1
|
Gudino N. Adaptable Dual-Tuned Optically Controlled on-Coil RF Power Amplifier for MRI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:165-173. [PMID: 38837934 DOI: 10.1109/tbcas.2024.3403093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
An adaptable optically controlled RF power amplifier (RFPA) is presented for direct implementation on the Magnetic Resonance Imaging (MRI) transmit coil. Operation at 1H and multiple X-nuclei frequencies for 7T MRI was demonstrated through the automated tuning of an effective voltage-modulated inductor located in the gate driver circuit of the FET switches in the different amplification stages. Through this automated tuning, the amplifier can be adapted from the control to operate at the selected 1H and X-nuclei frequency in a multinuclear MRI study. Bench and MRI data acquired with the adaptable dual-tuned on-coil RFPA is presented. This technology should allow a simpler, more efficient and versatile implementation of the multinuclear multichannel MRI hardware. Ultimately, to extend the research on MRI detectable nuclei that can provide new insights about healthy and diseased tissue.
Collapse
|
2
|
Yang Y, Zhang B, Lu M, Yan X. Dual-tuned floating solenoid balun for multi-nuclear MRI and MRS. Magn Reson Imaging 2025; 115:110268. [PMID: 39442656 PMCID: PMC11955239 DOI: 10.1016/j.mri.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Common-mode currents can degrade the RF coil performance and introduce potential safety hazards in MRI. Baluns are the standard method to suppress these undesired common-mode currents. Specifically, floating baluns are preferred in many applications because they are removable, allow post-installation adjustment and avoid direct soldering on the cable. However, floating baluns are typically bulky to achieve excellent common-mode suppression, taking up valuable space in the MRI bore. This is particularly severe for multi-nuclear MRI/MRS applications, as two RF systems exist. In this work, we present a novel dual-tuned floating balun that is fully removable, does not require any physical connection to the coaxial cable, and has a significantly reduced footprint. The floating design employs an inductive coupling between the cable solenoid and a floating solenoid resonator rather than a direct physical connection. Unlike the previous floating solenoid balun, this balun employs a two-layer design further to improve the mutual coupling between the two solenoids. A pole-insertion method is used to suppress common-mode currents at two user-selectable frequencies simultaneously. Bench testing of the fabricated device at 7 T demonstrated high common-mode rejection ratios at Larmor frequencies of both 1H and 23Na, even with a compact dimension (diameter 18 mm and length 12 mm). This balun's removable, compact, and multi-resonant nature enables light-weighting, allows more coil elements, and improves cable management for advanced multi-nuclear MRI/MRS systems.
Collapse
Affiliation(s)
- Yijin Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Boqiao Zhang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Yang Y, Lu M, Yan X. Frequency-independent dual-tuned cable traps for multi-nuclear MRI and MRS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107786. [PMID: 39413717 PMCID: PMC11897981 DOI: 10.1016/j.jmr.2024.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) of non-proton nuclei (X-nuclei) typically require additional proton imaging for anatomical reference and B0 shimming. Therefore, two RF systems exist, necessitating cable traps to block the unwanted common-mode current at both Larmor frequencies of 1H and X-nuclei. This study introduces a frequency-independent dual-tuned cable trap that combines a standard solenoid cable trap with a float solenoid trap to independently tune high and low frequencies without compromising performance. The methods involved theoretical analysis, electromagnetic simulations, and bench tests. Two design approaches were evaluated: a float cable trap for 1H, a non-float cable trap for X-nuclei, and vice versa. Results showed that the design with the float trap for X-nuclei and non-float for 1H had superior performance, with high common-mode current suppression ability at both frequencies. Bench tests confirmed these findings, demonstrating effectiveness across various static fields and X-nuclei. The proposed frequency-independent dual-tuned cable trap provides a compact and efficient solution for multinuclear MRI and MRS, enhancing safety, image quality, and flexibility.
Collapse
Affiliation(s)
- Yijin Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
5
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
6
|
Lopez Kolkovsky AL, Carlier PG, Marty B, Meyerspeer M. Interleaved and simultaneous multi-nuclear magnetic resonance in vivo. Review of principles, applications and potential. NMR IN BIOMEDICINE 2022; 35:e4735. [PMID: 35352440 PMCID: PMC9542607 DOI: 10.1002/nbm.4735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Magnetic resonance signals from different nuclei can be excited or received at the same time,rendering simultaneous or rapidly interleaved multi-nuclear acquisitions feasible. The advan-tages are a reduction of total scan time compared to sequential multi-nuclear acquisitions or that additional information from heteronuclear data is obtained at thesame time and anatomical position. Information content can be qualitatively increased by delivering a more comprehensive MR-based picture of a transient state (such as an exercise bout). Also, combiningnon-proton MR acquisitions with 1 Hinformation (e.g., dynamic shim updates and motion correction) can be used to improve data quality during long scans and benefits image coregistration. This work reviews the literature on interleaved and simultaneous multi-nuclear MRI and MRS in vivo. Prominent use cases for this methodology in clinical and research applications are brain and muscle, but studies have also been carried out in other targets, including the lung, knee, breast and heart. Simultaneous multi-nuclear measurements in the liver and kidney have also been performed, but exclusively in rodents. In this review, a consistent nomenclature is proposed, to help clarify the terminology used for this principle throughout the literature on in-vivo MR. An overview covers the basic principles, the technical requirements on the MR scanner and the implementations realised either by MR system vendors or research groups, from the early days until today. Considerations regarding the multi-tuned RF coils required and heteronuclear polarisation interactions are briefly discussed, and fields for future in-vivo applications for interleaved multi-nuclear MR pulse sequences are identified.
Collapse
Affiliation(s)
- Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| |
Collapse
|
7
|
Vaidya MV, Zhang B, Hong D, Brown R, Batsios G, Viswanath P, Paska J, Wulf G, Grant AK, Ronen SM, Larson PEZ. A 13C/ 31P surface coil to visualize metabolism and energetics in the rodent brain at 3 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 343:107286. [PMID: 36075133 PMCID: PMC9721620 DOI: 10.1016/j.jmr.2022.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE We constructed a 13C/31P surface coil at 3 T for studying cancer metabolism and bioenergetics. In a single scan session, hyperpolarized 13C-pyruvate MRS and 31P MRS was carried out for a healthy rat brain. METHODS All experiments were carried out at 3 Tesla. The multinuclear surface coil was designed as two coplanar loops each tuned to either the 13C or 31P operating frequency with an LCC trap on the 13C loop. A commercial volume proton coil was used for anatomical localization and B0 shimming. Single tuned coils operating at either the 13C or 31P frequency were built to evaluate the relative performance of the multinuclear coil. Coil performance metrics consisted of measuring Q factor ratio, calculating system input power using a single-pulse acquisition, and acquiring SNR and flip angle maps using 2D CSI sequences. To observe in vivo spectra, a bolus of hyperpolarized [1-13C] pyruvate was administered via tail vein. In vivo13C and endogenous 31P spectra were obtained in a single scan session using 1D slice selective acquisitions. RESULTS When compared with single tuned surface coils, the multinuclear coil performance showed a decrease in Q factor ratio, SNR, and transmit efficiency. Flip angle maps showed adequate flip angles within the phantom when the transmit voltage was set using an external phantom. Results show good detection of 13C labeled lactate, alanine, and bicarbonate in addition to ATP from 31P MRS. CONCLUSIONS The coil enables obtaining complementary information within a scan session, thus reducing the number of trials and minimizing biological variability for studies of metabolism and bioenergetics.
Collapse
Affiliation(s)
- Manushka V Vaidya
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Bei Zhang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - DongHyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jan Paska
- Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Gerburg Wulf
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aaron K Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Zhu Y, Sappo CR, Grissom WA, Gore JC, Yan X. Dual-Tuned Lattice Balun for Multi-Nuclear MRI and MRS. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1420-1430. [PMID: 34990352 PMCID: PMC9812758 DOI: 10.1109/tmi.2022.3140717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Balun or trap circuits are critical components for suppressing common-mode currents flowing on the outer conductors of coaxial cables in RF coil systems for Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS). Common-mode currents affect coils' tuning and matching, induce losses, pick up extra noise from the surrounding environment, lead to undesired cross-talk, and cause safety concerns in animal and human imaging. First proposed for microwave antenna applications, the Lattice balun has been widely used in MRI coils. It has a small footprint and can be easily integrated with coil tuning/matching circuits. However, the Lattice balun is typically a single-tuned circuit and cannot be used for multi-nuclear MRI and MRS with two RF frequencies. This work describes a dual-tuned Lattice balun design that is suitable for multi-nuclear MRI/MRS. It was first analyzed theoretically to derive component values. RF circuit simulations were then performed to validate the theoretical analysis and provide guidance for practical construction. Based on the simulation results, a dual-tuned balun circuit was built for 7T 1H/23Na MRI and bench tested. The fabricated dual-tuned balun exhibits superior performance at the Larmor frequencies of both 1H and 23Na, with less than 0.15 dB insertion loss and better than 17 dB common-mode rejection ratio at both frequencies.
Collapse
|
9
|
Polak P, Schulte RF, Noseworthy MD. An approach to evaluation of the point-spread function for 23 Na magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4627. [PMID: 34652040 DOI: 10.1002/nbm.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Despite the technical challenges that require lengthy acquisitions to overcome poor signal-to-noise ratio (SNR), sodium (23 Na) magnetic resonance imaging (MRI) is an intriguing area of research due to its essential role in human metabolism. Low SNR images can impact the measurement of the point-spread function (PSF) by adding uncertainty into the resulting quantities. Here, we present methods to calculate the PSF by using the modulation transfer function (MTF), and a 3D-printed line-pair phantom in the context of 23 Na MRI. A simulation study investigated the effect of noise on the resulting MTF curves, which were derived by direct modulation (DM) and a method utilizing Fourier harmonics (FHs). Experimental data utilized a line-pair phantom with nine spatial frequencies, filled with different concentrations (15, 30, and 60 mM) of sodium in 3% agar. MTF curves were calculated using both methods from data acquired from density-adapted 3D radial projections (DA-3DRP) and Fermat looped orthogonally encoded trajectories (FLORET). Simulations indicated that the DM method increased variability in the MTF curves at all tested noise levels over the FH method. For the experimental data, the FH method resulted in PSFs with a narrower full width half maximum with reduced variability, although the improvement in variability was not as pronounced as predicted by simulations. The DA-3DRP data indicated an improvement in the PSF over FLORET. It was concluded that a 3D-printed line-pair phantom represents a convenient method to measure the PSF experimentally. The MTFs from the noisy images in 23 Na MRI have reduced variability from a FH method over DM.
Collapse
Affiliation(s)
- Paul Polak
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Imaging Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | | | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Imaging Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada
- Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Wang B, Zhang B, Yu Z, Ianniello C, Lakshmanan K, Paska J, Madelin G, Cloos M, Brown R. A radially interleaved sodium and proton coil array for brain MRI at 7 T. NMR IN BIOMEDICINE 2021; 34:e4608. [PMID: 34476861 PMCID: PMC9362999 DOI: 10.1002/nbm.4608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The objective of the current study was to design and build a dual-tuned coil array for simultaneous 23 Na/1 H MRI of the human brain at 7 T. Quality factor, experimental B1+ measurements, and electromagnetic simulations in prototypes showed that setups consisting of geometrically interleaved 1 H and 23 Na loops performed better than or similar to 1 H or 23 Na loops in isolation. Based on these preliminary findings, we built a transmit/receive eight-channel 23 Na loop array that was geometrically interleaved with a transmit/receive eight-channel 1 H loop array. We assessed the performance of the manufactured array with mononuclear signal-to-noise ratio (SNR) and B1+ measurements, along with multinuclear magnetic resonance fingerprinting maps and images. The 23 Na array within the developed dual-tuned device provided more than 50% gain in peripheral SNR and similar B1+ uniformity and coverage as a reference birdcage coil of similar size. The 1 H array provided good B1+ uniformity in the brain, excluding the cerebellum and brain stem. The integrated 23 Na and 1 H arrays were used to demonstrate truly simultaneous quantitative 1 H mapping and 23 Na imaging.
Collapse
Affiliation(s)
- Bili Wang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Bei Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Advanced Imaging Research Center, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zidan Yu
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Carlotta Ianniello
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jan Paska
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Martijn Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Ianniello C, Moy L, Fogarty J, Schnabel F, Adams S, Axelrod D, Axel L, Brown R, Madelin G. Multinuclear MRI to disentangle intracellular sodium concentration and extracellular volume fraction in breast cancer. Sci Rep 2021; 11:5156. [PMID: 33664340 PMCID: PMC7933187 DOI: 10.1038/s41598-021-84616-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
The purpose of this work was to develop a novel method to disentangle the intra- and extracellular components of the total sodium concentration (TSC) in breast cancer from a combination of proton ([Formula: see text]H) and sodium ([Formula: see text]) magnetic resonance imaging (MRI) measurements. To do so, TSC is expressed as function of the intracellular sodium concentration ([Formula: see text]), extracellular volume fraction (ECV) and the water fraction (WF) based on a three-compartment model of the tissue. TSC is measured from [Formula: see text] MRI, ECV is calculated from baseline and post-contrast [Formula: see text]H [Formula: see text] maps, while WF is measured with a [Formula: see text]H chemical shift technique. [Formula: see text] is then extrapolated from the model. Proof-of-concept was demonstrated in three healthy subjects and two patients with triple negative breast cancer. In both patients, TSC was two to threefold higher in the tumor than in normal tissue. This alteration mainly resulted from increased [Formula: see text] ([Formula: see text] 30 mM), which was [Formula: see text] 130% greater than in healthy conditions (10-15 mM) while the ECV was within the expected range of physiological values (0.2-0.25). Multinuclear MRI shows promise for disentangling [Formula: see text] and ECV by taking advantage of complementary [Formula: see text]H and [Formula: see text] measurements.
Collapse
Affiliation(s)
- Carlotta Ianniello
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Justin Fogarty
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Freya Schnabel
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sylvia Adams
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Deborah Axelrod
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Leon Axel
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
12
|
Fantasia M, Galante A, Maggiorelli F, Retico A, Fontana N, Monorchio A, Alecci M. Numerical and Workbench Design of 2.35 T Double-Tuned (¹H/²³Na) Nested RF Birdcage Coils Suitable for Animal Size MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3175-3186. [PMID: 32310762 DOI: 10.1109/tmi.2020.2988599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (1H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g. 13C, 23Na, 31P, and many others) needs to be detected with high sensitivity and spatial homogeneity. To this purpose several technical solutions have been adopted to design Double Tuned (DT) volume RF coils, including the recent configuration of the nested birdcage RF coils. One of the main problems in the design of DT RF coils is the decoupling between the 1H and X channels, and a number of solutions have been adopted over the years. In this work, based on numerical and workbench methods, we report the decoupling optimization of DT (1H/23Na) nested RF birdcage coils suitable for 2.35 T MRI scanners encompassing an inner Low-Pass (LP) birdcage used for X-nuclei, an outer High-Pass (HP) birdcage for 1H and an external cylindrical RF shield. We show that a suitable geometrical selection of the two coaxial RF birdcage coils (relative angular orientation, diameters and lengths) and RF shield (diameter, length) allows a significant decoupling optimization. We also provide valuable information about the RF B1+ field homogeneity and efficiency. Our approach was validated both with numerical simulations and workbench testing using DT nested RF coil prototypes.
Collapse
|
13
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
14
|
Brinkhof S, Ali Haghnejad A, Ito K, Markenroth Bloch K, Klomp D. Uncompromised MRI of knee cartilage while incorporating sensitive sodium MRI. NMR IN BIOMEDICINE 2019; 32:e4173. [PMID: 31502337 PMCID: PMC6900061 DOI: 10.1002/nbm.4173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Sodium imaging is able to assess changes in ion content, linked to glycosaminoglycan content, which is important to guide orthopeadic procedures such as articular cartilage repair. Sodium imaging is ideally performed using double tuned RF coils, to combine high resolution morphological imaging with biochemical information from sodium imaging to assess ion content. The proton image quality of such coils is often harshly degraded, with up to 50% of SNR or severe acceleration loss as compared to single tuned coils. Reasons are that the number of proton receive channels often severely reduced and double tuning will degrade the intrinsic sensitivity of the RF coil on at least one of the nuclei. However, the aim of this work was to implement a double-tuned sodium/proton knee coil setup without deterioration of the proton signal whilst being able to achieve acquisition of high SNR sodium images. A double-tuned knee coil was constructed as a shielded birdcage optimized for sodium and compromised for proton. To exclude any compromise, the proton part of the birdcage is used for transmit only and interfaced to RF amplifiers that can fully mitigate the reduced efficiency. In addition, a 15 channel single tuned proton receiver coil was embedded within the double-resonant birdcage to maintain optimal SNR and acceleration for proton imaging. To validate the efficiency of our coil, the designed coil was compared with the state-of-the-art single-tuned alternative at 7 T. B1+ corrected SNR maps were used to compare both coils on proton performance and g-factor maps were used to compare both coils on acceleration possibilities. The newly constructed double-tuned coil was shown to have comparable proton quality and acceleration possibilities to the single-tuned alternative while also being able to acquire high SNR sodium images.
Collapse
Affiliation(s)
- S. Brinkhof
- Department of RadiologyUniversity Medical Center UtrechtUtrechtNetherlands
| | | | - K. Ito
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
| | | | - D.W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|