1
|
Yoo J, Jin KH, Gupta H, Yerly J, Stuber M, Unser M. Time-Dependent Deep Image Prior for Dynamic MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3337-3348. [PMID: 34043506 DOI: 10.1109/tmi.2021.3084288] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We propose a novel unsupervised deep-learning-based algorithm for dynamic magnetic resonance imaging (MRI) reconstruction. Dynamic MRI requires rapid data acquisition for the study of moving organs such as the heart. We introduce a generalized version of the deep-image-prior approach, which optimizes the weights of a reconstruction network to fit a sequence of sparsely acquired dynamic MRI measurements. Our method needs neither prior training nor additional data. In particular, for cardiac images, it does not require the marking of heartbeats or the reordering of spokes. The key ingredients of our method are threefold: 1) a fixed low-dimensional manifold that encodes the temporal variations of images; 2) a network that maps the manifold into a more expressive latent space; and 3) a convolutional neural network that generates a dynamic series of MRI images from the latent variables and that favors their consistency with the measurements in k -space. Our method outperforms the state-of-the-art methods quantitatively and qualitatively in both retrospective and real fetal cardiac datasets. To the best of our knowledge, this is the first unsupervised deep-learning-based method that can reconstruct the continuous variation of dynamic MRI sequences with high spatial resolution.
Collapse
|
2
|
Bonanno G, Weiss RG, Piccini D, Yerly J, Soleimani S, Pan L, Bi X, Hays AG, Stuber M, Schär M. Volumetric coronary endothelial function assessment: a feasibility study exploiting stack-of-stars 3D cine MRI and image-based respiratory self-gating. NMR IN BIOMEDICINE 2021; 34:e4589. [PMID: 34291517 PMCID: PMC8969584 DOI: 10.1002/nbm.4589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Abnormal coronary endothelial function (CEF), manifesting as depressed vasoreactive responses to endothelial-specific stressors, occurs early in atherosclerosis, independently predicts cardiovascular events, and responds to cardioprotective interventions. CEF is spatially heterogeneous along a coronary artery in patients with atherosclerosis, and thus recently developed and tested non-invasive 2D MRI techniques to measure CEF may not capture the extent of changes in CEF in a given coronary artery. The purpose of this study was to develop and test the first volumetric coronary 3D MRI cine method for assessing CEF along the proximal and mid-coronary arteries with isotropic spatial resolution and in free-breathing. This approach, called 3D-Stars, combines a 6 min continuous, untriggered golden-angle stack-of-stars acquisition with a novel image-based respiratory self-gating method and cardiac and respiratory motion-resolved reconstruction. The proposed respiratory self-gating method agreed well with respiratory bellows and center-of-k-space methods. In healthy subjects, 3D-Stars vessel sharpness was non-significantly different from that by conventional 2D radial in proximal segments, albeit lower in mid-portions. Importantly, 3D-Stars detected normal vasodilatation of the right coronary artery in response to endothelial-dependent isometric handgrip stress in healthy subjects. Coronary artery cross-sectional areas measured using 3D-Stars were similar to those from 2D radial MRI when similar thresholding was used. In conclusion, 3D-Stars offers good image quality and shows feasibility for non-invasively studying vasoreactivity-related lumen area changes along the proximal coronary artery in 3D during free-breathing.
Collapse
Affiliation(s)
- Gabriele Bonanno
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), University Hospital of Lausanne, Lausanne, Switzerland
| | - Sahar Soleimani
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Li Pan
- Siemens Medical Solutions USA, Inc, Baltimore, MD, USA
| | - Xiaoming Bi
- Siemens Medical Solutions USA, Inc, Los Angeles, CA, USA
| | - Allison G Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Matthias Stuber
- Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), University Hospital of Lausanne, Lausanne, Switzerland
| | - Michael Schär
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Hoppe E, Wetzl J, Yoon SS, Bacher M, Roser P, Stimpel B, Preuhs A, Maier A. Deep Learning-Based ECG-Free Cardiac Navigation for Multi-Dimensional and Motion-Resolved Continuous Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2105-2117. [PMID: 33848244 DOI: 10.1109/tmi.2021.3073091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For the clinical assessment of cardiac vitality, time-continuous tomographic imaging of the heart is used. To further detect e.g., pathological tissue, multiple imaging contrasts enable a thorough diagnosis using magnetic resonance imaging (MRI). For this purpose, time-continous and multi-contrast imaging protocols were proposed. The acquired signals are binned using navigation approaches for a motion-resolved reconstruction. Mostly, external sensors such as electrocardiograms (ECG) are used for navigation, leading to additional workflow efforts. Recent sensor-free approaches are based on pipelines requiring prior knowledge, e.g., typical heart rates. We present a sensor-free, deep learning-based navigation that diminishes the need for manual feature engineering or the necessity of prior knowledge compared to previous works. A classifier is trained to estimate the R-wave timepoints in the scan directly from the imaging data. Our approach is evaluated on 3-D protocols for continuous cardiac MRI, acquired in-vivo and free-breathing with single or multiple imaging contrasts. We achieve an accuracy of > 98% on previously unseen subjects, and a well comparable image quality with the state-of-the-art ECG-based reconstruction. Our method enables an ECG-free workflow for continuous cardiac scans with simultaneous anatomic and functional imaging with multiple contrasts. It can be potentially integrated without adapting the sampling scheme to other continuous sequences by using the imaging data for navigation and reconstruction.
Collapse
|
4
|
Zhu D, Bonanno G, Hays AG, Weiss RG, Schär M. Phase contrast coronary blood velocity mapping with both high temporal and spatial resolution using triggered Golden Angle rotated Spiral k-t Sparse Parallel imaging (GASSP) with shifted binning. Magn Reson Med 2021; 86:1929-1943. [PMID: 33977581 DOI: 10.1002/mrm.28837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE High temporal and spatial resolutions are required for coronary blood flow measures. Current spiral breath-hold phase contrast (PC) MRI at 3T focus on either high spatial or high temporal resolution. We propose a golden angle (GA) rotated Spiral k-t Sparse Parallel imaging (GASSP) sequence for both high spatial (0.8 mm) and high temporal (<21 ms) resolutions. METHODS GASSP PC data are acquired in left anterior descending and right coronary arteries of eight healthy subjects. Binning of GA rotated spiral data into cardiac frames may lead to large k-space gaps. To reduce those gaps, the binning window is shifted and a triggered GA scheme that resets the rotation angle every heartbeat is proposed. The gap reductions are evaluated in simulations and all subjects. Peak systolic velocity (PSV), peak diastolic velocity (PDV), coronary blood flow rate, and vessel area are validated against two reference scans, and repeatability/reproducibility are determined. RESULTS Shifted binning reduced the mean k-space gaps of the triggered GA scheme by 14°-22° in simulations and about 20° in vivo. The k-space gap across three cardiac frames was reduced with the triggered GA scheme compared to the standard GA scheme (35.3°± 3.6° vs. 43°± 13.7°, t-test P = .04). PSV, PDV, flow rate, and area had high intra-scan repeatability (0.92 ≤ intraclass correlation coefficient [ICC] ≤ 0.99), and inter-scan (0.78 ≤ ICC ≤ 0.91) and intra-observer (0.91 ≤ ICC ≤ 0.98) reproducibility. CONCLUSION GASSP enables single breath-hold coronary PC MRI with high temporal and spatial resolutions. Shifted binning and a triggered GA scheme reduce k-space gaps. Quantitative coronary flow metrics are highly reproducible, especially within the same scanning session.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriele Bonanno
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allison G Hays
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert G Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Bongers-Karmaoui MN, Jaddoe VWV, Roest AAW, Gaillard R. The Cardiovascular Stress Response as Early Life Marker of Cardiovascular Health: Applications in Population-Based Pediatric Studies-A Narrative Review. Pediatr Cardiol 2020; 41:1739-1755. [PMID: 32879997 PMCID: PMC7695663 DOI: 10.1007/s00246-020-02436-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Stress inducement by physical exercise requires major cardiovascular adaptations in both adults and children to maintain an adequate perfusion of the body. As physical exercise causes a stress situation for the cardiovascular system, cardiovascular exercise stress tests are widely used in clinical practice to reveal subtle cardiovascular pathology in adult and childhood populations with cardiac and cardiovascular diseases. Recently, evidence from small studies suggests that the cardiovascular stress response can also be used within research settings to provide novel insights on subtle differences in cardiovascular health in non-diseased adults and children, as even among healthy populations an abnormal response to physical exercise is associated with an increased risk of cardiovascular diseases. This narrative review is specifically focused on the possibilities of using the cardiovascular stress response to exercise combined with advanced imaging techniques in pediatric population-based studies focused on the early origins of cardiovascular diseases. We discuss the physiology of the cardiovascular stress response to exercise, the type of physical exercise used to induce the cardiovascular stress response in combination with advanced imaging techniques, the obtained measurements with advanced imaging techniques during the cardiovascular exercise stress test and their associations with cardiovascular health outcomes. Finally, we discuss the potential for cardiovascular exercise stress tests to use in pediatric population-based studies focused on the early origins of cardiovascular diseases.
Collapse
Affiliation(s)
- Meddy N Bongers-Karmaoui
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arno A W Roest
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Aizaz M, Moonen RPM, van der Pol JAJ, Prieto C, Botnar RM, Kooi ME. PET/MRI of atherosclerosis. Cardiovasc Diagn Ther 2020; 10:1120-1139. [PMID: 32968664 DOI: 10.21037/cdt.2020.02.09] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial infarction and stroke are the most prevalent global causes of death. Each year 15 million people worldwide die due to myocardial infarction or stroke. Rupture of a vulnerable atherosclerotic plaque is the main underlying cause of stroke and myocardial infarction. Key features of a vulnerable plaque are inflammation, a large lipid-rich necrotic core (LRNC) with a thin or ruptured overlying fibrous cap, and intraplaque hemorrhage (IPH). Noninvasive imaging of these features could have a role in risk stratification of myocardial infarction and stroke and can potentially be utilized for treatment guidance and monitoring. The recent development of hybrid PET/MRI combining the superior soft tissue contrast of MRI with the opportunity to visualize specific plaque features using various radioactive tracers, paves the way for comprehensive plaque imaging. In this review, the use of hybrid PET/MRI for atherosclerotic plaque imaging in carotid and coronary arteries is discussed. The pros and cons of different hybrid PET/MRI systems are reviewed. The challenges in the development of PET/MRI and potential solutions are described. An overview of PET and MRI acquisition techniques for imaging of atherosclerosis including motion correction is provided, followed by a summary of vessel wall imaging PET/MRI studies in patients with carotid and coronary artery disease. Finally, the future of imaging of atherosclerosis with PET/MRI is discussed.
Collapse
Affiliation(s)
- Mueez Aizaz
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Rik P M Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jochem A J van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Zwingli G, Yerly J, Mivelaz Y, Stoppa-Vaucher S, Dwyer AA, Pitteloud N, Stuber M, Hauschild M. Non-invasive assessment of coronary endothelial function in children and adolescents with type 1 diabetes mellitus using isometric handgrip exercise-MRI: A feasibility study. PLoS One 2020; 15:e0228569. [PMID: 32053613 PMCID: PMC7018029 DOI: 10.1371/journal.pone.0228569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/19/2020] [Indexed: 01/02/2023] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) in children and adolescents is associated with significant cardiovascular morbidity and mortality. Early detection of vascular dysfunction is key to patient management yet current assessment techniques are invasive and not suitable for pediatric patient populations. A novel approach using isometric handgrip exercise during magnetic resonance imaging (IHE-MRI) has recently been developed to evaluate coronary endothelial function non-invasively in adults. This project aimed to assess endothelium-dependent coronary arterial response to IHE-MRI in children with T1DM and in age matched healthy controls. Materials and methods Healthy volunteers and children with T1DM (>5 years) were recruited. IHE-MRI cross-sectional coronary artery area measurements were recorded at rest and under stress. Carotid intima media thickness (CIMT) and aortic pulse wave velocity (PWV) were assessed for comparison. Student’s t-tests were used to compare results between groups. Results and discussion Seven children with T1DM (3 female, median 14.8 years, mean 14.8 ± 1.9 years) and 16 healthy controls (7 female, median 14.8 years, mean 14.2 ± 2.4 years) participated. A significant increase in stress-induced cross-sectional coronary area was measured in controls (5.4 mm2 at rest to 6.39 mm2 under stress, 18.8 ± 10.7%, p = 0.0004). In contrast, mean area change in patients with T1DM was not significant (7.17 mm2 at rest to 7.59 mm2 under stress, 10.5% ± 28.1%, p = n.s.). There was no significant difference in the results for neither PWV nor CIMT between patients and controls, (5.3±1.5 m/s vs.4.8±0.7 m/s and 0.4±0.03mm vs.0.46 mm ± 0.03 respectively, both p = n.s.). Conclusions Our pilot study demonstrates the feasibility of using a totally non-invasive IHE-MRI technique in children and adolescents with and without T1DM. Preliminary results suggest a blunted endothelium-dependent coronary vasomotor function in children with T1DM (>5 years). Better knowledge and new methodologies may improve surveillance and care for T1DM patients to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Gaëtan Zwingli
- Lausanne University (UNIL), Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, Lausanne University Hospital (CHUV), Center for Biomedical Imaging, Lausanne, Switzerland
| | - Yvan Mivelaz
- Pediatric Cardiology Unit, Service of Pediatrics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sophie Stoppa-Vaucher
- Department of Pediatrics, Hôpital Neuchâtelois, Neuchâtel, Switzerland
- Pediatric Endocrinology, Diabetology and Obesity Unit, Service of Pediatrics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Andrew A. Dwyer
- Boston College, William F.Connell School of Nursing, Chestnut Hill, MA, United States of America
| | - Nelly Pitteloud
- Pediatric Endocrinology, Diabetology and Obesity Unit, Service of Pediatrics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, Lausanne University Hospital (CHUV), Center for Biomedical Imaging, Lausanne, Switzerland
| | - Michael Hauschild
- Pediatric Endocrinology, Diabetology and Obesity Unit, Service of Pediatrics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Di Sopra L, Piccini D, Coppo S, Stuber M, Yerly J. An automated approach to fully self‐gated free‐running cardiac and respiratory motion‐resolved 5D whole‐heart MRI. Magn Reson Med 2019; 82:2118-2132. [DOI: 10.1002/mrm.27898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
- Advanced Clinical Imaging Technology Siemens Healthcare Lausanne Switzerland
| | - Simone Coppo
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
- Center for Biomedical Imaging Lausanne Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
- Center for Biomedical Imaging Lausanne Switzerland
| |
Collapse
|
9
|
Delacoste J, Feliciano H, Yerly J, Dunet V, Beigelman‐Aubry C, Ginami G, van Heeswijk RB, Piccini D, Stuber M, Sauty A. A black‐blood ultra‐short echo time (UTE) sequence for 3D isotropic resolution imaging of the lungs. Magn Reson Med 2019; 81:3808-3818. [DOI: 10.1002/mrm.27679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Jean Delacoste
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Helene Feliciano
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Jérôme Yerly
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Vincent Dunet
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Catherine Beigelman‐Aubry
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Giulia Ginami
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
| | - Ruud B. van Heeswijk
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Davide Piccini
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Advanced Clinical Imaging Technology Siemens Healthcare AG Lausanne Switzerland
| | - Matthias Stuber
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Alain Sauty
- Adult CF unit, Neuchatelois‐Pourtales Hospital Neuchatel Switzerland
- Service of Pneumology, Department of Medicine University Hospital (CHUV) Lausanne Switzerland
| |
Collapse
|
10
|
Yerly J, Becce F, van Heeswijk RB, Verdun FR, Gubian D, Meuli R, Stuber M. In vitro optimization and comparison of CT angiography versus radial cardiovascular magnetic resonance for the quantification of cross-sectional areas and coronary endothelial function. J Cardiovasc Magn Reson 2019; 21:11. [PMID: 30728035 PMCID: PMC6366062 DOI: 10.1186/s12968-019-0521-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our objectives were first to determine the optimal coronary computed tomography angiography (CTA) protocol for the quantification and detection of simulated coronary artery cross-sectional area (CSA) differences in vitro, and secondly to quantitatively compare the performance of the optimized CTA protocol with a previously validated radial coronary cardiovascular magnetic resonance (CMR) technique. METHODS 256-multidetector CTA and radial coronary CMR were used to obtain images of a custom in vitro resolution phantom simulating a range of physiological responses of coronary arteries to stress. CSAs were automatically quantified and compared with known nominal values to determine the accuracy, precision, signal-to-noise ratio (SNR), and circularity of CSA measurements, as well as the limit of detection (LOD) of CSA differences. Various iodine concentrations, radiation dose levels, tube potentials, and iterative image reconstruction algorithms (ASiR-V) were investigated to determine the optimal CTA protocol. The performance of the optimized CTA protocol was then compared with a radial coronary CMR method previously developed for endothelial function assessment under both static and moving conditions. RESULTS The iodine concentration, dose level, tube potential, and reconstruction algorithm all had significant effects (all p < 0.001) on the accuracy, precision, LOD, SNR, and circularity of CSA measurements with CTA. The best precision, LOD, SNR, and circularity with CTA were achieved with 6% iodine, 20 mGy, 100 kVp, and 90% ASiR-V. Compared with the optimized CTA protocol under static conditions, radial coronary CMR was less accurate (- 0.91 ± 0.13 mm2 vs. -0.35 ± 0.04 mm2, p < 0.001), but more precise (0.08 ± 0.02 mm2 vs. 0.21 ± 0.02 mm2, p < 0.001), and enabled the detection of significantly smaller CSA differences (0.16 ± 0.06 mm2 vs. 0.52 ± 0.04 mm2; p < 0.001; corresponding to CSA percentage differences of 2.3 ± 0.8% vs. 7.4 ± 0.6% for a 3-mm baseline diameter). The same results held true under moving conditions as CSA measurements with CMR were less affected by motion. CONCLUSIONS Radial coronary CMR was more precise and outperformed CTA for the specific task of detecting small CSA differences in vitro, and was able to reliably identify CSA changes an order of magnitude smaller than those reported for healthy physiological vasomotor responses of proximal coronary arteries. However, CTA yielded more accurate CSA measurements, which may prove useful in other clinical scenarios, such as coronary artery stenosis assessment.
Collapse
Affiliation(s)
- Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV and UNIL), Rue du Bugnon 46, Lausanne, 1011 VD Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV and UNIL), Rue du Bugnon 46, Lausanne, 1011 VD Switzerland
| | - Ruud B. van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV and UNIL), Rue du Bugnon 46, Lausanne, 1011 VD Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Francis R. Verdun
- Institute of Radiation Physics, Lausanne University Hospital (CHUV and UNIL), Lausanne, Switzerland
| | - Danilo Gubian
- Direction des Constructions, Ingénierie, Technique et Sécurité (CIT-S), Lausanne University Hospital (CHUV and UNIL), Lausanne, Switzerland
| | - Reto Meuli
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV and UNIL), Rue du Bugnon 46, Lausanne, 1011 VD Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV and UNIL), Rue du Bugnon 46, Lausanne, 1011 VD Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
11
|
Zhang X, Xie G, Lu N, Zhu Y, Wei Z, Su S, Shi C, Yan F, Liu X, Qiu B, Fan Z. 3D self-gated cardiac cine imaging at 3 Tesla using stack-of-stars bSSFP with tiny golden angles and compressed sensing. Magn Reson Med 2018; 81:3234-3244. [PMID: 30474151 DOI: 10.1002/mrm.27612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and evaluate an accelerated 3D self-gated cardiac cine imaging technique at 3 Tesla without the use of external electrocardiogram triggering or respiratory gating. METHODS A 3D stack-of-stars balanced steady-state free precession sequence with a tiny golden angle sampling scheme was developed to reduced eddy current effect-related artefacts at 3 Tesla. Respiratory and cardiac motion were derived from a central 5-point self-gating signal extraction approach. The data acquired around the end-expiration phases were then sorted into individual cardiac bins and used for reconstruction with compressed sensing. To evaluate the performance of the proposed method, image quality (1: the best; 4: the worst) was quantitatively compared using both the proposed method and the conventional 3D golden-angle self-gated method. Linear regression and Bland-Altman analysis were used to assess the functional measurements agreement between the proposed method and the routine 2D breath-hold multi-slice technique. RESULTS Compared to the conventional 3D golden-angle self-gated method, the proposed method yielded images with much less streaking artifact and higher myocardium edge sharpness (0.50 ± 0.06 vs. 0.45 ± 0.05, P = 0.004). The proposed method provided an inferior image quality score to the routine 2D technique (2.13 ± 0.35 vs. 1.38 ± 0.52, P = 0.063) but a superior one to the conventional self-gated method (2.13 ± 0.35 vs. 3.13 ± 0.64, P = 0.031). Left ventricular functional measurements between the proposed method and routine 2D technique were all well in agreement. CONCLUSION This study presents a novel self-gating approach to realize rapid 3D cardiac cine imaging at 3 Tesla.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, People's Republic of China.,MR Collaborations NE Asia, Siemens Healthcare, Shenzhen, People's Republic of China
| | - Guoxi Xie
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Na Lu
- Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yanchun Zhu
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Zijun Wei
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Shi Su
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Caiyun Shi
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Fei Yan
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Xin Liu
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Departments of Medicine and Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
12
|
Bonanno G, Hays AG, Weiss RG, Schär M. Self-gated golden angle spiral cine MRI for coronary endothelial function assessment. Magn Reson Med 2018; 80:560-570. [PMID: 29282752 PMCID: PMC5910207 DOI: 10.1002/mrm.27060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE Depressed coronary endothelial function (CEF) is a marker for atherosclerotic disease, an independent predictor of cardiovascular events, and can be quantified non-invasively with ECG-triggered spiral cine MRI combined with isometric handgrip exercise (IHE). However, MRI-CEF measures can be hindered by faulty ECG-triggering, leading to prolonged breath-holds and degraded image quality. Here, a self-gated golden angle spiral method (SG-GA) is proposed to eliminate the need for ECG during cine MRI. METHODS SG-GA was tested against retrospectively ECG-gated golden angle spiral MRI (ECG-GA) and gold-standard ECG-triggered spiral cine MRI (ECG-STD) in 10 healthy volunteers. CEF data were obtained from cross-sectional images of the proximal right and left coronary arteries in a 3T scanner. Self-gating heart rates were compared to those from simultaneous ECG-gating. Coronary vessel sharpness and cross-sectional area (CSA) change with IHE were compared among the 3 methods. RESULTS Self-gating precision, accuracy, and correlation-coefficient were 7.7 ± 0.5 ms, 9.1 ± 0.7 ms, and 0.93 ± 0.01, respectively (mean ± standard error). Vessel sharpness by SG-GA was equal or higher than ECG-STD (rest: 63.0 ± 1.7% vs. 61.3 ± 1.3%; exercise: 62.6 ± 1.3% vs. 56.7 ± 1.6%, P < 0.05). CSA changes were in agreement among the 3 methods (ECG-STD = 8.7 ± 4.0%, ECG-GA = 9.6 ± 3.1%, SG-GA = 9.1 ± 3.5%, P = not significant). CONCLUSION CEF measures can be obtained with the proposed self-gated high-quality cine MRI method even when ECG is faulty or not available. Magn Reson Med 80:560-570, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gabriele Bonanno
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Michael Schär
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
13
|
Pednekar AS, Wang H, Flamm S, Cheong BY, Muthupillai R. Two-center clinical validation and quantitative assessment of respiratory triggered retrospectively cardiac gated balanced-SSFP cine cardiovascular magnetic resonance imaging in adults. J Cardiovasc Magn Reson 2018; 20:44. [PMID: 29950177 PMCID: PMC6022503 DOI: 10.1186/s12968-018-0467-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/25/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Breath-hold (BH) requirement remains the limiting factor on the spatio-temporal resolution and coverage of the cine balanced steady-state free precession (bSSFP) cardiovascular magnetic resonance (CMR) imaging. In this prospective two-center clinical trial, we validated the performance of a respiratory triggered (RT) bSSFP cine sequence for evaluation of biventricular function. METHODS Our study included 23 asymptomatic healthy subjects and 60 consecutive patients from Institute A (n = 39) and Institute B (n = 21) referred for a clinically indicated CMR study. We implemented a RT sequence with a respiratory synchronized drive to steady state (SS) of bSSFP signal, before the commencement of image data acquisition with prospective cardiac arrhythmia rejection and retrospectively cardiac gated reconstruction in real-time. Left (LV) and right (RV) ventricular function and LV mass were evaluated by using RT-bSSFP and conventional BH-bSSFP sequences with one cardiac cycle for SS preparation keeping all the imaging parameters identical. The performance of the sequences was evaluated by using quantitative and semi-quantitative metrics. RESULTS Global LV and RV functional parameters and LV mass obtained from the RT-bSSFP and BH-bSSFP sequences were in good agreement. Quantitative metrics designed to capture fluctuation in SS signal intensity showed no significant difference between sequences. In addition, blood-to-myocardial contrast was nearly identical between sequences. The combined clinical score for image quality was excellent or good for 100% of cases with the BH-bSSFP and 83% of cases with the RT-bSSFP sequence. The de facto image acquisition time for RT-bSSFP was statistically significantly longer than that for conventional BH-bSSFP (7.9 ± 3.4 min vs. 5.1 ± 2.6 min). CONCLUSIONS Cine RT-bSSFP is an alternative for evaluating global biventricular function with contrast and spatio-temporal resolutions that are similar to those attained by using the BH-bSSFP sequence, albeit with a modest time penalty and a small reduction in image quality.
Collapse
Affiliation(s)
- Amol S Pednekar
- Department of Radiology, Texas Children’s Hospital, 6701 Fannin Street, Suite D470.09, Houston, TX 77030-2399 USA
| | - Hui Wang
- Philips Healthcare, Gainesville, FL USA
| | - Scott Flamm
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH USA
| | - Benjamin Y. Cheong
- Department of Radiology, Baylor St. Luke’s Medical Center, Houston, TX USA
| | - Raja Muthupillai
- Department of Radiology, Baylor St. Luke’s Medical Center, Houston, TX USA
| |
Collapse
|
14
|
Coristine AJ, Chaptinel J, Ginami G, Bonanno G, Coppo S, van Heeswijk RB, Piccini D, Stuber M. Improved respiratory self-navigation for 3D radial acquisitions through the use of a pencil-beam 2D-T 2 -prep for free-breathing, whole-heart coronary MRA. Magn Reson Med 2018; 79:1293-1303. [PMID: 28568961 PMCID: PMC5931377 DOI: 10.1002/mrm.26764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE In respiratory self-navigation (SN), signal from static structures, such as the chest wall, may complicate motion detection or introduce post-correction artefacts. Suppressing signal from superfluous tissues may therefore improve image quality. We thus test the hypothesis that SN whole-heart coronary magnetic resonance angiography (MRA) will benefit from an outer-volume suppressing 2D-T2 -Prep and present both phantom and in vivo results. METHODS A 2D-T2 -Prep and a conventional T2 -Prep were used prior to a free-breathing 3D-radial SN sequence. Both techniques were compared by imaging a home-built moving cardiac phantom and by performing coronary MRA in nine healthy volunteers. Reconstructions were performed using both a reference-based and a reference-independent approach to motion tracking, along with several coil combinations. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared, along with vessel sharpness (VS). RESULTS In phantoms, using the 2D-T2 -Prep increased SNR by 16% to 53% and mean VS by 8%; improved motion tracking precision was also achieved. In volunteers, SNR increased by an average of 29% to 33% in the blood pool and by 15% to 25% in the myocardium, depending on the choice of reconstruction coils and algorithm, and VS increased by 34%. CONCLUSION A 2D-T2 -Prep significantly improves image quality in both phantoms and volunteers when performing SN coronary MRA. Magn Reson Med 79:1293-1303, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- A. J. Coristine
- Department of BioMedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - J. Chaptinel
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - G. Ginami
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - G. Bonanno
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - S. Coppo
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - R. B. van Heeswijk
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - D. Piccini
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - M. Stuber
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM), Lausanne, VD, Switzerland
| |
Collapse
|
15
|
Abstract
Fast magnetic resonance imaging (MRI) led to the emergence of 'cine MRI' techniques, which enable the visualization of the beating heart and the assessment of cardiac morphology and dynamics. However, established cine MRI methods are not suitable for fetal heart imaging in utero, where anatomical structures are considerably smaller and recording an electrocardiogram signal for synchronizing MRI data acquisition is difficult. Here we present a framework to overcome these challenges. We use methods for image acquisition and reconstruction that robustly produce images with sufficient spatial and temporal resolution to detect the heart contractions of the fetus, enabling a retrospective gating of the images and thus the generation of images of the beating heart. To underline the potential of our approach, we acquired in utero images in six pregnant patients and compared these with their echocardiograms. We found good agreement in terms of diameter and area measurements, and low inter- and intra- observer variability. These results establish MRI as a reliable modality for fetal cardiac imaging, with a substantial potential for prenatal evaluation of congenital heart defects.
Collapse
|
16
|
Yerly J, Gubian D, Knebel JF, Schenk A, Chaptinel J, Ginami G, Stuber M. A phantom study to determine the theoretical accuracy and precision of radial MRI to measure cross-sectional area differences for the application of coronary endothelial function assessment. Magn Reson Med 2017; 79:108-120. [DOI: 10.1002/mrm.26646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Jérôme Yerly
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
- Center for Biomedical Imaging (CIBM); Lausanne Switzerland
| | - Danilo Gubian
- Direction des Constructions; Ingénierie, Technique et Sécurité (CIT-S), University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Jean-Francois Knebel
- Center for Biomedical Imaging (CIBM); Lausanne Switzerland
- Laboratory for Investigative Neurophysiology (The LINE); Departments of Radiology and Clinical Neurosciences, University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Ali Schenk
- Quality Management, Liebherr Machines Bulle SA; Bulle Switzerland
| | - Jerome Chaptinel
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Giulia Ginami
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Matthias Stuber
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
- Center for Biomedical Imaging (CIBM); Lausanne Switzerland
| |
Collapse
|