1
|
Filippou A, Evripidou N, Georgiou A, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T. J Med Phys 2024; 49:583-596. [PMID: 39926130 PMCID: PMC11801101 DOI: 10.4103/jmp.jmp_133_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 02/11/2025] Open
Abstract
AIM Focused ultrasound (FUS) therapies are often performed within magnetic resonance imaging (MRI) systems providing thermometry-based temperature monitoring. Herein, MRI thermometry was assessed for FUS sonications executed using a preclinical system on agar-based phantoms at 1.5T and 3T MRI scanners, using the proton resonance frequency shift technique. MATERIALS AND METHODS Sonications were executed at 1.5T and 3T to assess the system and observe variations in magnetic resonance (MR) thermometry temperature measurements. MR thermometry was assessed at 3T, for identical sonications on three agar-based phantoms doped with varied silica and evaporated milk concentrations, and for sonications executed at varied acoustic power of 1.5-45 W. Moreover, echo time (TE) values of 5-20 ms were used to assess the effect on the signal-to-noise ratio (SNR) and temperature change sensitivity. RESULTS Clearer thermal maps with a 2.5-fold higher temporal resolution were produced for sonications at 3T compared to 1.5T, despite employment of similar thermometry sequences. At 3T, temperature changes between 41°C and 50°C were recorded for the three phantoms produced with varied silica and evaporated milk, with the addition of 2% w/v silica resulting in a 20% increase in temperature change. The lowest acoustic power that produced reliable beam detection within a voxel was 1.5 W. A TE of 10 ms resulted in the highest temperature sensitivity with adequate SNR. CONCLUSIONS MR thermometry performed at 3T achieved short temporal resolution with temperature dependencies exhibited with the sonication and imaging parameters. Present data could be used in preclinical MRI-guided FUS feasibility studies to enhance MR thermometry.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
- Department of Electronics and Information Engineering, Hangzhou Diazin University, Hangzhou, China
| |
Collapse
|
2
|
Mattay RR, Kim K, Shah L, Shah B, Sugrue L, Safoora F, Ozhinsky E, Narsinh KH. MR Thermometry during Transcranial MR Imaging-Guided Focused Ultrasound Procedures: A Review. AJNR Am J Neuroradiol 2023; 45:1-8. [PMID: 38123912 PMCID: PMC10756580 DOI: 10.3174/ajnr.a8038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/04/2023] [Indexed: 12/23/2023]
Abstract
Interest in transcranial MR imaging-guided focused ultrasound procedures has recently grown. These incisionless procedures enable precise focal ablation of brain tissue using real-time monitoring by MR thermometry. This article will provide an updated review on clinically applicable technical underpinnings and considerations of proton resonance frequency MR thermometry, the most common clinically used MR thermometry sequence.
Collapse
Affiliation(s)
- Raghav R Mattay
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Kisoo Kim
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Lubdha Shah
- Department of Radiology and Neurosurgery (L. Shah), University of Utah, Salt Lake City, Utah
| | - Bhavya Shah
- Department of Radiology (B.S.), University of Texas Southwestern, Dallas, Texas
| | - Leo Sugrue
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
- Department of Psychiatry (L. Sugrue), University of California San Francisco, California
| | - Fatima Safoora
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Eugene Ozhinsky
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Kazim H Narsinh
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
- Department of Neurological Surgery (K.H.N.), University of California San Francisco, California
| |
Collapse
|
3
|
Pan Z, Liu S, Hu J, Luo H, Han M, Sun H, Liu W, Wu Z, Guo H. Improved MR temperature imaging at 0.5 T using view-sharing accelerated multiecho thermometry for MR-guided laser interstitial thermal therapy. NMR IN BIOMEDICINE 2023:e4933. [PMID: 36941216 DOI: 10.1002/nbm.4933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The aim of the current study was to improve temperature-monitoring precision using multiecho proton resonance frequency shift-based thermometry with view-sharing acceleration for MR-guided laser interstitial thermal therapy (MRgLITT) on a 0.5-T low-field MR system. Both precision and speed of the temperature measurement for clinical MRgLITT treatments suffer at low field, due to reduced image signal-to-noise ratio (SNR), decreased temperature-induced phase changes, and limited RF receiver channels. In this work, a bipolar multiecho gradient-recalled echo sequence with a temperature-to-noise ratio optimal weighted echo combination is applied to improve the temperature precision. A view-sharing-based approach is utilized to accelerate signal acquisitions while preserving image SNRs. The method was evaluated using ex vivo (pork and pig brain) LITT heating experiments and in vivo (human brain) nonheating experiments on a high-performance 0.5-T scanner. In terms of results, (1) after echo combination, multiecho thermometry (i.e., ~7.5-40.5 ms, 7 TEs) provides ~1.5-1.9 times higher temperature precision than the no echo combination case (i.e., TE7 = 40.5 ms) within the same readout bandwidth. Additionally, echo registration is necessary for the bipolar multiecho sequence; (2) for a threefold acceleration, the view-sharing approach with variable-density subsampling shows around 1.8 times lower temperature errors than the GRAPPA method. Particularly for view-sharing, variable-density subsampling performs better than Interleave subsampling; and (3) ex vivo heating and in vivo nonheating experiments demonstrated that the temperature accuracy was less than 0.5 ° C $$ {}^{{}^{\circ}}\mathrm{C} $$ and that the temperature precision was less than 0.6 ° C $$ {}^{{}^{\circ}}\mathrm{C} $$ using the proposed 0.5-T thermometry. It was concluded that view-sharing accelerated multiecho thermometry is a practical temperature measurement approach for MRgLITT at 0.5 T.
Collapse
Affiliation(s)
- Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Simin Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | | | - Hai Luo
- Marvel Stone Healthcare, Wuxi, Jiangsu, China
| | - Meng Han
- Sinovation Medical, Beijing, China
| | - Hao Sun
- Sinovation Medical, Beijing, China
| | | | - Ziyue Wu
- Marvel Stone Healthcare, Wuxi, Jiangsu, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Allen SP, Fergusson A, Edsall C, Chen S, Moore D, Vlaisavljevich E, Davis RM, Meyer CH. Iron-based coupling media for MRI-guided ultrasound surgery. Med Phys 2022; 49:7373-7383. [PMID: 36156266 PMCID: PMC9946126 DOI: 10.1002/mp.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE In this study, we examine the effects of a recently developed, iron-based coupling medium (IBCM) on guidance magnetic resonance (MR) scans during transcranial, magnetic-resonance-guided, focused ultrasound surgery (tMRgFUS) procedures. More specifically, this study tests the hypotheses that the use of the IBCM will (a) not adversely affect image quality, (b) remove aliasing from small field-of-view scans, and (c) decouple image quality from the motion state of the coupling fluid. METHODS An IBCM, whose chemical synthesis and characterization are reported elsewhere, was used as a coupling medium during tMRgFUS procedures on gel phantoms. Guidance magnetization-prepared rapid-gradient-echo (MP-RAGE), TSE, and GRE scans were acquired with fields of view of 28 and 18 cm. Experiments were repeated with the IBCM in several distinct flow states. GRE scans were used to estimate temperature time courses as a gel target was insonated. IBCM performance was measured by computing (i) the root mean square difference (RMSD) of TSE and GRE pixel values acquired using water and the IBCM, relative to the use of water; (ii) through-time temperature uncertainty for GRE scans; and (iii) Bland-Altman analysis of the temperature time courses. Finally, guidance TSE and GRE scans of a human volunteer were acquired during a separate sham tMRgFUS procedure. As a control, all experiments were repeated using a water coupling medium. RESULTS Use of the IBCM reduced RMSD in TSE scans by a factor of 4 or more for all fields of view and nonstationary motion states, but did not reduce RMSD estimates in MP-RAGE scans. With the coupling media in a stationary state, the IBCM altered estimates of temperature uncertainty relative to the use of water by less than 0.2°C. However, with a high flow state, the IBCM reduced temperature uncertainties by the statistically significant amounts (at the 0.01 level) of 0.5°C (28 cm field of view) and 5°C (18 cm field of view). Bland-Altman analyses found a 0.1°C ± 0.5°C difference between temperature estimates acquired using water and the IBCM as coupling media. Finally, scans of a human volunteer using the IBCM indicate more conspicuous grey/white matter contrast, a reduction in aliasing, and a less than 0.2°C change in temperature uncertainty. CONCLUSIONS The use of an IBCM during tMRgFUS procedures does not adversely affect image quality for TSE and GRE scans, can decouple image quality from the motion state of the coupling fluid, and can remove aliasing from scans where the field of view is set to be much smaller than the spatial extent of the coupling fluid.
Collapse
Affiliation(s)
- Steven P Allen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Austin Fergusson
- Graduate Program in Translational Biology, Medicine and Health Virginia Tech, Blacksburg, Virginia, USA
| | - Connor Edsall
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Sheng Chen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - David Moore
- The Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health Virginia Tech, Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Richey M Davis
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Blackwell J, Kraśny MJ, O'Brien A, Ashkan K, Galligan J, Destrade M, Colgan N. Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices. J Magn Reson Imaging 2020; 55:389-403. [PMID: 33217099 DOI: 10.1002/jmri.27446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become a popular modality in guiding minimally invasive thermal therapies, due to its advanced, nonionizing, imaging capabilities and its ability to record changes in temperature. A variety of MR thermometry techniques have been developed over the years, and proton resonance frequency (PRF) shift thermometry is the current clinical gold standard to treat a variety of cancers. It is used extensively to guide hyperthermic thermal ablation techniques such as high-intensity focused ultrasound (HIFU) and laser-induced thermal therapy (LITT). Essential attributes of PRF shift thermometry include excellent linearity with temperature, good sensitivity, and independence from tissue type. This noninvasive temperature mapping method gives accurate quantitative measures of the temperature evolution inside biological tissues. In this review, the current status and new developments in the fields of MR-guided HIFU and LITT are presented with an emphasis on breast, prostate, bone, uterine, and brain treatments. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- James Blackwell
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Marcin J Kraśny
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Aoife O'Brien
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital Foundation Trust, London, UK.,Harley Street Clinic, London Neurosurgery Partnership, London, UK
| | - Josette Galligan
- Department of Medical Physics and Bioengineering, St. James' Hospital, Dublin, Ireland
| | - Michel Destrade
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Niall Colgan
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
6
|
Zong S, Shen G, Mei CS, Madore B. Improved PRF-based MR thermometry using k-space energy spectrum analysis. Magn Reson Med 2020; 84:3325-3332. [PMID: 32588485 DOI: 10.1002/mrm.28341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE Proton resonance frequency (PRF) thermometry encodes information in the phase of MRI signals. A multiplicative factor converts phase changes into temperature changes, and this factor includes the TE. However, phase variations caused by B0 and/or B1 inhomogeneities can effectively change TE in ways that vary from pixel to pixel. This work presents how spatial phase variations affect temperature maps and how to correct for corresponding errors. METHODS A method called "k-space energy spectrum analysis" was used to map regions in the object domain to regions in the k-space domain. Focused ultrasound heating experiments were performed in tissue-mimicking gel phantoms under two scenarios: with and without proper shimming. The second scenario, with deliberately de-adjusted shimming, was meant to emulate B0 inhomogeneities in a controlled manner. The TE errors were mapped and compensated for using k-space energy spectrum analysis, and corrected results were compared with reference results. Furthermore, a volunteer was recruited to help evaluate the magnitude of the errors being corrected. RESULTS The in vivo abdominal results showed that the TE and heating errors being corrected can readily exceed 10%. In phantom results, a linear regression between reference and corrected temperatures results provided a slope of 0.971 and R2 of 0.9964. Analysis based on the Bland-Altman method provided a bias of -0.0977°C and 95% limits of agreement that were 0.75°C apart. CONCLUSION Spatially varying TE errors, such as caused by B0 and/or B1 inhomogeneities, can be detected and corrected using the k-space energy spectrum analysis method, for increased accuracy in proton resonance frequency thermometry.
Collapse
Affiliation(s)
- Shenyan Zong
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Guofeng Shen
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang-Sheng Mei
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Physics, Soochow University, Taipei, China
| | - Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
8
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
9
|
Odéen H, Parker DL. Improved MR thermometry for laser interstitial thermotherapy. Lasers Surg Med 2019; 51:286-300. [PMID: 30645017 DOI: 10.1002/lsm.23049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To develop, test and evaluate improved 2D and 3D protocols for proton resonance frequency shift magnetic resonance temperature imaging (MRTI) of laser interstitial thermal therapy (LITT). The objective was to develop improved MRTI protocols in terms of temperature measurement precision and volume coverage compared to the 2D MRTI protocol currently used with a commercially available LITT system. METHODS Four different 2D protocols and four different 3D protocols were investigated. The 2D protocols used multi-echo readouts to prolong the total MR sampling time and hence the MRTI precision, without prolonging the total acquisition time. The 3D protocols provided volumetric thermometry by acquiring a slab of 12 contiguous slices in the same acquisition time as the 2D protocols. The study only considered readily available pulse sequences (Cartesian 2D and 3D gradient recalled echo and echo planar imaging [EPI]) and methods (partial Fourier and parallel imaging) to ensure wide availability and rapid clinical implementation across vendors and field strengths. In vivo volunteer studies were performed to investigate and compare MRTI precision and image quality. Phantom experiments with LITT heating were performed to investigate and compare MRTI precision and accuracy. Different coil setups were used in the in vivo studies to assess precision differences between using local (such as flex and head coils) and non-local (i.e., body coil) receive coils. Studies were performed at both 1.5 T and 3 T. RESULTS The improved 2D protocols provide up to a factor of two improvement in the MRTI precision in the same acquisition time, compared to the currently used clinical protocol. The 3D echo planar imaging protocols provide comparable precision as the currently used 2D clinical protocol, but over a substantially larger field of view, without increasing the acquisition time. As expected, local receive coils perform substantially better than the body coil, and 3 T provides better MRTI accuracy and precision than 1.5 T. 3D data can be zero-filled interpolated in all three dimensions (as opposed to just two dimensions for 2D data), reducing partial volume effects and measuring higher maximum temperature rises. CONCLUSIONS With the presented protocols substantially improved MRTI precision (for 2D imaging) or greatly improved field of view coverage (for 3D imaging) can be achieved in the same acquisition time as the currently used protocol. Only widely available pulse sequences and acquisition methods were investigated, which should ensure quick translation to the clinic. Lasers Surg. Med. 51:286-300, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Wu M, Mulder HT, Zur Y, Lechner-Greite S, Menzel MI, Paulides MM, van Rhoon GC, Haase A. A phase-cycled temperature-sensitive fast spin echo sequence with conductivity bias correction for monitoring of mild RF hyperthermia with PRFS. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:369-380. [PMID: 30515641 DOI: 10.1007/s10334-018-0725-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Mild hyperthermia (HT) treatments are generally monitored by phase-referenced proton resonance frequency shift calculations. A novel phase and thus temperature-sensitive fast spin echo (TFSE) sequence is introduced and compared to the double echo gradient echo (DEGRE) sequence. THEORY AND METHODS For a proton resonance frequency shift (PRFS)-sensitive TFSE sequence, a phase cycling method is applied to separate even from odd echoes. This method compensates for conductivity change-induced bias in temperature mapping as does the DEGRE sequence. Both sequences were alternately applied during a phantom heating experiment using the clinical setup for deep radio frequency HT (RF-HT). The B0 drift-corrected temperature values in a region of interest around temperature probes are compared to the temperature probe data and further evaluated in Bland-Altman plots. The stability of both methods was also tested within the thighs of three volunteers at a constant temperature using the subcutaneous fat layer for B0-drift correction. RESULTS During the phantom heating experiment, on average TFSE temperature maps achieved double temperature-to-noise ratio (TNR) efficiency in comparison with DEGRE temperature maps. In-vivo images of the thighs exhibit stable temperature readings of ± 1 °C over 25 min of scanning in three volunteers for both methods. On average, the TNR efficiency improved by around 25% for in vivo data. CONCLUSION A novel TFSE method has been adapted to monitor temperature during mild HT.
Collapse
Affiliation(s)
- Mingming Wu
- Munich School of Bioengineering, Technical University of Munich, Boltzmannstr. 11, 85748, Garching bei München, Germany.
| | | | | | | | | | | | | | - Axel Haase
- Munich School of Bioengineering, Technical University of Munich, Boltzmannstr. 11, 85748, Garching bei München, Germany
| |
Collapse
|
11
|
Jonathan SV, Grissom WA. Volumetric MRI thermometry using a three-dimensional stack-of-stars echo-planar imaging pulse sequence. Magn Reson Med 2018; 79:2003-2013. [PMID: 28782129 PMCID: PMC5803468 DOI: 10.1002/mrm.26862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To measure temperature over a large brain volume with fine spatiotemporal resolution. METHODS A three-dimensional stack-of-stars echo-planar imaging sequence combining echo-planar imaging and radial sampling with golden angle spacing was implemented at 3T for proton resonance frequency-shift temperature imaging. The sequence acquires a 188x188x43 image matrix with 1.5x1.5x2.75 mm3 spatial resolution. Temperature maps were reconstructed using sensitivity encoding (SENSE) image reconstruction followed by the image domain hybrid method, and using the k-space hybrid method. In vivo temperature maps were acquired without heating to measure temperature precision in the brain, and in a phantom during high-intensity focused ultrasound sonication. RESULTS In vivo temperature standard deviation was less than 1°C at dynamic scan times down to 0.75 s. For a given frame rate, scanning at a minimum repetition time (TR) with minimum acceleration yielded the lowest standard deviation. With frame rates around 3 s, the scan was tolerant to a small number of receive coils, and temperature standard deviation was 48% higher than a standard two-dimensional Fourier transform temperature mapping scan, but provided whole-brain coverage. Phantom temperature maps with no visible aliasing were produced for dynamic scan times as short as 0.38 s. k-Space hybrid reconstructions were more tolerant to acceleration. CONCLUSION Three-dimensional stack-of-stars echo-planar imaging temperature mapping provides volumetric brain coverage and fine spatiotemporal resolution. Magn Reson Med 79:2003-2013, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sumeeth V. Jonathan
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - William A. Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Radiology, Vanderbilt University, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Svedin BT, Payne A, Bolster BD, Parker DL. Multiecho pseudo-golden angle stack of stars thermometry with high spatial and temporal resolution using k-space weighted image contrast. Magn Reson Med 2017. [PMID: 28643383 DOI: 10.1002/mrm.26797] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Implement and evaluate a 3D MRI method to measure temperature changes with high spatial and temporal resolution and large field of view. METHODS A multiecho pseudo-golden angle stack-of-stars (SOS) sequence with k-space weighted image contrast (KWIC) reconstruction was implemented to simultaneously measure multiple quantities, including temperature, initial signal magnitude M(0), transverse relaxation time ( T2*), and water/fat images. Respiration artifacts were corrected using self-navigation. KWIC artifacts were removed using a multi-baseline library. The phases of the multiple echo images were combined to improve proton resonance frequency precision. Temperature precision was tested through in vivo breast imaging (N = 5 healthy volunteers) using both coronal and sagittal orientations and with focused ultrasound (FUS) heating in a pork phantom using a breast specific MR-guided FUS system. RESULTS Temperature measurement precision was significantly improved after echo combination when compared with the no echo combination case (spatial average of the standard deviation through time of 0.3-1.0 and 0.7-1.9°C, respectively). Temperature measurement accuracy during heating was comparable to a 3D seg-EPI sequence. M(0) and T2* values showed temperature dependence during heating in pork adipose tissue. CONCLUSION A self-navigated 3D multiecho SOS sequence with dynamic KWIC reconstruction is a promising thermometry method that provides multiple temperature sensitive quantitative values. Magn Reson Med 79:1407-1419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Bryant T Svedin
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Allison Payne
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | | | - Dennis L Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Marx M, Ghanouni P, Butts Pauly K. Specialized volumetric thermometry for improved guidance of MRgFUS in brain. Magn Reson Med 2016; 78:508-517. [PMID: 27699844 DOI: 10.1002/mrm.26385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 11/07/2022]
Abstract
PURPOSE MR thermometry is critical for safe and effective transcranial focused ultrasound. The current single-slice MR thermometry sequence cannot achieve all desired treatment monitoring requirements. We propose an approach in which the imaging requirements of different aspects of treatment monitoring are met by optimizing multiple sequences. METHODS Imaging requirements were determined for three stages of MR-guided focused ultrasound brain treatment: 1) focal spot localization, 2) focal spot monitoring, and 3) background monitoring. Multiple-echo spiral thermometry sequences were optimized for each set of requirements and then validated with in vivo signal-to-noise ratio measurements and with phantom heating experiments. RESULTS Each of the proposed sequences obtained better precision than the current two-dimensional Fourier transform (2DFT) thermometry sequence. Five-slice focal spot localization achieved two-fold better resolution with 1.9-fold better precision but two-fold longer acquisition compared to 2DFT. Five-slice focal monitoring achieved 2.1-fold better precision with similar speed but 12% larger voxels than 2DFT. Full-brain background monitoring was demonstrated in both axial (7.1 s) and sagittal (11.4 s) orientations. Phantom heating time curves were consistent across all sequences after correcting for resolution. CONCLUSION Multiple-echo spiral imaging significantly improves MR thermometry efficiency, enabling multiple-slice monitoring. Optimizing multiple specialized sequences provides better performance than can be achieved by any single sequence. Magn Reson Med 78:508-517, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Michael Marx
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|