1
|
Gong Z, Faulkner ME, Akhonda MABS, Guo A, Bae J, Laporte JP, Church S, D'Agostino J, Bergeron J, Bergeron CM, Ferrucci L, Bouhrara M. White matter integrity and motor function: a link between cerebral myelination and longitudinal changes in gait speed in aging. GeroScience 2025; 47:1441-1454. [PMID: 39476324 PMCID: PMC11979058 DOI: 10.1007/s11357-024-01392-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/11/2024] [Indexed: 04/09/2025] Open
Abstract
Gait speed is a robust health biomarker in older adults, correlating with the risk of physical and cognitive impairments, including dementia. Myelination plays a crucial role in neurotransmission and consequently affects various functions, yet the connection between myelination and motor functions such as gait speed is not well understood. Understanding this link could offer insights into diagnosing and treating neurodegenerative diseases that impair mobility. This study analyzed 437 longitudinal observations from 138 cognitively unimpaired adults, aged 22 to 94 years, to investigate the relationship between myelin content and changes in gait speed over an average of 6.42 years. Myelin content was quantified using a novel multicomponent magnetic resonance relaxometry method, and both usual and rapid gait speeds (UGS, RGS) were measured following standard protocols. Adjusting for covariates, we found a significant fixed effect of myelin content on UGS and RGS. Longitudinally, lower myelin content was linked to a greater decline in UGS, particularly in brain regions associated with motor planning. These results suggest that changes in UGS may serve as a reliable marker of neurodegeneration, particularly in cognitively unimpaired adults. Interestingly, the relationship between myelin content and changes in RGS was only observed in a limited number of brain regions, although the reason for such local susceptibility remains unknown. These findings enhance our understanding of the critical role of myelination in gait performance in unimpaired adults and provide evidence of the interconnection between myelin content and motor function impairment.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Mohammad A B S Akhonda
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Sarah Church
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jarod D'Agostino
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jan Bergeron
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Christopher M Bergeron
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Gong Z, de Rouen A, Zhang N, Alisch JSR, Bilgel M, An Y, Bae J, Fox NY, Guo A, Resnick SM, Mazucanti C, Klistorner S, Klistorner A, Egan JM, Bouhrara M. Age-Related Differences in the Choroid Plexus Structural Integrity Are Associated with Changes in Cognition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25323022. [PMID: 40061356 PMCID: PMC11888513 DOI: 10.1101/2025.02.27.25323022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The choroid plexus (CP) plays a critical role in maintaining central nervous system (CNS) homeostasis, producing cerebrospinal fluid, and regulating the entry of specific substances into the CNS from blood. CP dysfunction has been implicated in various neurological and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This study investigates the relationship between CP structural integrity and cognitive decline in normative aging, using structural and advanced magnetic resonance imaging techniques, including CP volume, diffusion tensor imaging indices (mean diffusivity, MD, and fractional anisotropy, FA) and relaxometry metrics (longitudinal, T1, and transverse, T2, relaxation times). Our results show that diminished CP microstructural integrity, as reflected by higher T1, T2, and MD values, or lower FA values, is associated with lower cognitive performance in processing speed and fluency. Notably, CP microstructural measures demonstrated greater sensitivity to cognitive decline than macrostructural measures, i.e. CP volume. Longitudinal analysis revealed that individuals with reduced CP structural integrity exhibit steeper cognitive decline over time. Furthermore, structural equation modeling revealed that a latent variable representing CP integrity predicts faster overall cognitive decline, with an effect size comparable to that of age. These findings highlight the importance of CP integrity in maintaining cognitive health and suggest that a holistic approach to assessing CP integrity could serve as a sensitive biomarker for early detection of cognitive decline. Further research is needed to elucidate the mechanisms underlying the relationship between CP structural integrity and cognitive decline and to explore the potential therapeutic implications of targeting CP function to prevent or treat age-related cognitive deficits.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Angelique de Rouen
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nathan Zhang
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noam Y Fox
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Caio Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
3
|
Widmaier MS, Kaiser A, Baup S, Wenz D, Pierzchała K, Xiao Y, Huang Z, Jiang Y, Xin L. Fast 3D 31P B 1 + mapping with a weighted stack of spiral trajectory at 7 T. Magn Reson Med 2025; 93:481-489. [PMID: 39365949 PMCID: PMC11604843 DOI: 10.1002/mrm.30321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatialB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the need for accurate flip-angle determination in accelerated acquisitions with short TRs. In response to these challenges, we propose a novel short TR and look-up table-based double-angle method for fast 3D 31PB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (fDAM). METHODS Our method incorporates 3D weighted stack-of-spiral gradient-echo acquisitions and a frequency-selective pulse to enable efficientB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping based on the phosphocreatine signal at 7 T. Protocols were optimized using simulations and validated through phantom experiments. The method was validated in the human brain using a 31P 1Ch-trasmit/32Ch-receive coil and skeletal muscle using a birdcage 1H/31P volume coil. RESULTS The results of fDAM were compared with the classical DAM. A good correlation (r = 0.95) was obtained between the twoB 1 + $$ {\mathrm{B}}_1^{+} $$ maps. A 3D 31PB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping in the human calf muscle was achieved in about 10:50 min using a birdcage volume coil, with a 20% extended coverage (number of voxels with SNR > 3) relative to that of the classical DAM (24 min). fDAM also enabled the first full-brain coverage 31P 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping in approximately 10:15 min using a 1Ch-transmit/32Ch-receive coil. CONCLUSION fDAM is an efficient method for 31P 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping, showing promise for future applications in rapid 31P MRSI.
Collapse
Affiliation(s)
- Mark Stephan Widmaier
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Functional and Metabolic ImagingEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonia Kaiser
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Salomé Baup
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Daniel Wenz
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Katarzyna Pierzchała
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Ying Xiao
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Functional and Metabolic ImagingEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Zhiwei Huang
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Yun Jiang
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Lijing Xin
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Institute of PhysicsEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
4
|
Gong Z, Bilgel M, An Y, Bergeron CM, Bergeron J, Zukley L, Ferrucci L, Resnick SM, Bouhrara M. Cerebral white matter myelination is associated with longitudinal changes in processing speed across the adult lifespan. Brain Commun 2024; 6:fcae412. [PMID: 39697833 PMCID: PMC11653079 DOI: 10.1093/braincomms/fcae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Myelin's role in processing speed is pivotal, as it facilitates efficient neural conduction. Its decline could significantly affect cognitive efficiency during ageing. In this work, myelin content was quantified using our advanced MRI method of myelin water fraction mapping. We examined the relationship between myelin water fraction at the time of MRI and retrospective longitudinal change in processing speed among 121 cognitively unimpaired participants, aged 22-94 years, from the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing (a mean follow-up duration of 4.3 ± 6.3 years) using linear mixed-effects models, adjusting for demographics. We found that higher myelin water fraction values correlated with longitudinally better-maintained processing speed, with particularly significant associations in several white matter regions. Detailed voxel-wise analysis provided further insight into the specific white matter tracts involved. This research underscores the essential role of myelin in preserving processing speed and highlights its potential as a sensitive biomarker for interventions targeting age-related cognitive decline, thereby offering a foundation for preventative strategies in neurological health.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Murat Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Christopher M Bergeron
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jan Bergeron
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Linda Zukley
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
5
|
Bouhrara M, Walker KA, Alisch JSR, Gong Z, Mazucanti CH, Lewis A, Moghekar AR, Turek L, Collingham V, Shehadeh N, Fantoni G, Kaileh M, Bergeron CM, Bergeron J, Resnick SM, Egan JM. Association of Plasma Markers of Alzheimer's Disease, Neurodegeneration, and Neuroinflammation with the Choroid Plexus Integrity in Aging. Aging Dis 2024; 15:2230-2240. [PMID: 38300640 PMCID: PMC11346414 DOI: 10.14336/ad.2023.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
The choroid plexus (CP) is a vital brain structure essential for cerebrospinal fluid (CSF) production. Moreover, alterations in the CP's structure and function are implicated in molecular conditions and neuropathologies including multiple sclerosis, Alzheimer's disease, and stroke. Our goal is to provide the first characterization of the association between variation in the CP microstructure and macrostructure/volume using advanced magnetic resonance imaging (MRI) methodology, and blood-based biomarkers of Alzheimer's disease (Aß42/40 ratio; pTau181), neuroinflammation and neuronal injury (GFAP; NfL). We hypothesized that plasma biomarkers of brain pathology are associated with disordered CP structure. Moreover, since cerebral microstructural changes can precede macrostructural changes, we also conjecture that these differences would be evident in the CP microstructural integrity. Our cross-sectional study was conducted on a cohort of 108 well-characterized individuals, spanning 22-94 years of age, after excluding participants with cognitive impairments and non-exploitable MR imaging data. Established automated segmentation methods were used to identify the CP volume/macrostructure using structural MR images, while the microstructural integrity of the CP was assessed using our advanced quantitative high-resolution MR imaging of longitudinal and transverse relaxation times (T1 and T2). After adjusting for relevant covariates, positive associations were observed between pTau181, NfL and GFAP and all MRI metrics. These associations reached significance (p<0.05) except for CP volume vs. pTau181 (p=0.14), CP volume vs. NfL (p=0.35), and T2 vs. NFL (p=0.07). Further, negative associations between Aß42/40 and all MRI metrics were observed but reached significance only for Aß42/40 vs. T2 (p=0.04). These novel findings demonstrate that reduced CP macrostructural and microstructural integrity is positively associated with blood-based biomarkers of AD pathology, neurodegeneration/neuroinflammation and neurodegeneration. Degradation of the CP structure may co-occur with AD pathology and neuroinflammation ahead of clinically detectable cognitive impairment, making the CP a potential structure of interest for early disease detection or treatment monitoring.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Joseph S. R. Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Caio H. Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Alexandria Lewis
- Johns Hopkins University School of Medicine, Baltimore, 21224 MD, USA.
| | - Abhay R. Moghekar
- Johns Hopkins University School of Medicine, Baltimore, 21224 MD, USA.
| | - Lisa Turek
- Clinical Research Core, Baltimore, MD 21224, USA.
| | | | | | | | - Mary Kaileh
- Clinical Research Core, Baltimore, MD 21224, USA.
| | - Christopher M. Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Jan Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
6
|
Faulkner ME, Gong Z, Bilgel M, Laporte JP, Guo A, Bae J, Palchamy E, Kaileh M, Bergeron CM, Bergeron J, Church S, D’Agostino J, Ferrucci L, Bouhrara M. Evidence of association between higher cardiorespiratory fitness and higher cerebral myelination in aging. Proc Natl Acad Sci U S A 2024; 121:e2402813121. [PMID: 39159379 PMCID: PMC11363304 DOI: 10.1073/pnas.2402813121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Emerging evidence suggests that altered myelination is an important pathophysiologic correlate of several neurodegenerative diseases, including Alzheimer and Parkinson's diseases. Thus, improving myelin integrity may be an effective intervention to prevent and treat age-associated neurodegenerative pathologies. It has been suggested that cardiorespiratory fitness (CRF) may preserve and enhance cerebral myelination throughout the adult lifespan, but this hypothesis has not been fully tested. Among cognitively normal participants from two well-characterized studies spanning a wide age range, we assessed CRF operationalized as the maximum rate of oxygen consumption (VO2max) and myelin content defined by myelin water fraction (MWF) estimated through our advanced multicomponent relaxometry MRI method. We found significant positive correlations between VO2max and MWF across several white matter regions. Interestingly, the effect size of this association was higher in brain regions susceptible to early degeneration, including the frontal lobes and major white matter fiber tracts. Further, the interaction between age and VO2max exhibited i) a steeper positive slope in the older age group, suggesting that the association of VO2max with MWF is stronger at middle and older ages and ii) a steeper negative slope in the lower VO2max group, indicating that lower VO2max levels are associated with lower myelination with increasing age. Finally, the nonlinear pattern of myelin maturation and decline is VO2max-dependent with the higher VO2max group reaching the MWF peak at later ages. This study provides evidence of an interconnection between CRF and cerebral myelination and suggests therapeutic strategies for promoting brain health and attenuating white matter degeneration.
Collapse
Affiliation(s)
- Mary E. Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD21224
| | - John P. Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Elango Palchamy
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD21224
| | - Mary Kaileh
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | | | - Jan Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Sarah Church
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | - Jarod D’Agostino
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD21224
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| |
Collapse
|
7
|
Widmaier M, Kaiser A, Baup S, Wenz D, Pierzchala K, Xiao Y, Huang Z, Jiang Y, Xin L. Fast 3D 31P B 1 + mapping with a weighted stack of spiral trajectory at 7 Tesla. ARXIV 2024:arXiv:2406.18426v1. [PMID: 38979490 PMCID: PMC11230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Purpose Phosphorus Magnetic Resonance Spectroscopy (31P MRS) enables non-invasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatialB 1 + inhomogeneity and therefore the need for accurate flip angle determination in accelerated acquisitions with short repetition timesT R ) . In response to these challenges, we propose a novel shortT R and look-up table-based Double-Angle Method for fast 3D 31PB 1 + mapping (fDAM). Methods Our method incorporates 3D weighted stack of spiral gradient echo acquisitions and a frequency-selective pulse to enable efficientB 1 + mapping based on the phosphocreatine signal at 7T. Protocols were optimised using simulations and validated through phantom experiments. The method was validated in phantom experiments and skeletal muscle applications using a birdcage 1H/31P volume coil. Results The results of fDAM were compared to the classical DAM (cDAM). A good correlation (r=0.94) was obtained between the twoB 1 + maps. A 3D 31PB 1 + mapping in the human calf muscle was achieved in about 10 min using a birdcage volume coil, with a 20% extended coverage relative to that of the cDAM (24 min). fDAM also enabled the first full brain coverage 31P 3DB 1 + mapping in approx. 10 min using a 1 Tx/ 32 Rx coil. Conclusion fDAM is an efficient method for 31P 3DB 1 + mapping, showing promise for future applications in rapid 31P MRSI.
Collapse
Affiliation(s)
- Mark Widmaier
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of functional and metabolic imaging, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonia Kaiser
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Salome Baup
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ying Xiao
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of functional and metabolic imaging, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zhiwei Huang
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yun Jiang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Zampini MA, Sijbers J, Verhoye M, Garipov R. A preparation pulse for fast steady state approach in Actual Flip angle Imaging. Med Phys 2024; 51:306-318. [PMID: 37480220 DOI: 10.1002/mp.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Actual Flip angle Imaging (AFI) is a sequence used for B1 mapping, also embedded in the Variable flip angle with AFI for simultaneous estimation of T1 , B1 and equilibrium magnetization. PURPOSE To investigate the design of a preparation module for AFI to allow a fast approach to steady state (SS) without requiring the use of dummy acquisitions. METHODS The features of a preparation module with a B1 insensitive adiabatic pulse, spoiler gradients, and a recovery timeT r e c $T_{rec}$ were studied with simulations and validated via experiments and acquired with different k-space traveling strategies. The robustness of the flip angle of the preparation pulse on the acquired signal is studied. RESULTS When a 90° adiabatic pulse is used, the forthcomingT r e c $T_{rec}$ can be expressed as a function of repetition times and AFI flip angle only asTR 1 ( n + cos α ) / ( 1 - cos 2 α ) $\mathrm{TR_1}(n+\cos \alpha )/(1-\cos ^2\alpha )$ , where n represents the ratio between the two repetition times of AFI. The robustness of the method is demonstrated by showing that using the values further away from 90° still allows for a faster approach to SS than the use of dummy pulses. CONCLUSIONS The preparation module is particularly advantageous for low flip angles, as well as for AFI sequences that sample the center of the k-space early in the sequence, such as centric ordering acquisitions, and for ultrafast EPI-based AFI methods, thus allowing to reduce scanner overhead time.
Collapse
Affiliation(s)
- Marco Andrea Zampini
- MR Solutions Ltd., Ashbourne House, Guildford, Surrey, UK
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Jan Sijbers
- imec-Vision Lab, Department of Physics, University of Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Belgium
| | - Ruslan Garipov
- MR Solutions Ltd., Ashbourne House, Guildford, Surrey, UK
| |
Collapse
|
9
|
Gong Z, Khattar N, Kiely M, Triebswetter C, Bouhrara M. REUSED: A deep neural network method for rapid whole-brain high-resolution myelin water fraction mapping from extremely under-sampled MRI. Comput Med Imaging Graph 2023; 108:102282. [PMID: 37586261 PMCID: PMC10528830 DOI: 10.1016/j.compmedimag.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Changes in myelination are a cardinal feature of brain development and the pathophysiology of several central nervous system diseases, including multiple sclerosis and dementias. Advanced magnetic resonance imaging (MRI) methods have been developed to probe myelin content through the measurement of myelin water fraction (MWF). However, the prolonged data acquisition and post-processing times of current MWF mapping methods pose substantial hurdles to their clinical implementation. Recently, fast steady-state MRI sequences have been implemented to produce high-spatial resolution whole-brain MWF mapping within ∼20 min. Despite the subsequent significant advances in the inversion algorithm to derive MWF maps from steady-state MRI, the high-dimensional nature of such inversion does not permit further reduction of the acquisition time by data under-sampling. In this work, we present an unprecedented reduction in the computation (∼30 s) and the acquisition time (∼7 min) required for whole-brain high-resolution MWF mapping through a new Neural Network (NN)-based approach, named NN-Relaxometry of Extremely Under-SamplEd Data (NN-REUSED). Our analyses demonstrate virtually similar accuracy and precision in derived MWF values using NN-REUSED compared to results derived from the fully sampled reference method. The reduction in the acquisition and computation times represents a breakthrough toward clinically practical MWF mapping.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | - Matthew Kiely
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Curtis Triebswetter
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
10
|
Faulkner ME, Laporte JP, Gong Z, Akhonda MABS, Triebswetter C, Kiely M, Palchamy E, Spencer RG, Bouhrara M. Lower Myelin Content Is Associated With Lower Gait Speed in Cognitively Unimpaired Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1339-1347. [PMID: 36879434 PMCID: PMC10395567 DOI: 10.1093/gerona/glad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 03/08/2023] Open
Abstract
Mounting evidence indicates that abnormal gait speed predicts the progression of neurodegenerative diseases, including Alzheimer's disease. Understanding the relationship between white matter integrity, especially myelination, and motor function is crucial to the diagnosis and treatment of neurodegenerative diseases. We recruited 118 cognitively unimpaired adults across an extended age range of 22-94 years to examine associations between rapid or usual gait speeds and cerebral myelin content. Using our advanced multicomponent magnetic resonance relaxometry method, we measured myelin water fraction (MWF), a direct measure of myelin content, as well as longitudinal and transverse relaxation rates (R1 and R2), sensitive but nonspecific magnetic resonance imaging measures of myelin content. After adjusting for covariates and excluding 22 data sets due to cognitive impairments or artifacts, our results indicate that participants with higher rapid gait speed exhibited higher MWF, R1, and R2 values, that is, higher myelin content. These associations were statistically significant within several white matter brain regions, particularly the frontal and parietal lobes, splenium, anterior corona radiata, and superior fronto-occipital and longitudinal fasciculus. In contrast, we did not find any significant associations between usual gait speed and MWF, R1, or R2, which suggests that rapid gait speed may be a more sensitive marker of demyelination than usual gait speed. These findings advance our understanding on the implication of myelination in gait impairment among cognitively unimpaired adults, providing further evidence of the interconnection between white matter integrity and motor function.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mohammad A B S Akhonda
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elango Palchamy
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Laporte JP, Faulkner ME, Gong Z, Akhonda MA, Ferrucci L, Egan JM, Bouhrara M. Hypertensive Adults Exhibit Lower Myelin Content: A Multicomponent Relaxometry and Diffusion Magnetic Resonance Imaging Study. Hypertension 2023; 80:1728-1738. [PMID: 37283066 PMCID: PMC10355798 DOI: 10.1161/hypertensionaha.123.21012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is unknown whether hypertension plays any role in cerebral myelination. To fill this knowledge gap, we studied 90 cognitively unimpaired adults, age range 40 to 94 years, who are participants in the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing to look for potential associations between hypertension and cerebral myelin content across 14 white matter brain regions. METHODS Myelin content was probed using our advanced multicomponent magnetic resonance relaxometry method of myelin water fraction, a direct and specific magnetic resonance imaging measure of myelin content, and longitudinal and transverse relaxation rates (R1 and R2), 2 highly sensitive magnetic resonance imaging metrics of myelin content. We also applied diffusion tensor imaging magnetic resonance imaging to measure fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values, which are metrics of cerebral microstructural tissue integrity, to provide context with previous magnetic resonance imaging findings. RESULTS After adjustment of age, sex, systolic blood pressure, smoking status, diabetes status, and cholesterol level, our results indicated that participants with hypertension exhibited lower myelin water fraction, fractional anisotropy, R1 and R2 values and higher mean diffusivity, radial diffusivity, and axial diffusivity values, indicating lower myelin content and higher impairment to the brain microstructure. These associations were significant across several white matter regions, particularly in the corpus callosum, fronto-occipital fasciculus, temporal lobes, internal capsules, and corona radiata. CONCLUSIONS These original findings suggest a direct association between myelin content and hypertension and form the basis for further investigations including longitudinal assessments of this relationship.
Collapse
Affiliation(s)
- John P. Laporte
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mary E. Faulkner
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mohammad A.B.S. Akhonda
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Luigi Ferrucci
- Translational Gerontology Branch (L.F.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Josephine M. Egan
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
12
|
Laporte JP, Faulkner ME, Gong Z, Palchamy E, Akhonda MA, Bouhrara M. Investigation of the association between central arterial stiffness and aggregate g-ratio in cognitively unimpaired adults. Front Neurol 2023; 14:1170457. [PMID: 37181577 PMCID: PMC10167487 DOI: 10.3389/fneur.2023.1170457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Stiffness of the large arteries has been shown to impact cerebral white matter (WM) microstructure in both younger and older adults. However, no study has yet demonstrated an association between arterial stiffness and aggregate g-ratio, a specific magnetic resonance imaging (MRI) measure of axonal myelination that is highly correlated with neuronal signal conduction speed. In a cohort of 38 well-documented cognitively unimpaired adults spanning a wide age range, we investigated the association between central arterial stiffness, measured using pulse wave velocity (PWV), and aggregate g-ratio, measured using our recent advanced quantitative MRI methodology, in several cerebral WM structures. After adjusting for age, sex, smoking status, and systolic blood pressure, our results indicate that higher PWV values, that is, elevated arterial stiffness, were associated with lower aggregate g-ratio values, that is, lower microstructural integrity of WM. Compared to other brain regions, these associations were stronger and highly significant in the splenium of the corpus callosum and the internal capsules, which have been consistently documented as very sensitive to elevated arterial stiffness. Moreover, our detailed analysis indicates that these associations were mainly driven by differences in myelination, measured using myelin volume fraction, rather than axonal density, measured using axonal volume fraction. Our findings suggest that arterial stiffness is associated with myelin degeneration, and encourages further longitudinal studies in larger study cohorts. Controlling arterial stiffness may represent a therapeutic target in maintaining the health of WM tissue in cerebral normative aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
13
|
Ishimori Y, Shimanuki T, Kobayashi T, Monma M. Fast B1 Mapping Based on Double-Angle Method with T1 Correction Using Standard Pulse Sequence. J Med Phys 2022; 47:93-98. [PMID: 35548043 PMCID: PMC9084583 DOI: 10.4103/jmp.jmp_78_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 11/15/2022] Open
Abstract
Radiofrequency (RF) field (B1) mapping by combining the double-angle method (DAM) and T1 correction was investigated. The signal intensities S1 and S2 acquired by flip angle (FA) α and double FA 2α at short repetition time (TR) were converted to a signal intensity at TR=∞ by T1 correction. Then, these were used for DAM calculation. The T1 values are measured from two different images acquired with different TRs based on the saturation recovery (SR) method preliminarily. The effects of imaging parameters for T1 estimation and measured FA were investigated using CuSO4-doped water phantoms. A two-dimensional gradient echo type echo planar imaging pulse sequence was used. T1 values obtained by the 2-SR method were underestimated compared to the multipoint inversion recovery method. FA error was less than 5% when the appropriate imaging parameters were used. The acquisition time could be shortened to under 25 s by the use of T1-corrected DAM.
Collapse
Affiliation(s)
- Yoshiyuki Ishimori
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Kashiwa, Japan,Address for correspondence: Dr. Yoshiyuki Ishimori, 4669-2 Ami, Ami-Machi, Inashiki-Gun, Ibaraki 300-0394, Japan. E-mail:
| | - Takeshi Shimanuki
- Department of Radiology, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Tomoya Kobayashi
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Kashiwa, Japan
| | - Masahiko Monma
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Kashiwa, Japan
| |
Collapse
|
14
|
Wilcox M, Ogier S, Cheshkov S, Dimitrov I, Malloy C, Wright S, McDougall M. A 16-Channel 13C Array Coil for Magnetic Resonance Spectroscopy of the Breast at 7T. IEEE Trans Biomed Eng 2021; 68:2036-2046. [PMID: 33651680 DOI: 10.1109/tbme.2021.3063061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Considering the reported elevation of ω-6/ω-3 fatty acid ratios in breast neoplasms, one particularly important application of 13C MRS could be in more fully understanding the breast lipidome's relationship to breast cancer incidence. However, the low natural abundance and gyromagnetic ratio of the 13C isotope lead to detection sensitivity challenges. Previous 13C MRS studies have relied on the use of small surface coils with limited field-of-view and shallow penetration depths to achieve adequate signal-to-noise ratio (SNR), and the use of receive array coils is still mostly unexplored. METHODS This work presents a unilateral breast 16-channel 13C array coil and interfacing hardware designed to retain the surface sensitivity of a single small loop coil while improving penetration depth and extending the field-of-view over the entire breast at 7T. The coil was characterized through bench measurements and phantom 13C spectroscopy experiments. RESULTS Bench measurements showed receive coil matching better than -17 dB and average preamplifier decoupling of 16.2 dB with no evident peak splitting. Phantom MRS studies show better than a three-fold increase in average SNR over the entirety of the breast region compared to volume coil reception alone as well as an ability for individual array elements to be used for coarse metabolite localization without the use of single-voxel or spectroscopic imaging methods. CONCLUSION Our current study has shown the benefits of the array. Future in vivo lipidomics studies can be pursued. SIGNIFICANCE Development of the 16-channel breast array coil opens possibilities of in vivo lipidomics studies to elucidate the link between breast cancer incidence and lipid metabolics.
Collapse
|
15
|
Desmond KL, Xu R, Sun Y, Chavez S. A practical method for post-acquisition reduction of bias in fast, whole-brain B1-maps. Magn Reson Imaging 2020; 77:88-98. [PMID: 33338561 DOI: 10.1016/j.mri.2020.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
Large consistent differences have been observed between maps of the flip angle correction factor (commonly called "B1-maps") produced with different fast methods in the human brain. We present an empirical procedure for first-order multiplicative bias correction that can be applied when more than one B1-mapping method is available. We use a B1-map measurement in a calibration phantom as a reference and the voxel-wise histogram mode between ratios of B1-maps produced from different methods to calculate determine the bias as a multiplicative correcting scale factor. Institutional implementations of four common methods of B1-mapping were assessed: Method of Slopes, FSE and EPI double angle methods (DAM), and Bloch-Siegert. In human subjects, the multiplicative bias used to correct for each of the four methods was: Method of Slopes = 1.005, FSE-DAM = 0.956, EPI-DAM = 1.080, and Bloch-Siegert = 1.128. Scaling to remove this bias between methods produces more consistent B1-maps which enable more consistent values for any computations requiring flip angle correction. In addition, we present evidence that the corrected B1 maps, using our calibration method, are also more accurate.
Collapse
Affiliation(s)
- Kimberly L Desmond
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada.
| | - Ruiyang Xu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Yutong Sun
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| |
Collapse
|
16
|
Bouhrara M, Rejimon AC, Cortina LE, Khattar N, Spencer RG. Four-angle method for practical ultra-high-resolution magnetic resonance mapping of brain longitudinal relaxation time and apparent proton density. Magn Reson Imaging 2019; 66:57-68. [PMID: 31730882 DOI: 10.1016/j.mri.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
Abstract
Changes in longitudinal relaxation time (T1) and proton density (PD) are sensitive indicators of microstructural alterations associated with various central nervous system diseases as well as brain maturation and aging. In this work, we introduce a new approach for rapid and accurate high-resolution (HR) or ultra HR (UHR) mapping of T1 and apparent PD (APD) of the brain with correction of radiofrequency field, B1, inhomogeneities. The four-angle method (FAM) uses four spoiled-gradient recalled-echo (SPGR) images acquired at different flip angles (FA) and short repetition times (TRs). The first two SPGR images are acquired at low-spatial resolution and used to accurately map the active B1+ field with the recently introduced steady-state double angle method (SS-DAM). The estimated B1+ map is used in conjunction with the two other SPGR images, acquired at HR or UHR, to map T1 and APD. The method is evaluated with numerical, phantom, and in-vivo imaging measurements. Furthermore, we investigated imaging acceleration methods to further shorten the acquisition time. Our results indicate that FAM provides an accurate method for simultaneous HR or UHR mapping of T1 and APD in human brain in clinical high-field MRI. Derived parameter maps without B1+correction suffer from large inaccuracies, but this issue is well-corrected through use of the SS-DAM. Furthermore, the use of SPGR imaging with short TR and phased-array coil acquisition permits substantial imaging acceleration and enables robust HR or UHR T1 and APD mapping in a clinically acceptable time frame, with whole brain coverage obtained in less than 2 min or 5 min, respectively. The method exhibits high reproducibility and benefits from the use of the conventional SPGR sequence, available in all preclinical and clinical MRI machines, and very simple modeling to address a critical outstanding issue in neuroimaging.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Gao Y, Han J, Zhu Y, Wang J, Wei X, Xin X. Channel-combination method for phase-based |B 1+| mapping techniques. Magn Reson Imaging 2019; 65:1-7. [PMID: 31670236 DOI: 10.1016/j.mri.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The aim of this study was to propose a channel combination method for |B1+| mapping methods using phase difference to reconstruct |B1+| map. THEORY AND METHODS Phase-based |B1+| mapping methods commonly consider the phase difference of two scans to measure |B1+|. Multiple receiver coils acquire a number of images and the phase difference at each channel is theoretically the same in the absence of noise. Affected by noise, phase difference is approximately governed by Gaussian distribution. Considering data from all channels as samples, estimation can be achieved by maximum likelihood method. With this method, all phase differences at each channel are combined into one. In this study, the proposed method is applied with Bloch-Siegert shift |B1+| mapping method. Simulations are performed to illustrate the phase difference distribution and demonstrate the feasibility and facility of the proposed method. Phantom and vivo experiments are carried out at 1.5 T scanner equipped with 8-channel receiver coil. In all experiments, the proposed method is compared with weighted averaging (WA) method. RESULTS Simulations revealed appropriateness of approximating the distribution of phase difference to Gaussian distribution. Compared with WA method, the proposed method reduces errors of |B1+| calculation. Phantom and vivo experiments provide further validation. CONCLUSION Considering phase noise distribution, the proposed method achieves channel combination by finding the estimation from data acquired by multiple receivers coil. The proposed method reduces |B1+| reconstruction errors caused by noise.
Collapse
Affiliation(s)
- Yunyu Gao
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China
| | - Jijun Han
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China
| | - Yurong Zhu
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China
| | - Jiajia Wang
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou City, Guangzhou Province 510180, China
| | - Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China; School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou City, Guangzhou Province 510006, China.
| |
Collapse
|