1
|
Park CKS, Warner NS, Kaza E, Sudhyadhom A. Optimization and validation of low-field MP2RAGE T 1 mapping on 0.35T MR-Linac: Toward adaptive dose painting with hypoxia biomarkers. Med Phys 2024; 51:8124-8140. [PMID: 39140821 DOI: 10.1002/mp.17353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Stereotactic MR-guided Adaptive Radiation Therapy (SMART) dose painting for hypoxia has potential to improve treatment outcomes, but clinical implementation on low-field MR-Linac faces substantial challenges due to dramatically lower signal-to-noise ratio (SNR) characteristics. While quantitative MRI and T1 mapping of hypoxia biomarkers show promise, T1-to-noise ratio (T1NR) optimization at low fields is paramount, particularly for the clinical implementation of oxygen-enhanced (OE)-MRI. The 3D Magnetization Prepared (2) Rapid Gradient Echo (MP2RAGE) sequence stands out for its ability to acquire homogeneous T1-weighted contrast images with simultaneous T1 mapping. PURPOSE To optimize MP2RAGE for low-field T1 mapping; conduct experimental validation in a ground-truth phantom; establish feasibility and reproducibility of low-field MP2RAGE acquisition and T1 mapping in healthy volunteers. METHODS The MP2RAGE optimization was performed to maximize the contrast-to-noise ratio (CNR) of T1 values in white matter (WM) and gray matter (GM) brain tissues at 0.35T. Low-field MP2RAGE images were acquired on a 0.35T MR-Linac (ViewRay MRIdian) using a multi-channel head coil. Validation of T1 mapping was performed with a ground-truth Eurospin phantom, containing inserts of known T1 values (400-850 ms), with one and two average (1A and 2A) MP2RAGE scans across four acquisition sessions, resulting in eight T1 maps. Mean (± SD) T1 relative error, T1NR, and intersession coefficient of variation (CV) were determined. Whole-brain MP2RAGE scans were acquired in 5 healthy volunteers across two sessions (A and B) and T1 maps were generated. Mean (± SD) T1 values for WM and GM were determined. Whole-brain T1 histogram analysis was performed, and reproducibility was determined with the CV between sessions. Voxel-by-voxel T1 difference maps were generated to evaluate 3D spatial variation. RESULTS Low-field MP2RAGE optimization resulted in parameters: MP2RAGETR of 3250 ms, inversion times (TI1/TI2) of 500/1200 ms, and flip angles (α1/α2) of 7/5°. Eurospin T1 maps exhibited a mean (± SD) relative error of 3.45% ± 1.30%, T1NR of 20.13 ± 5.31, and CV of 2.22% ± 0.67% across all inserts. Whole-brain MP2RAGE images showed high anatomical quality with clear tissue differentiation, resulting in mean (± SD) T1 values: 435.36 ± 10.01 ms for WM and 623.29 ± 14.64 ms for GM across subjects, showing excellent concordance with literature. Whole-brain T1 histograms showed high intrapatient and intersession reproducibility with characteristic intensity peaks consistent with voxel-level WM and GM T1 values. Reproducibility analysis revealed a CV of 0.46% ± 0.31% and 0.35% ± 0.18% for WM and GM, respectively. Voxel-by-voxel T1 difference maps show a normal 3D spatial distribution of noise in WM and GM. CONCLUSIONS Low-field MP2RAGE proved effective in generating accurate, reliable, and reproducible T1 maps with high T1NR in phantom studies and in vivo feasibility established in healthy volunteers. While current work is focused on refining the MP2RAGE protocol to enable clinically efficient OE-MRI, this study establishes a foundation for TOLD T1 mapping for hypoxia biomarkers. This advancement holds the potential to facilitate a paradigm shift toward MR-guided biological adaptation and dose painting by leveraging 3D hypoxic spatial distributions and improving outcomes in conventionally challenging-to-treat cancers.
Collapse
Affiliation(s)
- Claire Keun Sun Park
- Division of Physics and Biophysics, Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah Stanley Warner
- Division of Physics and Biophysics, Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Evangelia Kaza
- Division of Physics and Biophysics, Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Atchar Sudhyadhom
- Division of Physics and Biophysics, Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Poulin E, Lacroix F, Archambault L, Jutras JD. Commissioning and implementing a Quality Assurance program for dedicated radiation oncology MRI scanners. J Appl Clin Med Phys 2024; 25:e14185. [PMID: 38332556 DOI: 10.1002/acm2.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 02/10/2024] Open
Abstract
PURPOSE ACR and AAPM task group's guidelines addressing commissioning for dedicated MR simulators were recently published. The goal of the current paper is to present the authors' 2-year experience regarding the commissioning and introduction of a QA program based on these guidelines and an associated automated workflow. METHODS All mandatory commissioning tests suggested by AAPM report 284 were performed and results are reported for two MRI scanners (MAGNETOM Sola and Aera). Visual inspection, vendor clinical or service platform, third-party software, or in-house python-based code were used. Automated QA and data analysis was performed via vendor, in-house or third-party software. QATrack+ was used for QA data logging and storage. 3D geometric distortion, B0 inhomogeneity, EPI, and parallel imaging performance were evaluated. RESULTS Contrasting with AAPM report 284 recommendations, homogeneity and RF tests were performed monthly. The QA program allowed us to detect major failures over time (shimming, gradient calibration and RF interference). Automated QA, data analysis, and logging allowed fast ACR analysis daily and monthly QA to be performed in 3 h. On the Sola, the average distortion is 1 mm for imaging radii of 250 mm or less. For radii of up to 200 mm, the maximum, average (standard deviation) distortion is 1.2 and 0.4 mm (0.3 mm). Aera values are roughly double the Sola for radii up to 200 mm. EPI geometric distortion, ghosting ratio, and long-term stability were found to be under the maximum recommended values. Parallel imaging SNR ratio was stable and close to the theoretical value (ideal g-factor). No major failures were detected during commissioning. CONCLUSION An automated workflow and enhanced QA program allowed to automatically track machine and environmental changes over time and to detect periodic failures and errors that might otherwise have gone unnoticed. The Sola is more geometrically accurate, with a more homogenous B0 field than the Aera.
Collapse
Affiliation(s)
- Eric Poulin
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec-Université Laval, Québec, Canada
| | - Frederic Lacroix
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec-Université Laval, Québec, Canada
| | - Louis Archambault
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec-Université Laval, Québec, Canada
| | - Jean-David Jutras
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec-Université Laval, Québec, Canada
| |
Collapse
|
3
|
Chen S, Chu ML, Liang L, Liu YJ, Chen NK, Wang H, Juan CJ, Chang HC. Highly accelerated multi-shot intravoxel incoherent motion diffusion-weighted imaging in brain enabled by parametric POCS-based multiplexed sensitivity encoding. NMR IN BIOMEDICINE 2024; 37:e5063. [PMID: 37871617 DOI: 10.1002/nbm.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Recently, intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) has also been demonstrated as an imaging tool for applications in neurological and neurovascular diseases. However, the use of single-shot diffusion-weighted echo-planar imaging for IVIM DWI acquisition leads to suboptimal data quality: for instance, geometric distortion and deteriorated image quality at high spatial resolution. Although the recently commercialized multi-shot acquisition methods, such as multiplexed sensitivity encoding (MUSE), can attain high-resolution and high-quality DWI with signal-to-noise ratio (SNR) performance superior to that of the conventional parallel imaging method, the prolonged scan time associated with multi-shot acquisition is impractical for routine IVIM DWI. This study proposes an acquisition and reconstruction framework based on parametric-POCSMUSE to accelerate the four-shot IVIM DWI with 70% reduction of total scan time (13 min 8 s versus 4 min 8 s). First, the four-shot IVIM DWI scan with 17 b values was accelerated by acquiring only one segment per b value except for b values of 0 and 600 s/mm2 . Second, an IVIM-estimation scheme was integrated into the parametric-POCSMUSE to enable joint reconstruction of multi-b images from under-sampled four-shot IVIM DWI data. In vivo experiments on both healthy subjects and patients show that the proposed framework successfully produced multi-b DW images with significantly higher SNRs and lower reconstruction errors than did the conventional acceleration method based on parallel imaging. In addition, the IVIM quantitative maps estimated from the data produced by the proposed framework showed quality comparable to that of fully sampled MUSE-reconstructed images, suggesting that the proposed framework can enable highly accelerated multi-shot IVIM DWI without sacrificing data quality. In summary, the proposed framework can make multi-shot IVIM DWI feasible in a routine MRI examination, with reasonable scan time and improved geometric fidelity.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mei-Lan Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Liyuan Liang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yi-Jui Liu
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Chun-Jung Juan
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Multi-Scale Medical Robotics Center, Shatin, Hong Kong
| |
Collapse
|
4
|
Bachrata B, Bollmann S, Jin J, Tourell M, Dal-Bianco A, Trattnig S, Barth M, Ropele S, Enzinger C, Robinson SD. Super-resolution QSM in little or no additional time for imaging (NATIve) using 2D EPI imaging in 3 orthogonal planes. Neuroimage 2023; 283:120419. [PMID: 37871759 DOI: 10.1016/j.neuroimage.2023.120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5-10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm. The net acquisition time is 3 times the volume acquisition time of EPI or about 12 s, but the three volumes could also replace "dummy scans" in fMRI, making it feasible to acquire QSM in little or No Additional Time for Imaging (NATIve). NATIve QSM values agreed well with reference 3D GRE QSM in the basal ganglia in healthy subjects. In patients with multiple sclerosis, there was also a good agreement between the susceptibility values within lesions and control ROIs and all lesions which could be seen on 3D GRE QSMs could also be visualized on NATIve QSMs. The approach is faster than conventional 3D GRE by a factor of 25-50 and faster than 3D EPI by a factor of 3-5. As a 2D technique, NATIve QSM was shown to be much more robust to motion than the 3D GRE and 3D EPI, opening up the possibility of studying neurological diseases involving iron accumulation and demyelination in patients who find it difficult to lie still for long enough to acquire QSM data with conventional methods.
Collapse
Affiliation(s)
- Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria; Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | - Steffen Bollmann
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Jin Jin
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; Siemens Healthcare Pty Ltd, Australia
| | - Monique Tourell
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
| | - Markus Barth
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | | | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; Department of Neurology, Medical University of Graz, Austria.
| |
Collapse
|
5
|
Trotier AJ, Dilharreguy B, Anandra S, Corbin N, Lefrançois W, Ozenne V, Miraux S, Ribot EJ. The Compressed Sensing MP2RAGE as a Surrogate to the MPRAGE for Neuroimaging at 3 T. Invest Radiol 2022; 57:366-378. [PMID: 35030106 PMCID: PMC9390231 DOI: 10.1097/rli.0000000000000849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence provides quantitative T1 maps in addition to high-contrast morphological images. Advanced acceleration techniques such as compressed sensing (CS) allow its acquisition time to be compatible with clinical applications. To consider its routine use in future neuroimaging protocols, the repeatability of the segmented brain structures was evaluated and compared with the standard morphological sequence (magnetization-prepared rapid gradient echo [MPRAGE]). The repeatability of the T1 measurements was also assessed. MATERIALS AND METHODS Thirteen healthy volunteers were scanned either 3 or 4 times at several days of interval, on a 3 T clinical scanner, with the 2 sequences (CS-MP2RAGE and MPRAGE), set with the same spatial resolution (0.8-mm isotropic) and scan duration (6 minutes 21 seconds). The reconstruction time of the CS-MP2RAGE outputs (including the 2 echo images, the MP2RAGE image, and the T1 map) was 3 minutes 33 seconds, using an open-source in-house algorithm implemented in the Gadgetron framework.Both precision and variability of volume measurements obtained from CAT12 and VolBrain were assessed. The T1 accuracy and repeatability were measured on phantoms and on humans and were compared with literature.Volumes obtained from the CS-MP2RAGE and the MPRAGE images were compared using Student t tests (P < 0.05 was considered significant). RESULTS The CS-MP2RAGE acquisition provided morphological images of the same quality and higher contrasts than the standard MPRAGE images. Similar intravolunteer variabilities were obtained with the CS-MP2RAGE and the MPRAGE segmentations. In addition, high-resolution T1 maps were obtained from the CS-MP2RAGE. T1 times of white and gray matters and several deep gray nuclei are consistent with the literature and show very low variability (<1%). CONCLUSIONS The CS-MP2RAGE can be used in future protocols to rapidly obtain morphological images and quantitative T1 maps in 3-dimensions while maintaining high repeatability in volumetry and relaxation times.
Collapse
Affiliation(s)
- Aurélien J. Trotier
- From the Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Université de Bordeaux
| | - Bixente Dilharreguy
- Biomedical Imaging Facility (pIBIO), UMS3767, CNRS/Université de Bordeaux, Bordeaux, France
| | - Serge Anandra
- Biomedical Imaging Facility (pIBIO), UMS3767, CNRS/Université de Bordeaux, Bordeaux, France
| | - Nadège Corbin
- From the Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Université de Bordeaux
- UCL Queen Square Institute of Neurology, Wellcome Centre for Human Neuroimaging, University College of London, London, United Kingdom
| | - William Lefrançois
- From the Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Université de Bordeaux
| | - Valery Ozenne
- From the Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Université de Bordeaux
| | - Sylvain Miraux
- From the Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Université de Bordeaux
| | - Emeline J. Ribot
- From the Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Université de Bordeaux
| |
Collapse
|
6
|
Eckstein K, Bachrata B, Hangel G, Widhalm G, Enzinger C, Barth M, Trattnig S, Robinson SD. Improved susceptibility weighted imaging at ultra-high field using bipolar multi-echo acquisition and optimized image processing: CLEAR-SWI. Neuroimage 2021; 237:118175. [PMID: 34000407 PMCID: PMC7612087 DOI: 10.1016/j.neuroimage.2021.118175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose Susceptibility Weighted Imaging (SWI) has become established in the clinical investigation of stroke, microbleeds, tumor vascularization, calcification and iron deposition, but suffers from a number of shortcomings and artefacts. The goal of this study was to reduce the sensitivity of SWI to strong B1 and B0 inhomogeneities at ultra-high field to generate homogeneous images with increased contrast and free of common artefacts. All steps in SWI processing have been addressed −coil combination, phase unwrapping, image combination over echoes, phase filtering and homogeneity correction −and applied to an efficient bipolar multi-echo acquisition to substantially improve the quality of SWI. Principal results Our findings regarding the optimal individual processing steps lead us to propose a Contrast-weighted, Laplace-unwrapped, bipolar multi-Echo, ASPIRE-combined, homogeneous, improved Resolution SWI, or CLEAR-SWI. CLEAR-SWI was compared to two other multi-echo SWI methods and standard, single-echo SWI with the same acquisition time at 7 T in 10 healthy volunteers and with single-echo SWI in 13 patients with brain tumors. CLEAR-SWI had improved contrast-to-noise and homogeneity, reduced signal dropout and was not compromised by the artefacts which affected standard SWI in 10 out of 13 cases close to tumors (as assessed by expert raters), as well as generating T2* maps and phase images which can be used for Quantitative Susceptibility Mapping. In a comparison with other multi-echo SWI methods, CLEAR-SWI had the fewest artefacts, highest SNR and generally higher contrast-to-noise. Major conclusions CLEAR-SWI eliminates the artefacts common in standard, single-echo SWI, reduces signal dropouts and improves image homogeneity and contrast-to-noise. Applied clinically, in a study of brain tumor patients, CLEAR-SWI was free of the artefacts which affected standard, single-echo SWI.
Collapse
Affiliation(s)
- Korbinian Eckstein
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
| | - Gilbert Hangel
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | | | - Markus Barth
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Australia
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria; Department of Neurology, Medical University of Graz, Graz, Austria; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Dong M, Sun Q, Yu Q, Tao X, Yang C, Qiu W. Determining the optimal magnetic resonance imaging sequences for the efficient diagnosis of temporomandibular joint disorders. Quant Imaging Med Surg 2021; 11:1343-1353. [PMID: 33816173 DOI: 10.21037/qims-20-67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To compare and analyze nine MRI sequences of the TMJ and determine the optimum sequence for the rapid diagnosis of TMDs so as to develop new clinical guidelines. Methods Twenty young volunteers (a total of 40 joints) aged 22-26 years were recruited. Three basic sequences, T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and proton density-weighted imaging (PDWI), together with three positions, oblique sagittal (OSag) with closed mouth, oblique coronal (OCor) with closed mouth, and OSag with opened mouth, were selected in combination for testing. In the OCor position, four regions of interest (ROIs), the condyle (C), the disc (D), the disc outside (DO), and fat (F), were analyzed. For the OSag with closed mouth position and the OSag with opened mouth position sequences, the four ROIs were the condyle (C), the disc (D), the disc ahead (DA), and the disc rear (DR). The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal intensity ratio (SIR) were calculated and analyzed using independent sample t-tests and one-way analysis of variance. Two senior radiologists scored the images of the nine MRI sequences subjectively and selected three optimal sequences. Using the three selected sequences, 1479 patients with anterior disc displacement with reduction (ADDwR) or anterior disk displacement without reduction (ADDwoR) were evaluated by comparing the preoperative TMJ MRI with the outcomes of the maxillofacial arthroscopy or open surgery. Results The T1WI sequence showed the highest SNR while the T2WI group had the lowest SNR. The ROIs of the T2WI group had the highest CNR and SIR values in the OCor and OSag sequences. In the OCor sequence, the value for the SIR F/DO group was higher than the SIR C/D and SIR C/DO values. Using subjective analysis to evaluate the quality of the scans, the highest total scores were obtained for the OSag T2WI with opened mouth and OSag PDWI with closed mouth sequences. From the objective and subjective analysis, the three optimal sequences selected were OSag PDWI, OCor T2WI with closed mouth, and OSag T2WI with opened mouth. In patients with anterior disc displacement, the comparisons of the surgery and the selected MRI sequences indicated that the total diagnostic accuracy of the MRI was 96.3% (1,425/1,479 cases). For patients with ADDwoR, the diagnostic accuracy was 98.5% (1,372/1,393 cases), and for those with ADDwR it was 61.6% (53/86 cases). There were significant differences between the ADDwoR and ADDwR groups (χ2=312.92, P<0.01). Conclusions The three optimal MRI sequences for the rapid and efficient diagnosis of TMD were determined to be OSag PDWI, OCor T2WI with closed mouth, and OSag T2WI with opened mouth.
Collapse
Affiliation(s)
- Minjun Dong
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Sun
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Yu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Key Lab of Stomatology, Shanghai, China
| | - Weiliu Qiu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Key Lab of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Voelker MN, Kraff O, Goerke S, Laun FB, Hanspach J, Pine KJ, Ehses P, Zaiss M, Liebert A, Straub S, Eckstein K, Robinson S, Nagel AN, Stefanescu MR, Wollrab A, Klix S, Felder J, Hock M, Bosch D, Weiskopf N, Speck O, Ladd ME, Quick HH. The traveling heads 2.0: Multicenter reproducibility of quantitative imaging methods at 7 Tesla. Neuroimage 2021; 232:117910. [PMID: 33647497 DOI: 10.1016/j.neuroimage.2021.117910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECT This study evaluates inter-site and intra-site reproducibility at ten different 7 T sites for quantitative brain imaging. MATERIAL AND METHODS Two subjects - termed the "traveling heads" - were imaged at ten different 7 T sites with a harmonized quantitative brain MR imaging protocol. In conjunction with the system calibration, MP2RAGE, QSM, CEST and multi-parametric mapping/relaxometry were examined. RESULTS Quantitative measurements with MP2RAGE showed very high reproducibility across sites and subjects, and errors were in concordance with previous results and other field strengths. QSM had high inter-site reproducibility for relevant subcortical volumes. CEST imaging revealed systematic differences between the sites, but reproducibility was comparable to results in the literature. Relaxometry had also very high agreement between sites, but due to the high sensitivity, differences caused by different applications of the B1 calibration of the two RF coil types used were observed. CONCLUSION Our results show that quantitative brain imaging can be performed with high reproducibility at 7 T and with similar reliability as found at 3 T for multicenter studies of the supratentorial brain.
Collapse
Affiliation(s)
- Maximilian N Voelker
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Moritz Zaiss
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andrzej Liebert
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sina Straub
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Korbinian Eckstein
- High Field MR Center, Department for Biomedical Imaging and Image guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Simon Robinson
- High Field MR Center, Department for Biomedical Imaging and Image guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Armin N Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria R Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Astrid Wollrab
- Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabrina Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Michael Hock
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Dario Bosch
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Oliver Speck
- Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Yan S, Qian T, Maréchal B, Kober T, Zhang X, Zhu J, Lei J, Li M, Jin Z. Test-retest variability of brain morphometry analysis: an investigation of sequence and coil effects. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:12. [PMID: 32055603 DOI: 10.21037/atm.2019.11.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Precise and reliable brain morphometry analysis is critical for clinical and research purposes. The magnetization-prepared rapid gradient echo (MPRAGE), multi-echo MPRAGE (MEMPRAGE) and magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) sequences have all been used to acquire brain structural images, but it is unclear which of these sequences is the most suitable for brain morphometry and whether the number of coil channels (20 or 32) affects scan precision. This study aimed to assess the impact of T1-weighted image acquisition variables (sequence and head coil) on the repeatability of resultant automated volumetric measurements. Methods Twenty-four healthy volunteers underwent back-to-back scanning protocols with three sequences and two different coils (i.e., six scanning conditions in total) presented in a randomized order in a single session. MorphoBox prototype and FreeSurfer were used for brain segmentation. Brain structures were divided into cortical and subcortical regions for more precise analysis. The acquired volume and thickness values were used to calculate test-retest variability (TRV) values. TRV values from the six different combinations were compared for total brain structures, total cortical structures, total subcortical structures, and every single structure. Results The median TRV value for all brain regions was 1.23% with MorphoBox and 3.14% with FreeSurfer. When using FreeSurfer results to compare the six combinations, for total brain structures volume and total cortical structures volume and thickness, the MEMPRAGE-32 channel combination showed significantly lower TRV values than the others (P<0.01). Similar results were observed with MorphoBox. For total subcortical structures, the MP2RAGE-32 channel combination showed the lowest TRV values with both MorphoBox (lower about 0.01% to 0.17%) and FreeSurfer analyses (lower about 0.02% to 0.37%). Conclusions TRV values were generally low, indicating generally high reliability for every region. The MEMPRAGE sequence was the most reliable of the three sequences for total brain structures and cortical structures. However, MP2RAGE was the most reliable for subcortical structures. The 32-channel coil showed better repeatability results than the 20-channel coil.
Collapse
Affiliation(s)
- Shuang Yan
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tianyi Qian
- Department of MR Collaboration, Siemens Healthcare Ltd., Beijing 100102, China
| | - Bénédicte Maréchal
- Department of Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Department of Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xianchang Zhang
- Department of MR Collaboration, Siemens Healthcare Ltd., Beijing 100102, China
| | - Jinxia Zhu
- Department of MR Collaboration, Siemens Healthcare Ltd., Beijing 100102, China
| | - Jing Lei
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mingli Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
10
|
Extracting more for less: multi‐echo MP2RAGE for simultaneous T
1
‐weighted imaging, T
1
mapping, mapping, SWI, and QSM from a single acquisition. Magn Reson Med 2019; 83:1178-1191. [DOI: 10.1002/mrm.27975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
|
11
|
Maunder A, Rao M, Robb F, Wild JM. Optimization of steady-state free precession MRI for lung ventilation imaging with 19 F C 3 F 8 at 1.5T and 3T. Magn Reson Med 2019; 81:1130-1142. [PMID: 30387911 PMCID: PMC6491987 DOI: 10.1002/mrm.27479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To optimize 19 F imaging pulse sequences for perfluoropropane (C3 F8 ) gas human lung ventilation MRI considering intrinsic in vivo relaxation parameters at both 1.5T and 3T. METHODS Optimization of the imaging parameters for both 3D spoiled gradient (SPGR) and steady-state free precession (SSFP) 19 F imaging sequences with inhaled 79% C3 F8% and 21% oxygen was performed. Phantom measurements were used to validate simulations of SNR. In vivo parameter mapping and sequence optimization and comparison was performed by imaging the lungs of a healthy adult volunteer. T1 and T2* mapping was performed in vivo to optimize sequence parameters for in vivo lung MRI. The performance of SSFP and SPGR was then evaluated in vivo at 1.5T and 3T. RESULTS The in vivo T2* of C3 F8 was shown to be dependent upon lung inflation level (2.04 ms ± 36% for residual volume and 3.14 ms ± 28% for total lung capacity measured at 3T), with lower T2* observed near the susceptibility interfaces of the diaphragm and around pulmonary blood vessels. Simulation and phantom measurements indicate that a factor of ~2-3 higher SNR can be achieved with SSFP when compared with optimized SPGR. In vivo lung imaging showed a 1.7 factor of improvement in SNR achieved at 1.5T, while the theoretical improvement at 3T was not attained due to experimental SAR constraints, shorter in vivo T1 , and B0 inhomogeneity. CONCLUSION SSFP imaging provides increased SNR in lung ventilation imaging of C3 F8 demonstrated at 1.5T with optimized SSFP similar to the SNR that can be obtained at 3T with optimized SPGR.
Collapse
Affiliation(s)
- Adam Maunder
- POLARIS, Unit of Academic Radiology, Department of IICDUniversity of SheffieldSheffieldUnited Kingdom
| | - Madhwesha Rao
- POLARIS, Unit of Academic Radiology, Department of IICDUniversity of SheffieldSheffieldUnited Kingdom
| | - Fraser Robb
- POLARIS, Unit of Academic Radiology, Department of IICDUniversity of SheffieldSheffieldUnited Kingdom
- GE HealthcareAuroraOhio
| | - Jim M. Wild
- POLARIS, Unit of Academic Radiology, Department of IICDUniversity of SheffieldSheffieldUnited Kingdom
- Insigneo Institute for In silico medicineSheffieldUnited Kingdom
| |
Collapse
|
12
|
Cabana J, Gilbert G, Létourneau‐Guillon L, Safi D, Rouleau I, Cossette P, Nguyen DK. Effects of SYN1 Q555X mutation on cortical gray matter microstructure. Hum Brain Mapp 2018; 39:3428-3448. [PMID: 29671924 PMCID: PMC6866302 DOI: 10.1002/hbm.24186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
A new Q555X mutation on the SYN1 gene was recently found in several members of a family segregating dyslexia, epilepsy, and autism spectrum disorder. To describe the effects of this mutation on cortical gray matter microstructure, we performed a surface-based group study using novel diffusion and quantitative multiparametric imaging on 13 SYN1Q555X mutation carriers and 13 age- and sex-matched controls. Specifically, diffusion kurtosis imaging (DKI) and neurite orientation and dispersion and density imaging (NODDI) were used to analyze multi-shell diffusion data and obtain parametric maps sensitive to tissue structure, while quantitative metrics sensitive to tissue composition (T1, T2* and relative proton density [PD]) were obtained from a multi-echo variable flip angle FLASH acquisition. Results showed significant microstructural alterations in several regions usually involved in oral and written language as well as dyslexia. The most significant changes in these regions were lowered mean diffusivity and increased fractional anisotropy. This study is, to our knowledge, the first to successfully use diffusion imaging and multiparametric mapping to detect cortical anomalies in a group of subjects with a well-defined genotype linked to language impairments, epilepsy and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Jean‐François Cabana
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
| | - Guillaume Gilbert
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Philips Healthcare CanadaMarkhamQuébec
| | - Laurent Létourneau‐Guillon
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| | - Dima Safi
- Université du Québec à Trois‐Rivières (UQTR), Trois‐RivièresQuébec
- Groupe de recherche CogNAC (UQTR), Trois‐RivièresQuébec
| | - Isabelle Rouleau
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
- Université du Québec à Montréal (UQAM), MontréalQuébec
| | - Patrick Cossette
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| | - Dang Khoa Nguyen
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| |
Collapse
|