1
|
Cui J, Hollingsworth NA, Wright SM. A Review of Current Control and Decoupling Methods for MRI Transmit Arrays. IEEE Rev Biomed Eng 2025; 18:388-400. [PMID: 38194402 DOI: 10.1109/rbme.2024.3351713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The shortened radio frequency wavelength in high field MRI makes it challenging to create a uniform excitation pattern over a large field of view, or to achieve satisfactory transmission efficiency at a local area. Transmit arrays are one tool that can be used to create a desired excitation pattern. To be effective, it is important to be able to control the current amplitude and phase at the array elements. The control of the current may get complicated by the coil coupling in many applications. Various methods have been proposed to achieve current control, either in the presence of coupling, or by effectively decouple the array elements. These methods are applied in different subsystems in the RF transmission chain: coil; coil-amplifier interface; amplifier, etc. In this review paper, we provide an overview of the various approaches and aspects of transmit current control and decoupling.
Collapse
|
2
|
Nurzed B, Kuehne A, Aigner CS, Schmitter S, Niendorf T, Eigentler TW. Radiofrequency antenna concepts for human cardiac MR at 14.0 T. MAGMA (NEW YORK, N.Y.) 2023; 36:257-277. [PMID: 36920549 PMCID: PMC10140016 DOI: 10.1007/s10334-023-01075-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE To examine the feasibility of human cardiac MR (CMR) at 14.0 T using high-density radiofrequency (RF) dipole transceiver arrays in conjunction with static and dynamic parallel transmission (pTx). MATERIALS AND METHODS RF arrays comprised of self-grounded bow-tie (SGBT) antennas, bow-tie (BT) antennas, or fractionated dipole (FD) antennas were used in this simulation study. Static and dynamic pTx were applied to enhance transmission field (B1+) uniformity and efficiency in the heart of the human voxel model. B1+ distribution and maximum specific absorption rate averaged over 10 g tissue (SAR10g) were examined at 7.0 T and 14.0 T. RESULTS At 14.0 T static pTx revealed a minimum B1+ROI efficiency of 0.91 μT/√kW (SGBT), 0.73 μT/√kW (BT), and 0.56 μT/√kW (FD) and maximum SAR10g of 4.24 W/kg, 1.45 W/kg, and 2.04 W/kg. Dynamic pTx with 8 kT points indicate a balance between B1+ROI homogeneity (coefficient of variation < 14%) and efficiency (minimum B1+ROI > 1.11 µT/√kW) at 14.0 T with a maximum SAR10g < 5.25 W/kg. DISCUSSION MRI of the human heart at 14.0 T is feasible from an electrodynamic and theoretical standpoint, provided that multi-channel high-density antennas are arranged accordingly. These findings provide a technical foundation for further explorations into CMR at 14.0 T.
Collapse
Affiliation(s)
- Bilguun Nurzed
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
| | | | | | | | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany.
- MRI.TOOLS GmbH, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
- Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Alkandari D, Bosshard JC, Huang CH, Wright SM. Multiple slot modules for high field magnetic resonance imaging array coils. Magn Reson Med 2023; 89:2485-2498. [PMID: 36763854 DOI: 10.1002/mrm.29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE Mitigating coupling effects between coil elements represents a continuing challenge. Here, we present a 16-bowtie slot volume coil arranged in eight independent dual-slot modules without the use of any decoupling circuits. METHODS Two electrically short "bowtie" slot antennas were used to form a "module." A bowtie configuration was chosen because electromagnetic modeling results show that bowtie slots exhibit improved B 1 + P in $$ \frac{B_1^{+}}{\sqrt{P_{in}}} $$ efficiency when compared to thin rectangular slots. An eight-module volume coil was evaluated through electromagnetic modeling, bench tests, and MRI experiments at 4.7 T. RESULTS Bench tests indicate that worst-case coupling between modules did not exceed -14.5 dB. MR images demonstrate well-localized patterns about single excited modules confirming the low coupling between modules. Homogeneous MR images were acquired from a synthesized quadrature birdcage transmit mode. MRI experiments show that the RF power requirements for the proposed coil are 9.2 times more than a birdcage coil. Whereas from simulations performed to assess the proposed coil losses, the total power dissipated in the phantom was 1.1 times more for the birdcage. Simulation results at 7 T reveal an equivalent B1 + homogeneity when compared with an eight-dipole coil. CONCLUSION Although exhibiting higher RF power requirements, as a transmit coil when the power availability is not a restriction, the inherently low coupling between electrically short slots should enable the use of many slot elements around the imaging volume. The slot module described in this paper should be useful in the design of multi-channel transmit coils.
Collapse
Affiliation(s)
- Dheyaa Alkandari
- Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait
| | - John C Bosshard
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Chung-Huan Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Liu Y, Wang Q, Liu F. A hybrid FDTD/MoM algorithm with a non-uniform grid for MRI RF coil design. Magn Reson Imaging 2023; 96:75-84. [PMID: 36265697 DOI: 10.1016/j.mri.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/05/2022]
Abstract
In ultra-high-field (UHF) magnetic resonance imaging (MRI) applications, the design and analysis of high-frequency radio frequency (RF) coils requires full-wave electromagnetic (EM) methods that can handle complex field-tissue interactions. Using a Huygens' equivalent surface, the Method of Moments (MoM) and the Finite-Difference Time-Domain (FDTD) algorithm can be combined to accurately model the high-frequency RF coils. In previous research, a uniform FDTD mesh structure was considered, providing a compromised solution for coil-tissue interactions. This paper proposes a hybrid FDTD/MoM algorithm with non-uniform meshes. The fine mesh domain is set at the Huygens' surface, and the other domain uses coarse meshes. The proposed algorithms are strictly validated, and their computational performance is compared against conventional methods. Results show that the new algorithm can improve the calculation efficiency without losing accuracy. Specifically, compared with the uniform FDTD method, the numerical difference between both hybrid methods remains at 3.2%. Still, the calculation time of the non-uniform grid algorithm is reduced by 64.2%, demonstrating the effectiveness of the new algorithm for modeling RF coils for UHF-MRI applications.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuliang Wang
- Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, Brisbane, Qld. 4072, Australia
| |
Collapse
|
5
|
Gokyar S, Voss HU, Taracila V, Robb FJL, Bernico M, Kelley D, Ballon DJ, Winkler SA. A pathway towards a two-dimensional, bore-mounted, volume body coil concept for ultra high-field magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4802. [PMID: 35834176 DOI: 10.1002/nbm.4802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Lack of a body-sized, bore-mounted, radiofrequency (RF) body coil for ultrahigh field (UHF) magnetic resonance imaging (MRI) is one of the major drawbacks of UHF, hampering the clinical potential of the technology. Transmit field (B1 ) nonuniformity and low specific absorption rate (SAR) efficiencies in UHF MRI are two challenges to be overcome. To address these problems, and ultimately provide a pathway for the full clinical potential of the modality, we have designed and simulated two-dimensional cylindrical high-pass ladder (2D c-HPL) architectures for clinical bore-size dimensions, and demonstrated a simplified proof of concept with a head-sized prototype at 7 T. A new dispersion relation has been derived and electromagnetic simulations were used to verify coil modes. The coefficient of variation (CV) for brain, cerebellum, heart, and prostate tissues after B1 + shimming in silico is reported and compared with previous works. Three prototypes were designed in simulation: a head-sized, body-sized, and long body-sized coil. The head-sized coil showed a CV of 12.3%, a B1 + efficiency of 1.33 μT/√W, and a SAR efficiency of 2.14 μT/√(W/kg) for brain simulations. The body-sized 2D c-HPL coil was compared with same-sized transverse electromagnetic (TEM) and birdcage coils in silico with a four-port circularly polarized mode excitation. Improved B1 + uniformity (26.9%) and SAR efficiency (16% and 50% better than birdcage and TEM coils, respectively) in spherical phantoms was observed. We achieved a CV of 12.3%, 4.9%, 16.7%, and 2.8% for the brain, cerebellum, heart, and prostate, respectively. Preliminary imaging results for the head-sized coil show good agreement between simulation and experiment. Extending the 1D birdcage coil concept to 2D c-HPLs provides improved B1 + uniformity and SAR efficiency.
Collapse
Affiliation(s)
- Sayim Gokyar
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Henning U Voss
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | | | | | | | | | - Douglas J Ballon
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
6
|
Seo JH, Jo YS, Oh CH, Chung JY. A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging. SENSORS (BASEL, SWITZERLAND) 2022; 22:8968. [PMID: 36433565 PMCID: PMC9694602 DOI: 10.3390/s22228968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In ultrahigh-field (UHF) magnetic resonance imaging (MRI) system, the RF power required to excite the nuclei of the target object increases. As the strength of the main magnetic field (B0 field) increases, the improvement of the RF transmit field (B1+ field) efficiency and receive field (B1- field) sensitivity of radio-frequency (RF) coils is essential to reduce their specific absorption rate and power deposition in UHF MRI. To address these problems, we previously proposed a method to simultaneously improve the B1+ field efficiency and B1- field sensitivity of 16-leg bandpass birdcage RF coils (BP-BC RF coils) by combining a multichannel wireless RF element (MCWE) and segmented cylindrical high-permittivity material (scHPM) comprising 16 elements in 7.0 T MRI. In this work, we further improved the performance of transmit/receive RF coils. A new combination of RF coil with wireless element and HPM was proposed by comparing the BP-BC RF coil with the MCWE and the scHPM proposed in the previous study and the multichannel RF coils with a birdcage RF coil-type wireless element (BCWE) and the scHPM proposed in this study. The proposed 16-ch RF coils with the BCWE and scHPM provided excellent B1+ field efficiency and B1- field sensitivity improvement.
Collapse
Affiliation(s)
- Jeung-Hoon Seo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Republic of Korea
| | - Young-Seung Jo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Republic of Korea
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Chang-Hyun Oh
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
7
|
Woo MK, DelaBarre L, Waks M, Lagore R, Radder J, Jungst S, Kang CK, Ugurbil K, Adriany G. A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2022; 21:1857-1861. [PMID: 37020750 PMCID: PMC10072856 DOI: 10.1109/lawp.2022.3183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B1 + efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B1 + and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B1 + efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B1 + near the superior region of the brain for human brain imaging.
Collapse
Affiliation(s)
- Myung Kyun Woo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44005, South Korea
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Matt Waks
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 1342, South Korea
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
8
|
A Comparative Study of Birdcage RF Coil Configurations for Ultra-High Field Magnetic Resonance Imaging. SENSORS 2022; 22:s22051741. [PMID: 35270889 PMCID: PMC8914904 DOI: 10.3390/s22051741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022]
Abstract
Improvements in transmission and reception sensitivities of radiofrequency (RF) coils used in ultra-high field (UHF) magnetic resonance imaging (MRI) are needed to reduce specific absorption rates (SAR) and RF power deposition, albeit without applying high-power RF. Here, we propose a method to simultaneously improve transmission efficiency and reception sensitivity of a band-pass birdcage RF coil (BP-BC RF coil) by combining a multi-channel wireless RF element (MCWE) with a high permittivity material (HPM) in a 7.0 T MRI. Electromagnetic field (EM-field) simulations, performed using two types of phantoms, viz., a cylindrical phantom filled with oil and a human head model, were used to compare the effects of MCWE and HPM on BP-BC RF coils. EM-fields were calculated using the finite difference time-domain (FDTD) method and analyzed using Matlab software. Next, to improve RF transmission efficiency, we compared two HPM structures, namely, a hollow cylinder shape HPM (hcHPM) and segmented cylinder shape HPM (scHPM). The scHPM and MCWE model comprised 16 elements (16-rad BP-BC RF coil) and this coil configuration demonstrated superior RF transmission efficiency and reception sensitivity along with an acceptable SAR. We expect wider clinical application of this combination in 7.0 T MRIs, which were recently approved by the United States Food and Drug Administration.
Collapse
|
9
|
Eigentler TW, Kuehne A, Boehmert L, Dietrich S, Els A, Waiczies H, Niendorf T. 32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0T. Magn Reson Med 2021; 86:2862-2879. [PMID: 34169546 DOI: 10.1002/mrm.28885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Design, implementation, evaluation, and application of a 32-channel Self-Grounded Bow-Tie (SGBT) transceiver array for cardiac MR (CMR) at 7.0T. METHODS The array consists of 32 compact SGBT building blocks. Transmission field ( B 1 + ) shimming and radiofrequency safety assessment were performed with numerical simulations and benchmarked against phantom experiments. In vivo B 1 + efficiency mapping was conducted with actual flip angle imaging. The array's applicability for accelerated high spatial resolution 2D FLASH CINE imaging of the heart was examined in a volunteer study (n = 7). RESULTS B 1 + shimming provided a uniform field distribution suitable for female and male subjects. Phantom studies demonstrated an excellent agreement between simulated and measured B 1 + efficiency maps (7% mean difference). The SGBT array afforded a spatial resolution of (0.8 × 0.8 × 2.5) mm3 for 2D CINE FLASH which is by a factor of 12 superior to standardized cardiovascular MR (CMR) protocols. The density of the SGBT array supports 1D acceleration of up to R = 4 (mean signal-to-noise ratio (whole heart) ≥ 16.7, mean contrast-to-noise ratio ≥ 13.5) without impairing image quality significantly. CONCLUSION The compact SGBT building block facilitates a modular high-density array that supports accelerated and high spatial resolution CMR at 7.0T. The array provides a technological basis for future clinical assessment of parallel transmission techniques.
Collapse
Affiliation(s)
- Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
10
|
Solomakha G, Svejda JT, van Leeuwen C, Rennings A, Raaijmakers AJ, Glybovski S, Erni D. A self-matched leaky-wave antenna for ultrahigh-field magnetic resonance imaging with low specific absorption rate. Nat Commun 2021; 12:455. [PMID: 33469005 PMCID: PMC7815766 DOI: 10.1038/s41467-020-20708-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
The technology of magnetic resonance imaging is developing towards higher magnetic fields to improve resolution and contrast. However, whole-body imaging at 7 T or even higher flux densities remains challenging due to wave interference, tissue inhomogeneities, and high RF power deposition. Nowadays, proper RF excitation of a human body in prostate and cardiac MRI is only possible to achieve by using phased arrays of antennas attached to the body (so-called surface coils). Due to safety concerns, the design of such coils aims at minimization of the local specific absorption rate (SAR), keeping the highest possible RF signal in the region of interest. Most previously demonstrated approaches were based on resonant structures such as e.g. dipoles, capacitively-loaded loops, TEM-line sections. In this study, we show that there is a better compromise between the transmit signal [Formula: see text] and the local SAR using non-resonant surface coils generating a low electric field in the proximity of their conductors. With this aim, we propose and experimentally demonstrate a leaky-wave antenna implemented as a periodically-slotted microstrip transmission line. Due to its non-resonant radiation, it induces only slightly over half the peak local SAR compared to a state-of-the-art dipole antenna but has the same transmit efficiency in prostate imaging at 7 T. Unlike other antennas for MRI, the leaky-wave antenna does not require to be tuned and matched when placed on a body, which makes it easy-to-use in prostate imaging at 7 T MRI.
Collapse
Affiliation(s)
- G Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - J T Svejda
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and CENIDE - Center for Nanointegration Duisburg-Essen, Duisburg, Germany
| | - C van Leeuwen
- Imaging Division, UMC Utrecht, Utrecht, The Netherlands
| | - A Rennings
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and CENIDE - Center for Nanointegration Duisburg-Essen, Duisburg, Germany
| | - A J Raaijmakers
- Imaging Division, UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - S Glybovski
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia.
| | - D Erni
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and CENIDE - Center for Nanointegration Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
11
|
Sun C, Patel K, Wilcox M, Dimitrov IE, Cheshkov S, McDougall M, Wright SM. A retrofit to enable dynamic B 1 + steering for transmit arrays without multiple amplifiers. Magn Reson Med 2020; 85:3497-3509. [PMID: 33314274 DOI: 10.1002/mrm.28632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE B 1 + shimming is an important method for mitigating B1 inhomogeneity in high-field MRI. Using independent power amplifiers for each transmit (Tx) element is the preferred method for B1 shimming but comes with a high cost. Conversely, the simplest approach to control a Tx array is by using coaxial cables of varying length in the Tx chain, but this approach is cumbersome and impractical for dynamic shimming. In this article, a system is described that enables dynamic, phase-only, eight-channel B 1 + steering on a 7T MR scanner with only two power amplifiers. METHODS Power dividers were utilized to first split the existing two-channel Tx signal into eight channels. Digitally controlled phase shifters on each channel were designed to provide independent phase shifts with a resolution of 22.5° (from 0°, 22.5° … 337.5°). To validate the system, an eight-channel body dipole array was simulated and constructed for bench and 7T imaging and evaluation. RESULTS The phase conjugate B 1 + steering method was employed at three different spatial positions in simulation, bench measurements, and scanner measurements-all with matching results. At the desired points, regions with homogenous B 1 + were generated, indicating good Tx steering to the selected region. CONCLUSION The described system can be used as a simple retrofit to existing hardware to provide phase control while avoiding the need to manually switch cables and without requiring independent power amplifiers for each channel, thus demonstrating the ability to perform dynamic B 1 + shimming with increased degrees of freedom but without significantly increased hardware cost.
Collapse
Affiliation(s)
- Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Kevin Patel
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Matthew Wilcox
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ivan E Dimitrov
- Philips Healthcare, Gainesville, Florida, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sergey Cheshkov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary McDougall
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Steensma B, van de Moortele PF, Ertürk A, Grant A, Adriany G, Luijten P, Klomp D, van den Berg N, Metzger G, Raaijmakers A. Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR. Magn Reson Med 2020; 84:2885-2896. [PMID: 32367560 PMCID: PMC7496175 DOI: 10.1002/mrm.28297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Purpose To improve imaging performance for body MRI with a local transmit array at 10.5T, the geometry of a dipole antenna was optimized to achieve lower peak specific absorption rate (SAR) levels and a more uniform transmit profile. Methods Electromagnetic simulations on a phantom were used to evaluate the SAR and
B1+‐performance of different dipole antenna geometries. The best performing antenna (the snake antenna) was simulated on human models in a 12‐channel array configuration for safety assessment and for comparison to a previous antenna design. This 12‐channel array was constructed after which electromagnetic simulations were validated by
B1+‐maps and temperature measurements. After obtaining approval by the Food and Drug Administration to scan with the snake antenna array, in vivo imaging was performed on 2 volunteers. Results Simulation results on a phantom indicate a lower SAR and a higher transmit efficiency for the snake antenna compared to the fractionated dipole array. Similar results are found on a human body model: when comparing the trade‐off between uniformity and peak SAR, the snake antenna performs better for all imaging targets. Simulations and measurements are in good agreement. Preliminary imaging result were acquired in 2 volunteers with the 12‐channel snake antenna array. Conclusion By optimizing the geometry of a dipole antenna, peak SAR levels were lowered while achieving a more uniform transmit field as demonstrated in simulations on a phantom and a human body model. The array was constructed, validated, and successfully used to image 2 individuals at 10.5T.
Collapse
Affiliation(s)
- Bart Steensma
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Restorative Therapies Group, Medtronic, Minneapolis, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Peter Luijten
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nico van den Berg
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gregory Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Alexander Raaijmakers
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
13
|
Maunder A, Rao M, Robb F, Wild JM. An 8-element Tx/Rx array utilizing MEMS detuning combined with 6 Rx loops for 19 F and 1 H lung imaging at 1.5T. Magn Reson Med 2020; 84:2262-2277. [PMID: 32281139 DOI: 10.1002/mrm.28260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To firstly improve the attainable image SNR of 19 F and 1 H C3 F8 lung imaging at 1.5 tesla using an 8-element transmit/receive (Tx/Rx) flexible vest array combined with a 6-element Rx-only array, and to secondly evaluate microelectromechanical systems for switching the array elements between the 2 resonant frequencies. METHODS The Tx efficiency and homogeneity of the 8-element array were measured and simulated for 1 H imaging in a cylindrical phantom and then evaluated for in vivo 19 F/1 H imaging. The added improvement provided by the 6-element Rx-only array was quantified through simulation and measurement and compared to the ultimate SNR. It was verified through the measurement of isolation that microelectromechanical systems switches provided broadband isolation of Tx/Rx circuitry such that the 19 F tuned Tx/Rx array could be effectively used for both 19 F and 1 H nuclei. RESULTS For 1 H imaging, the measured Tx efficiency/homogeneity (mean ± percent SD; 6.79 μ T / kW ± 26 % ) was comparable to that simulated ( 7.57 μ T / kW ± 20 % ). The 6 additional Rx-only loops increased the mean Rx sensitivity when compared to the 8-element array by a factor of 1.41× and 1.45× in simulation and measurement, respectively. In regions central to the thorax, the simulated SNR of the 14-element array achieves ≥70% of the ultimate SNR when including noise from the matching circuits and preamplifiers. A measured microelectromechanical systems switching speed of 12 µs and added minimum 22 dB of isolation between Tx and Rx were sufficient for Tx/Rx switching in this application. CONCLUSION The described single-tuned array driven at 19 F and 1 H, utilizing microelectromechanical systems technology, provides excellent results for 19 F and 1 H dual-nuclear lung ventilation imaging.
Collapse
Affiliation(s)
- Adam Maunder
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Fraser Robb
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom.,GE Healthcare, Aurora, OH, USA
| | - Jim M Wild
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Lakshmanan K, Cloos M, Brown R, Lattanzi R, Sodickson DK, Wiggins GC. The "Loopole" Antenna: A Hybrid Coil Combining Loop and Electric Dipole Properties for Ultra-High-Field MRI. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2020; 2020:8886543. [PMID: 34140840 PMCID: PMC8207246 DOI: 10.1155/2020/8886543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
PURPOSE To revisit the "loopole," an unusual coil topology whose unbalanced current distribution captures both loop and electric dipole properties, which can be advantageous in ultra-high-field MRI. METHODS Loopole coils were built by deliberately breaking the capacitor symmetry of traditional loop coils. The corresponding current distribution, transmit efficiency, and signal-to-noise ratio (SNR) were evaluated in simulation and experiments in comparison to those of loops and electric dipoles at 7 T (297 MHz). RESULTS The loopole coil exhibited a hybrid current pattern, comprising features of both loops and electric dipole current patterns. Depending on the orientation relative to B0, the loopole demonstrated significant performance boost in either the transmit efficiency or SNR at the center of a dielectric sample when compared to a traditional loop. Modest improvements were observed when compared to an electric dipole. CONCLUSION The loopole can achieve high performance by supporting both divergence-free and curl-free current patterns, which are both significant contributors to the ultimate intrinsic performance at ultra-high field. While electric dipoles exhibit similar hybrid properties, loopoles maintain the engineering advantages of loops, such as geometric decoupling and reduced resonance frequency dependence on sample loading.
Collapse
Affiliation(s)
- Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Martijn Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel K. Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Tech4Health, NYU Langone Health, New York, NY, USA
| | - Graham C. Wiggins
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Solomakha G, Andreychenko A, Moortele PFVD, Kroeze H, Raaijmakers AJ, Euwe FE, Lagendijk JJW, Luijten PR, Berg CATVD. A Coaxial RF Applicator for Ultra-High Field Human MRI. IEEE Trans Biomed Eng 2019; 66:2848-2854. [PMID: 30716028 DOI: 10.1109/tbme.2019.2897029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To develop a novel radio-frequency (RF) concept for ultra-high field (UHF) human magnetic resonance imaging (MRI) based on a coaxial resonant cavity. METHODS A two-channel slotted coaxial cavity RF applicator was designed for human head MRI at 9.4T. Physical dimensions made the proposed conducting structure resonant at the required frequency without tuning lumped elements. Numerical electromagnetic modeling was used to optimize the design. RF safety was assessed with two representative human body models. MR experiments on a 9.4T scanner included gradient echo images and mapping of a circularly polarized RF magnetic field in the human head phantom. RESULTS The simulations and the phantom MR experiments agreed both qualitatively and quantitatively. The design was relatively simple, robust and required only a few additional reactive elements for the applicator's input impedance matching. The transmit efficiency and homogeneity of the excitation field were only 20% and 4% lower compared to a conventional 8-channel head array. CONCLUSION The coaxial RF applicator was feasible for human MRI at UHF and required no lumped elements for its tuning. Imaging performance of the RF applicator was only moderately lower compared to the conventional transmit array, but would be sufficient to provide an anatomical reference for the heteronuclei MRI. SIGNIFICANCE An alternative approach with the minimal involvement of lumped elements becomes feasible to design volume-type RF coils for UHF human MRI.
Collapse
|
16
|
Predicting the Frequency Characteristics of Hybrid Meander Systems Using a Feed-Forward Backpropagation Network. ELECTRONICS 2019. [DOI: 10.3390/electronics8010085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The process of designing microwave devices is difficult and time-consuming because the analytical and numerical methods used in the design process are complex. Therefore, it is necessary to search for new methods that will allow for an acceleration of synthesis and analytic procedures. This is especially important in cases where the procedures of synthesis and analysis have to be repeated many times, until the correct device configuration is found. Artificial neural networks are one of the possible alternatives for the acceleration of the design process. In this paper we present a procedure for analyzing a hybrid meander system (HMS) using the feed-forward backpropagation network (FFBN). We compared the prediction results of the transmission factor and the reflection factor , obtained using the FFBN, with results obtained using traditional analytical and numerical methods, as well as with experimental results. The comparisons show that prediction results significantly depend on the FFBN structure. In terms of the lowest difference between the characteristics calculated using the method of moments (MoM) and characteristics predicted using the FFBN, the best prediction was achieved using the FFBN with three hidden layers, which included 18 neurons in the first hidden layer, 14 neurons in the second hidden layer, and 2 neurons in the third hidden layer. Differences between the predicted and calculated results did not exceed 7% for the parameter and 5% for the parameter. The prediction of parameters using the FFBN allowed the analysis procedure to be sped up from hours to minutes. The experimental results correlated with the predicted characteristics.
Collapse
|