reson Med 2020; 84:1235-1249. [PMID: 32052489 DOI: 10.1002/mrm.28198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE To introduce a new approach called tailored variable flip-angle (VFA) scheduling for SNR-efficient 3D T1ρ mapping of the brain using a magnetization-prepared gradient-echo sequence. METHODS Simulations were used to assess the relative SNR efficiency, quantitative accuracy, and spatial blurring of tailored VFA scheduling for T1ρ mapping of brain tissue compared with magnetization-prepared angle-modulated partitioned k-space spoiled gradient-echo snapshots (MAPSS), a state-of-the-art technique for accurate 3D gradient-echo T1ρ mapping. Simulations were also used to calculate optimal imaging parameters for tailored VFA scheduling versus MAPSS, without and with nulling of CSF. Four participants were imaged at 3T MRI to demonstrate the feasibility of tailored VFA scheduling for T1ρ mapping of the brain. Using MAPSS as a reference standard, in vivo data were used to validate the relative SNR efficiency and quantitative accuracy of the new approach. RESULTS Tailored VFA scheduling can provide a 2-fold to 4-fold gain in the SNR of the resulting T1ρ map as compared with MAPSS when using identical sequence parameters while limiting T1ρ quantification errors to 2% or less. In vivo whole-brain 3D T1ρ maps acquired with tailored VFA scheduling had superior SNR efficiency than is achievable with MAPSS, and the SNR efficiency improved with a greater number of views per segment. CONCLUSIONS Tailored VFA scheduling is an SNR-efficient GRE technique for 3D T1ρ mapping of the brain that provides increased flexibility in choice of imaging parameters compared with MAPSS, which may benefit a variety of applications.
Collapse
Affiliation(s)
- Casey P Johnson
- Veterinary Clinical Sciences Department, University of Minnesota, Saint Paul, MN, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
19
|
Zhu Y, Liu Y, Ying L, Liu X, Zheng H, Liang D. Bio-SCOPE: fast biexponential T 1ρ mapping of the brain using signal-compensated low-rank plus sparse matrix decomposition. Magn Reson Med 2019; 83:2092-2106. [PMID: 31762102 DOI: 10.1002/mrm.28067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop and evaluate a fast imaging method based on signal-compensated low-rank plus sparse matrix decomposition to accelerate data acquisition for biexponential brain T1ρ mapping (Bio-SCOPE). METHODS Two novel strategies were proposed to improve reconstruction performance. A variable-rate undersampling scheme was used with a varied acceleration factor for each k-space along the spin-lock time direction, and a modified nonlinear thresholding scheme combined with a feature descriptor was used for Bio-SCOPE reconstruction. In vivo brain T1ρ mappings were acquired from 4 volunteers. The fully sampled k-space data acquired from 3 volunteers were retrospectively undersampled by net acceleration rates (R) of 4.6 and 6.1. Reference values were obtained from the fully sampled data. The agreement between the accelerated T1ρ measurements and reference values was assessed with Bland-Altman analyses. Prospectively undersampled data with R = 4.6 and R = 6.1 were acquired from 1 volunteer. RESULTS T1ρ -weighted images were successfully reconstructed using Bio-SCOPE for R = 4.6 and 6.1 with signal-to-noise ratio variations <1 dB and normalized root mean square errors <4%. Accelerated and reference T1ρ measurements were in good agreement for R = 4.6 (T1ρ s : 18.6651 ± 1.7786 ms; T1ρ l : 88.9603 ± 1.7331 ms) and R = 6.1 (T1ρ s : 17.8403 ± 3.3302 ms; T1ρ l : 88.0275 ± 4.9606 ms) in the Bland-Altman analyses. T1ρ parameter maps from prospectively undersampled data also show reasonable image quality using the Bio-SCOPE method. CONCLUSION Bio-SCOPE achieves a high net acceleration rate for biexponential T1ρ mapping and improves reconstruction quality by using a variable-rate undersampling data acquisition scheme and a modified soft-thresholding algorithm in image reconstruction.
Collapse
Affiliation(s)
- Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyuan Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Leslie Ying
- Department of Biomedical Engineering and Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xin Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
20
|
Zibetti MVW, Sharafi A, Otazo R, Regatte RR. Accelerated mono- and biexponential 3D-T1ρ relaxation mapping of knee cartilage using golden angle radial acquisitions and compressed sensing. Magn Reson Med 2019; 83:1291-1309. [PMID: 31626381 DOI: 10.1002/mrm.28019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To use golden-angle radial sampling and compressed sensing (CS) for accelerating mono- and biexponential 3D spin-lattice relaxation time in the rotating frame (T1ρ ) mapping of knee cartilage. METHODS Golden-angle radial stack-of-stars and Cartesian 3D-T1ρ -weighted knee cartilage datasets (n = 12) were retrospectively undersampled by acceleration factors (AFs) 2-10. CS-based reconstruction using 8 different sparsifying transforms were compared for mono- and biexponential T1ρ -mapping of knee cartilage, including spatio-temporal finite differences, wavelets, dictionary from principal component analysis, and exponential decay models, and also low rank and low rank plus sparse models (L+S). Complex-valued fitting was used and Marchenko-Pastur principal component analysis filtering also tested. RESULTS Most CS methods performed well for an AF of 2, with relative median normalized absolute deviation below 10% for monoexponential and biexponential mapping. For monoexponential mapping, radial sampling obtained a median normalized absolute deviation below 10% up to AF of 10, while Cartesian obtained this level of error only up to AF of 4. Radial sampling was also better with biexponential T1ρ mapping, with median normalized absolute deviation below 10% up to AF of 6. CONCLUSION Golden-angle radial acquisitions combined with CS outperformed Cartesian acquisitions for 3D-T1ρ mapping of knee cartilage, being it is a good alternative to Cartesian sampling for reducing scan time and/or improving image and mapping quality. The methods exponential decay models, spatio-temporal finite differences, and low rank obtained the best results for radial sampling patterns.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Azadeh Sharafi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
21
|
Radial MP2RAGE sequence for rapid 3D T 1 mapping of mouse abdomen: application to hepatic metastases. Eur Radiol 2019; 29:5844-5851. [PMID: 30888483 DOI: 10.1007/s00330-019-06081-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The T1 longitudinal recovery time is regarded as a biomarker of cancer treatment efficiency. In this scope, the Magnetization Prepared 2 RApid Gradient Echo (MP2RAGE) sequence relevantly complies with fast 3D T1 mapping. Nevertheless, with its Cartesian encoding scheme, it is very sensitive to respiratory motion. Consequently, a radial encoding scheme was implemented for the detection and T1 measurement of hepatic metastases in mice at 7T. METHODS A 3D radial encoding scheme was developed using a golden angle distribution for the k-space trajectories. As in that case, each projection contributes to the image contrast, the signal equations had to be modified. Phantoms containing increasing gadoteridol concentrations were used to determine the accuracy of the sequence in vitro. Healthy mice were repetitively scanned to assess the reproducibility of the T1 values. The growth of hepatic metastases was monitored. Undersampling robustness was also evaluated. RESULTS The accuracy of the T1 values obtained with the radial MP2RAGE sequence was > 90% compared to the Inversion-Recovery sequence. The motion robustness of this new sequence also enabled repeatable T1 measurements on abdominal organs. Hepatic metastases of less than 1-mm diameter were easily detected and T1 heterogeneities within the metastasis and between the metastases within the same animal were measured. With a twofold acceleration factor using undersampling, high-quality 3D T1 abdominal maps were achieved in 9 min. CONCLUSIONS The radial MP2RAGE sequence could be used for fast 3D T1 mapping, to detect and characterize metastases in regions subjected to respiratory motion. KEY POINTS • The Cartesian encoding of the MP2RAGE sequence was modified to a radial encoding. The modified sequence enabled accurate T 1 measurements on phantoms and on abdominal organs of mice. • Hepatic metastases were easily detected due to high contrast. Heterogeneity in T 1 was measured within the metastases and between each metastasis within the same animal. • As implementation of this sequence does not require specific hardware, we expect that it could be readily available for clinical practice in humans.
Collapse
|
22
|
Kamesh Iyer S, Moon B, Hwuang E, Han Y, Solomon M, Litt H, Witschey WR. Accelerated free-breathing 3D T1ρ cardiovascular magnetic resonance using multicoil compressed sensing. J Cardiovasc Magn Reson 2019; 21:5. [PMID: 30626437 PMCID: PMC6327532 DOI: 10.1186/s12968-018-0507-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endogenous contrast T1ρ cardiovascular magnetic resonance (CMR) can detect scar or infiltrative fibrosis in patients with ischemic or non-ischemic cardiomyopathy. Existing 2D T1ρ techniques have limited spatial coverage or require multiple breath-holds. The purpose of this project was to develop an accelerated, free-breathing 3D T1ρ mapping sequence with whole left ventricle coverage using a multicoil, compressed sensing (CS) reconstruction technique for rapid reconstruction of undersampled k-space data. METHODS We developed a cardiac- and respiratory-gated, free-breathing 3D T1ρ sequence and acquired data using a variable-density k-space sampling pattern (A = 3). The effect of the transient magnetization trajectory, incomplete recovery of magnetization between T1ρ-preparations (heart rate dependence), and k-space sampling pattern on T1ρ relaxation time error and edge blurring was analyzed using Bloch simulations for normal and chronically infarcted myocardium. Sequence accuracy and repeatability was evaluated using MnCl2 phantoms with different T1ρ relaxation times and compared to 2D measurements. We further assessed accuracy and repeatability in healthy subjects and compared these results to 2D breath-held measurements. RESULTS The error in T1ρ due to incomplete recovery of magnetization between T1ρ-preparations was T1ρhealthy = 6.1% and T1ρinfarct = 10.8% at 60 bpm and T1ρhealthy = 13.2% and T1ρinfarct = 19.6% at 90 bpm. At a heart rate of 60 bpm, error from the combined effects of readout-dependent magnetization transients, k-space undersampling and reordering was T1ρhealthy = 12.6% and T1ρinfarct = 5.8%. CS reconstructions had improved edge sharpness (blur metric = 0.15) compared to inverse Fourier transform reconstructions (blur metric = 0.48). There was strong agreement between the mean T1ρ estimated from the 2D and accelerated 3D data (R2 = 0.99; P < 0.05) acquired on the MnCl2 phantoms. The mean R1ρ estimated from the accelerated 3D sequence was highly correlated with MnCl2 concentration (R2 = 0.99; P < 0.05). 3D T1ρ acquisitions were successful in all human subjects. There was no significant bias between undersampled 3D T1ρ and breath-held 2D T1ρ (mean bias = 0.87) and the measurements had good repeatability (COV2D = 6.4% and COV3D = 7.1%). CONCLUSIONS This is the first report of an accelerated, free-breathing 3D T1ρ mapping of the left ventricle. This technique may improve non-contrast myocardial tissue characterization in patients with heart disease in a scan time appropriate for patients.
Collapse
Affiliation(s)
- Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Brianna Moon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Eileen Hwuang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yuchi Han
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Michael Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
23
|
Zhu Y, Kang J, Duan C, Nezafat M, Neisius U, Jang J, Nezafat R. Integrated motion correction and dictionary learning for free‐breathing myocardial T
1
mapping. Magn Reson Med 2018; 81:2644-2654. [DOI: 10.1002/mrm.27579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Yanjie Zhu
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Jinkyu Kang
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| | - Chong Duan
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| | - Maryam Nezafat
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| | - Ulf Neisius
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| | - Jihye Jang
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
- Department of Computer ScienceTechnical University of Munich Munich Germany
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| |
Collapse
|
24
|
Zibetti MVW, Baboli R, Chang G, Otazo R, Regatte RR. Rapid compositional mapping of knee cartilage with compressed sensing MRI. J Magn Reson Imaging 2018; 48:1185-1198. [PMID: 30295344 PMCID: PMC6231228 DOI: 10.1002/jmri.26274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
More than a decade after the introduction of compressed sensing (CS) in MRI, researchers are still working on ways to translate it into different research and clinical applications. The greatest advantage of CS in MRI is the reduced amount of k-space data needed to reconstruct images, which can be exploited to reduce scan time or to improve spatial resolution and volumetric coverage. Efficient data acquisition using CS is extremely important for compositional mapping of the musculoskeletal system in general and knee cartilage mapping techniques in particular. High-resolution quantitative information about tissue biochemical composition could be obtained in just a few minutes using CS MRI. However, in order to make this goal a reality, some issues still need to be addressed. In this article we review the current state of the art of CS methods for rapid compositional mapping of knee cartilage. Specifically, data acquisition strategies, image reconstruction algorithms, and data fitting models are discussed. Different CS studies for T2 and T1ρ mapping of knee cartilage are reviewed, with illustrative results. Future directions, opportunities, and challenges of rapid compositional mapping techniques are also discussed. Level of Evidence: 4 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:1185-1198.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Rahman Baboli
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Gregory Chang
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ricardo Otazo
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Zibetti MVW, Sharafi A, Otazo R, Regatte RR. Compressed sensing acceleration of biexponential 3D-T 1ρ relaxation mapping of knee cartilage. Magn Reson Med 2018; 81:863-880. [PMID: 30230588 DOI: 10.1002/mrm.27416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Use compressed sensing (CS) for 3D biexponential spin-lattice relaxation time in the rotating frame (T1ρ ) mapping of knee cartilage, reducing the total scan time and maintaining the quality of estimated biexponential T1ρ parameters (short and long relaxation times and corresponding fractions) comparable to fully sampled scans. METHODS Fully sampled 3D-T1ρ -weighted data sets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared for biexponential T1ρ -mapping of knee cartilage, including temporal and spatial wavelets and finite differences, dictionary from principal component analysis (PCA), k-means singular value decomposition (K-SVD), exponential decay models, and also low rank and low rank plus sparse models. Synthetic phantom (N = 6) and in vivo human knee cartilage data sets (N = 7) were included in the experiments. Spatial filtering before biexponential T1ρ parameter estimation was also tested. RESULTS Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative median normalized absolute deviation (MNAD) around 10%. Some sparsifying transforms, such as low rank with spatial finite difference (L + S SFD), spatiotemporal finite difference (STFD), and exponential dictionaries (EXP) significantly improved this performance, reaching MNAD below 15% with AF up to 10, when spatial filtering was used. CONCLUSION Accelerating biexponential 3D-T1ρ mapping of knee cartilage with CS is feasible. The best results were obtained by STFD, EXP, and L + S SFD regularizers combined with spatial prefiltering. These 3 CS methods performed satisfactorily on synthetic phantom as well as in vivo knee cartilage for AFs up to 10, with median error below 15%.
Collapse
Affiliation(s)
- Marceo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Azadeh Sharafi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ricardo Otazo
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
26
|
Zhu Y, Liu Y, Ying L, Peng X, Wang YXJ, Yuan J, Liu X, Liang D. SCOPE: signal compensation for low-rank plus sparse matrix decomposition for fast parameter mapping. Phys Med Biol 2018; 63:185009. [PMID: 30117434 DOI: 10.1088/1361-6560/aadb09] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic resonance (MR) parameter mapping is useful for many clinical applications. However, its practical utility is limited by the long scan time. To address this problem, this paper developed a novel image reconstruction method for fast MR parameter mapping. The proposed method (SCOPE) used a low-rank plus sparse model to reconstruct the parameter-weighted images from highly undersampled acquisitions. A signal compensation strategy was introduced to promote low rankness along the parametric direction and thus improve the reconstruction accuracy. Specifically, compensation was performed by multiplying the original signal by the inversion of the mono-exponential decay at each voxel. The performance of SCOPE was evaluated via quantitative T 1ρ mapping. The results of the simulation and in vivo experiments with acceleration factors from 3 to 5 are shown. The performance of SCOPE was verified via comparisons with several low-rank and sparsity-based methods. The experimental results showed that the T 1ρ maps obtained using SCOPE were more accurate than those obtained using competing methods and were comparable to the reference, even when the acceleration factor reached 5. SCOPE can greatly reduce the scan time of parameter mapping while still achieving high accuracy. This technique might therefore help facilitate fast MR parameter mapping in clinical use.
Collapse
Affiliation(s)
- Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China. Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
27
|
She H, Greer JS, Zhang S, Li B, Keupp J, Madhuranthakam AJ, Dimitrov IE, Lenkinski RE, Vinogradov E. Accelerating chemical exchange saturation transfer MRI with parallel blind compressed sensing. Magn Reson Med 2018; 81:504-513. [PMID: 30146714 DOI: 10.1002/mrm.27400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/07/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Chemical exchange saturation transfer is a novel and promising MRI contrast method, but it can be time-consuming. Common parallel imaging methods, like SENSE, can lead to reduced quality of CEST. Here, parallel blind compressed sensing (PBCS), combining blind compressed sensing (BCS) and parallel imaging, is evaluated for the acceleration of CEST in brain and breast. METHODS The CEST data were collected in phantoms, brain (N = 3), and breast (N = 2). Retrospective Cartesian undersampling was implemented and the reconstruction results of PBCS-CEST were compared with BCS-CEST and k-t sparse-SENSE CEST. The normalized RMSE and the high-frequency error norm were used for quantitative comparison. RESULTS In phantom and in vivo brain experiments, the acceleration factor of R = 10 (24 k-space lines) was achieved and in breast R = 5 (30 k-space lines), without compromising the quality of the PBCS-reconstructed magnetization transfer rate asymmetry maps and Z-spectra. Parallel BCS provides better reconstruction quality when compared with BCS, k-t sparse-SENSE, and SENSE methods using the same number of samples. Parallel BCS overperforms BCS, indicating that the inclusion of coil sensitivity improves the reconstruction of the CEST data. CONCLUSION The PBCS method accelerates CEST without compromising its quality. Compressed sensing in combination with parallel imaging can provide a valuable alternative to parallel imaging alone for accelerating CEST experiments.
Collapse
Affiliation(s)
- Huajun She
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joshua S Greer
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Bioengineering, University of Texas at Dallas, Dallas, Texas
| | - Shu Zhang
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bian Li
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Ananth J Madhuranthakam
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan E Dimitrov
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Philips Healthcare, Gainesville, Florida
| | - Robert E Lenkinski
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elena Vinogradov
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
28
|
Zibetti MVW, Sharafi A, Otazo R, Regatte RR. Accelerating 3D-T 1ρ mapping of cartilage using compressed sensing with different sparse and low rank models. Magn Reson Med 2018; 80:1475-1491. [PMID: 29479738 DOI: 10.1002/mrm.27138] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/11/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the feasibility of using compressed sensing (CS) to accelerate 3D-T1ρ mapping of cartilage and to reduce total scan times without degrading the estimation of T1ρ relaxation times. METHODS Fully sampled 3D-T1ρ datasets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared, including finite differences, temporal and spatial wavelets, learned transforms using principal component analysis (PCA) and K-means singular value decomposition (K-SVD), explicit exponential models, low rank and low rank plus sparse models. Spatial filtering prior to T1ρ parameter estimation was also tested. Synthetic phantom (n = 6) and in vivo human knee cartilage datasets (n = 7) were included. RESULTS Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative T1ρ error lower than 4.5%. Some sparsifying transforms, such as spatiotemporal finite difference (STFD), exponential dictionaries (EXP) and low rank combined with spatial finite difference (L+S SFD) significantly improved this performance, reaching average relative T1ρ error below 6.5% on T1ρ relaxation times with AF up to 10, when spatial filtering was used before T1ρ fitting, at the expense of smoothing the T1ρ maps. The STFD achieved 5.1% error at AF = 10 with spatial filtering prior to T1ρ fitting. CONCLUSION Accelerating 3D-T1ρ mapping of cartilage with CS is feasible up to AF of 10 when using STFD, EXP or L+S SFD regularizers. These three best CS methods performed satisfactorily on synthetic phantom and in vivo knee cartilage for AFs up to 10, with T1ρ error of 6.5%.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Azadeh Sharafi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ricardo Otazo
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
29
|
Wang C, Zhang X, Liu X, He T, Chen W, Feng Q, Feng Y. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization. Magn Reson Med 2018; 80:792-801. [DOI: 10.1002/mrm.27071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/20/2017] [Accepted: 12/12/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Changqing Wang
- School of Automation Engineering, University of Electronic Science and Technology of China; Chengdu China
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University; Guangzhou China
- Department of Radiology; University of Wisconsin; Madison Wisconsin USA
| | - Xinyuan Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University; Guangzhou China
| | - Xiaoyun Liu
- School of Automation Engineering, University of Electronic Science and Technology of China; Chengdu China
| | - Taigang He
- Cardiovascular Sciences Research Centre, St. George's University of London; London United Kingdom
- Royal Brompton Hospital and Imperial College; London United Kingdom
| | - Wufan Chen
- School of Automation Engineering, University of Electronic Science and Technology of China; Chengdu China
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University; Guangzhou China
| | - Qianjin Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University; Guangzhou China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University; Guangzhou China
| |
Collapse
|
30
|
Blind Compressed Sensing Enables 3-Dimensional Dynamic Free Breathing Magnetic Resonance Imaging of Lung Volumes and Diaphragm Motion. Invest Radiol 2017; 51:387-99. [PMID: 26863578 DOI: 10.1097/rli.0000000000000253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The objective of this study was to increase the spatial and temporal resolution of dynamic 3-dimensional (3D) magnetic resonance imaging (MRI) of lung volumes and diaphragm motion. To achieve this goal, we evaluate the utility of the proposed blind compressed sensing (BCS) algorithm to recover data from highly undersampled measurements. MATERIALS AND METHODS We evaluated the performance of the BCS scheme to recover dynamic data sets from retrospectively and prospectively undersampled measurements. We also compared its performance against that of view-sharing, the nuclear norm minimization scheme, and the l1 Fourier sparsity regularization scheme. Quantitative experiments were performed on a healthy subject using a fully sampled 2D data set with uniform radial sampling, which was retrospectively undersampled with 16 radial spokes per frame to correspond to an undersampling factor of 8. The images obtained from the 4 reconstruction schemes were compared with the fully sampled data using mean square error and normalized high-frequency error metrics. The schemes were also compared using prospective 3D data acquired on a Siemens 3 T TIM TRIO MRI scanner on 8 healthy subjects during free breathing. Two expert cardiothoracic radiologists (R1 and R2) qualitatively evaluated the reconstructed 3D data sets using a 5-point scale (0-4) on the basis of spatial resolution, temporal resolution, and presence of aliasing artifacts. RESULTS The BCS scheme gives better reconstructions (mean square error = 0.0232 and normalized high frequency = 0.133) than the other schemes in the 2D retrospective undersampling experiments, producing minimally distorted reconstructions up to an acceleration factor of 8 (16 radial spokes per frame). The prospective 3D experiments show that the BCS scheme provides visually improved reconstructions than the other schemes do. The BCS scheme provides improved qualitative scores over nuclear norm and l1 Fourier sparsity regularization schemes in the temporal blurring and spatial blurring categories. The qualitative scores for aliasing artifacts in the images reconstructed by nuclear norm scheme and BCS scheme are comparable.The comparisons of the tidal volume changes also show that the BCS scheme has less temporal blurring as compared with the nuclear norm minimization scheme and the l1 Fourier sparsity regularization scheme. The minute ventilation estimated by BCS for tidal breathing in supine position (4 L/min) and the measured supine inspiratory capacity (1.5 L) is in good correlation with the literature. The improved performance of BCS can be explained by its ability to efficiently adapt to the data, thus providing a richer representation of the signal. CONCLUSION The feasibility of the BCS scheme was demonstrated for dynamic 3D free breathing MRI of lung volumes and diaphragm motion. A temporal resolution of ∼500 milliseconds, spatial resolution of 2.7 × 2.7 × 10 mm, with whole lung coverage (16 slices) was achieved using the BCS scheme.
Collapse
|
31
|
Balachandrasekaran A, Magnotta V, Jacob M. Recovery of Damped Exponentials Using Structured Low Rank Matrix Completion. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2087-2098. [PMID: 28715328 PMCID: PMC5821149 DOI: 10.1109/tmi.2017.2726995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We introduce a structured low rank matrix completion algorithm to recover a series of images from their under-sampled measurements, where the signal along the parameter dimension at every pixel is described by a linear combination of exponentials. We exploit the exponential behavior of the signal at every pixel, along with the spatial smoothness of the exponential parameters to derive an annihilation relation in the Fourier domain. This relation translates to a low-rank property on a structured matrix constructed from the Fourier samples. We enforce the low-rank property of the structured matrix as a regularization prior to recover the images. Since the direct use of current low rank matrix recovery schemes to this problem is associated with high computational complexity and memory demand, we adopt an iterative re-weighted least squares algorithm, which facilitates the exploitation of the convolutional structure of the matrix. Novel approximations involving 2-D fast Fourier transforms are introduced to drastically reduce the memory demand and computational complexity, which facilitates the extension of structured low-rank methods to large scale 3-D problems. We demonstrate our algorithm in the MR parameter mapping setting and show improvement over the state-of-the-art methods.
Collapse
|
32
|
Saucedo A, Lefkimmiatis S, Rangwala N. Improved Computational Efficiency of Locally Low Rank MRI Reconstruction Using Iterative Random Patch Adjustments. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1209-1220. [PMID: 28141518 DOI: 10.1109/tmi.2017.2659742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents and analyzes an alternative formulation of the locally low-rank (LLR) regularization framework for magnetic resonance image (MRI) reconstruction. Generally, LLR-based MRI reconstruction techniques operate by dividing the underlying image into a collection of matrices formed from image patches. Each of these matrices is assumed to have low rank due to the inherent correlations among the data, whether along the coil, temporal, or multi-contrast dimensions. The LLR regularization has been successful for various MRI applications, such as parallel imaging and accelerated quantitative parameter mapping. However, a major limitation of most conventional implementations of the LLR regularization is the use of multiple sets of overlapping patches. Although the use of overlapping patches leads to effective shift-invariance, it also results in high-computational load, which limits the practical utility of the LLR regularization for MRI. To circumvent this problem, alternative LLR-based algorithms instead shift a single set of non-overlapping patches at each iteration, thereby achieving shift-invariance and avoiding block artifacts. A novel contribution of this paper is to provide a mathematical framework and justification of LLR regularization with iterative random patch adjustments (LLR-IRPA). This method is compared with a state-of-the-art LLR regularization algorithm based on overlapping patches, and it is shown experimentally that results are similar but with the advantage of much reduced computational load. We also present theoretical results demonstrating the effective shift invariance of the LLR-IRPA approach, and we show reconstruction examples and comparisons in both retrospectively and prospectively undersampled MRI acquisitions, and in T1 parameter mapping.
Collapse
|
33
|
Zhao B, Setsompop K, Adalsteinsson E, Gagoski B, Ye H, Ma D, Jiang Y, Ellen Grant P, Griswold MA, Wald LL. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling. Magn Reson Med 2017; 79:933-942. [PMID: 28411394 DOI: 10.1002/mrm.26701] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). THEORY AND METHODS A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T1 , T2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. RESULTS The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. CONCLUSIONS The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Bo Zhao
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elfar Adalsteinsson
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Huihui Ye
- Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Dan Ma
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Yun Jiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - P Ellen Grant
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Tamir JI, Uecker M, Chen W, Lai P, Alley MT, Vasanawala SS, Lustig M. T 2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 2017; 77:180-195. [PMID: 26786745 PMCID: PMC4990508 DOI: 10.1002/mrm.26102] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/21/2015] [Accepted: 12/06/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE A new acquisition and reconstruction method called T2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T2 Shuffling reduces blurring and recovers many images at multiple T2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). THEORY AND METHODS The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. RESULTS Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. CONCLUSION The proposed T2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jonathan I. Tamir
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Martin Uecker
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Weitian Chen
- Global Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Peng Lai
- Global Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Marcus T. Alley
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| |
Collapse
|
35
|
Gilani IA, Sepponen R. Quantitative rotating frame relaxometry methods in MRI. NMR IN BIOMEDICINE 2016; 29:841-861. [PMID: 27100142 DOI: 10.1002/nbm.3518] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Irtiza Ali Gilani
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University, Aalto, Finland
- Advanced Magnetic Imaging Center, Aalto University, Aalto, Finland
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Raimo Sepponen
- Department of Electronics, School of Electrical Engineering, Aalto University, Aalto, Finland
| |
Collapse
|
36
|
Heo HY, Zhang Y, Lee DH, Jiang S, Zhao X, Zhou J. Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques. Magn Reson Med 2016; 77:779-786. [PMID: 26888295 DOI: 10.1002/mrm.26141] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the feasibility of accelerated chemical-exchange-saturation-transfer (CEST) imaging using a combination of compressed sensing (CS) and sensitivity encoding (SENSE) at 3 Tesla. THEORY AND METHODS Two healthy volunteers and six high-grade glioma patients were recruited. Raw CEST image k-space data were acquired (with varied radiofrequency saturation power levels for the healthy volunteer study), and a sequential CS and SENSE reconstruction (CS-SENSE) was assessed. The MTRasym (3.5 ppm) signals were compared with varied CS-SENSE acceleration factors. RESULTS In the healthy volunteer study, a CS-SENSE acceleration factor of R = 2 × 2 (CS × SENSE) was achieved without compromising the reconstructed MTRasym (3.5 ppm) image quality. The MTRasym (3.5 ppm) signals obtained from the CS-SENSE reconstruction with R = 2 × 2 were well preserved compared with the reference image (R = 2 for only SENSE). In the glioma patient study, the MTRasym (3.5 ppm) signals were significantly higher in the tumor region (Gd-enhancing tumor core) than in the normal-appearing white matter (P < 0.001). There was no significant MTRasym (3.5 ppm) difference between the reference image and CS-SENSE-reconstructed image in the acceleration factor of R = 2 × 2. CONCLUSION Combining the SENSE technique with CS (R = 2 × 2) enables considerable acceleration of CEST image acquisition and potentially has a wide range of clinical applications. Magn Reson Med 77:779-786, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hye-Young Heo
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Zhang
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dong-Hoon Lee
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xuna Zhao
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Lee D, Jin KH, Kim EY, Park SH, Ye JC. Acceleration of MR parameter mapping using annihilating filter-based low rank hankel matrix (ALOHA). Magn Reson Med 2016; 76:1848-1864. [PMID: 26728777 DOI: 10.1002/mrm.26081] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/20/2015] [Accepted: 11/19/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE MR parameter mapping is one of clinically valuable MR imaging techniques. However, increased scan time makes it difficult for routine clinical use. This article aims at developing an accelerated MR parameter mapping technique using annihilating filter based low-rank Hankel matrix approach (ALOHA). THEORY When a dynamic sequence can be sparsified using spatial wavelet and temporal Fourier transform, this results in a rank-deficient Hankel structured matrix that is constructed using weighted k-t measurements. ALOHA then utilizes the low rank matrix completion algorithm combined with a multiscale pyramidal decomposition to estimate the missing k-space data. METHODS Spin-echo inversion recovery and multiecho spin echo pulse sequences for T1 and T2 mapping, respectively, were redesigned to perform undersampling along the phase encoding direction according to Gaussian distribution. The missing k-space is reconstructed using ALOHA. Then, the parameter maps were constructed using nonlinear regression. RESULTS Experimental results confirmed that ALOHA outperformed the existing compressed sensing algorithms. Compared with the existing methods, the reconstruction errors appeared scattered throughout the entire images rather than exhibiting systematic distortion along edges and the parameter maps. CONCLUSION Given that many diagnostic errors are caused by the systematic distortion of images, ALOHA may have a great potential for clinical applications. Magn Reson Med 76:1848-1864, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dongwook Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-dong Yuseong-gu, Daejon, 305-701, Republic of Korea
| | - Kyong Hwan Jin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-dong Yuseong-gu, Daejon, 305-701, Republic of Korea
| | - Eung Yeop Kim
- Department of Radiology, Gachon University Gil Medical Center, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-dong Yuseong-gu, Daejon, 305-701, Republic of Korea
| | - Jong Chul Ye
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-dong Yuseong-gu, Daejon, 305-701, Republic of Korea
| |
Collapse
|