1
|
Mackowiak ALC, Piccini D, van Heeswijk RB, Hullin R, Gräni C, Bastiaansen JAM. Fat-free noncontrast whole-heart cardiovascular magnetic resonance imaging with fast and power-optimized off-resonant water-excitation pulses. J Cardiovasc Magn Reson 2024; 26:101096. [PMID: 39278414 PMCID: PMC11616052 DOI: 10.1016/j.jocmr.2024.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance imaging (CMR) faces challenges due to the interference of bright fat signals in visualizing structures, such as coronary arteries. Effective fat suppression is crucial, especially when using whole-heart CMR techniques. Conventional methods often fall short due to rapid fat signal recovery, leading to residual fat content hindering visualization. Water-selective off-resonant radiofrequency (RF) pulses have been proposed but come with tradeoffs between pulse duration, which increases scan time, and increased RF energy deposit, which limits their applicability due to specific absorption rate (SAR) constraints. The study introduces a lipid-insensitive binomial off-resonant (LIBOR) RF pulse, which addresses concerns about SAR and scan time, and aims to provide a comprehensive quantitative comparison with published off-resonant RF pulses for CMR at 3T. METHODS A short (1 ms) LIBOR pulse, with reduced RF power requirements, was developed and implemented in a free-breathing respiratory-self-navigated three-dimensional radial whole-heart CMR sequence at 3T. A binomial off-resonant rectangular (BORR) pulse with matched duration, as well as previously published lipid-insensitive binomial off-resonant excitation (LIBRE) pulses (1 and 2.2 ms), were implemented and optimized for fat suppression in numerical simulations and validated in volunteers (n = 3). Whole-heart CMR was performed in volunteers (n = 10) with all four pulses. The signal-to-noise ratio (SNR) of ventricular blood, skeletal muscle, myocardium, and subcutaneous fat and the coronary vessel detection rates and sharpness were compared. RESULTS Experimental results validated numerical findings and near-homogeneous fat suppression was achieved with all four pulses. Comparing the short RF pulses (1 ms), LIBOR reduced the RF power nearly two-fold compared with LIBRE, and three-fold compared with BORR, and LIBOR significantly decreased overall fat SNR from cardiac scans, compared to LIBRE and BORR. The reduction in RF pulse duration (from 2.2 to 1 ms) shortened the whole-heart acquisition from 8.5 to 7 min. No significant differences in coronary arteries detection and sharpness were found when comparing all four pulses. CONCLUSION LIBOR pulses enabled whole-heart CMR under 7 min at 3T, with large volume fat signal suppression, while reducing RF power compared with LIBRE and BORR pulses. LIBOR is an excellent candidate to address SAR problems encountered in CMR sequences where fat suppression remains challenging and short RF pulses are required.
Collapse
Affiliation(s)
- Adèle L C Mackowiak
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Davide Piccini
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare AG, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Roger Hullin
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| |
Collapse
|
2
|
Falcão MBL, Mackowiak ALC, Rossi GMC, Prša M, Tenisch E, Rumac S, Bacher M, Rutz T, van Heeswijk RB, Speier P, Markl M, Bastiaansen JAM, Stuber M, Roy CW. Combined free-running four-dimensional anatomical and flow magnetic resonance imaging with native contrast using Synchronization of Neighboring Acquisitions by Physiological Signals. J Cardiovasc Magn Reson 2024; 26:101006. [PMID: 38309581 PMCID: PMC11211232 DOI: 10.1016/j.jocmr.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.
Collapse
Affiliation(s)
- Mariana B L Falcão
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Adèle L C Mackowiak
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Giulia M C Rossi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Milan Prša
- Woman, Mother, Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Estelle Tenisch
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Simone Rumac
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mario Bacher
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Siemens Healthcare GmbH, Erlangen, Germany
| | - Tobias Rutz
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque (CRMC), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Merton R, Bosshardt D, Strijkers GJ, Nederveen AJ, Schrauben EM, van Ooij P. Reproducibility of 3D thoracic aortic displacement from 3D cine balanced SSFP at 3 T without contrast enhancement. Magn Reson Med 2024; 91:466-480. [PMID: 37831612 DOI: 10.1002/mrm.29856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE Aortic motion has direct impact on the mechanical stresses acting on the aorta. In aortic disease, increased stiffness of the aorta may lead to decreased aortic motion over time, which could be a predictor for aortic dissection or rupture. This study investigates the reproducibility of obtaining 3D displacement and diameter maps quantified using accelerated 3D cine MRI at 3 T. METHODS A noncontrast-enhanced, free-breathing 3D cine sequence based on balanced SSFP and pseudo-spiral undersampling with high spatial isotropic resolution was developed (spatial/temporal resolution [1.6 mm]3 /67 ms). The thoracic aorta of 14 healthy volunteers was prospectively scanned three times at 3 T: twice on the same day and a third time 2 weeks later. Aortic displacement was calculated using iterative closest point nonrigid registration of manual segmentations of the 3D aorta at end-systole and mid-diastole. Interexamination and interobserver regional analysis of mean displacement for five regions of interest was performed using Bland-Altman analysis. Additionally, a complementary voxel-by-voxel analysis was done, allowing a more local inspection of the method. RESULTS No significant differences were found in mean and maximum displacement for any of the regions of interest for the interexamination and interobserver analysis. The maximum displacement measured in the lower half of the ascending aorta was 11.0 ± 3.4 mm (range: 3.0-17.5 mm) for the first scan. The smallest detectable change in mean displacement in the lower half of the ascending aorta was 3 mm. CONCLUSION Detailed 3D cine balanced SSFP at 3 T allows for reproducible quantification of systolic-diastolic mean aortic displacement within acceptable limits.
Collapse
Affiliation(s)
- Renske Merton
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Daan Bosshardt
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Biomedical Physics and Engineering, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Eric M Schrauben
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Pim van Ooij
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Küstner T, Bustin A, Jaubert O, Hajhosseiny R, Masci PG, Neji R, Botnar R, Prieto C. Fully self-gated free-running 3D Cartesian cardiac CINE with isotropic whole-heart coverage in less than 2 min. NMR IN BIOMEDICINE 2021; 34:e4409. [PMID: 32974984 DOI: 10.1002/nbm.4409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE To develop a novel fast water-selective free-breathing 3D Cartesian cardiac CINE scan with full self-navigation and isotropic whole-heart (WH) coverage. METHODS A free-breathing 3D Cartesian cardiac CINE scan with a water-selective balanced steady-state free precession and a continuous (non-ECG-gated) variable-density Cartesian sampling with spiral profile ordering, out-inward sampling and acquisition-adaptive alternating tiny golden and golden angle increment between spiral arms is proposed. Data is retrospectively binned based on respiratory and cardiac self-navigation signals. A translational respiratory-motion-corrected and cardiac-motion-resolved image is reconstructed with a multi-bin patch-based low-rank reconstruction (MB-PROST) within about 15 min. A respiratory-motion-resolved approach is also investigated. The proposed 3D Cartesian cardiac CINE is acquired in sagittal orientation in 1 min 50 s for 1.9 mm3 isotropic WH coverage. Left ventricular (LV) function parameters and image quality derived from a blinded reading of the proposed 3D CINE framework are compared against conventional multi-slice 2D CINE imaging in 10 healthy subjects and 10 patients with suspected cardiovascular disease. RESULTS The proposed framework provides free-breathing 3D cardiac CINE images with 1.9 mm3 spatial and about 45 ms temporal resolution in a short acquisition time (<2 min). LV function parameters derived from 3D CINE were in good agreement with 2D CINE (10 healthy subjects and 10 patients). Bias and confidence intervals were obtained for end-systolic volume, end-diastolic volume and ejection fraction of 0.1 ± 3.5 mL, -0.6 ± 8.2 mL and -0.1 ± 2.2%, respectively. CONCLUSION The proposed framework enables isotropic 3D Cartesian cardiac CINE under free breathing for fast assessment of cardiac anatomy and function.
Collapse
Affiliation(s)
- Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Olivier Jaubert
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Küstner T, Fuin N, Hammernik K, Bustin A, Qi H, Hajhosseiny R, Masci PG, Neji R, Rueckert D, Botnar RM, Prieto C. CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci Rep 2020; 10:13710. [PMID: 32792507 PMCID: PMC7426830 DOI: 10.1038/s41598-020-70551-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022] Open
Abstract
Cardiac CINE magnetic resonance imaging is the gold-standard for the assessment of cardiac function. Imaging accelerations have shown to enable 3D CINE with left ventricular (LV) coverage in a single breath-hold. However, 3D imaging remains limited to anisotropic resolution and long reconstruction times. Recently deep learning has shown promising results for computationally efficient reconstructions of highly accelerated 2D CINE imaging. In this work, we propose a novel 4D (3D + time) deep learning-based reconstruction network, termed 4D CINENet, for prospectively undersampled 3D Cartesian CINE imaging. CINENet is based on (3 + 1)D complex-valued spatio-temporal convolutions and multi-coil data processing. We trained and evaluated the proposed CINENet on in-house acquired 3D CINE data of 20 healthy subjects and 15 patients with suspected cardiovascular disease. The proposed CINENet network outperforms iterative reconstructions in visual image quality and contrast (+ 67% improvement). We found good agreement in LV function (bias ± 95% confidence) in terms of end-systolic volume (0 ± 3.3 ml), end-diastolic volume (− 0.4 ± 2.0 ml) and ejection fraction (0.1 ± 3.2%) compared to clinical gold-standard 2D CINE, enabling single breath-hold isotropic 3D CINE in less than 10 s scan and ~ 5 s reconstruction time.
Collapse
Affiliation(s)
- Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK.
| | - Niccolo Fuin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | | | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | - Haikun Qi
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Küstner T, Bustin A, Jaubert O, Hajhosseiny R, Masci PG, Neji R, Botnar R, Prieto C. Isotropic 3D Cartesian single breath-hold CINE MRI with multi-bin patch-based low-rank reconstruction. Magn Reson Med 2020; 84:2018-2033. [PMID: 32250492 DOI: 10.1002/mrm.28267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a novel acquisition and reconstruction framework for isotropic 3D Cartesian cardiac CINE within a single breath-hold for left ventricle (LV) and whole-heart coverage. METHODS A variable-density Cartesian acquisition with spiral profile ordering, out-inward sampling, and acquisition-adaptive alternating tiny golden/golden angle increment between spiral arms is proposed to provide incoherent and nonredundant sampling within and among cardiac phases. A novel multi-bin patch-based low-rank reconstruction, named MB-PROST, is proposed to exploit redundant information on a local (within a patch), nonlocal (similar patches within a spatial neighborhood), and temporal (among all cardiac phases) scale with an implicit motion alignment among patches. The proposed multi-bin patch-based low-rank reconstruction reconstruction is compared against compressed sensing reconstruction, whereas LV function parameters derived from the proposed 3D CINE framework are compared against those estimated from conventional multislice 2D CINE imaging in 10 healthy subjects and 15 patients. RESULTS The proposed framework provides 3D cardiac CINE images with high spatial (1.9 mm3 ) and temporal resolution (˜50 ms) in a single breath-hold of ˜20 s for LV and ˜26 s for whole-heart coverage in healthy subjects. Shorter breath-hold durations of ˜13 to 15 s are feasible for LV coverage with slightly anisotropic resolution (1.9 × 1.9 × 2.5 mm) in patients. LV function parameters derived from 3D CINE were in good agreement with 2D CINE, with a bias of -0.1 mL/0.1 mL, -0.9 mL/-1.0 mL, -0.1%/-0.8%; and confidence intervals of ±1.7 mL/±3.7 mL, ±1.2 mL/±2.6 mL, and ±1.2%/±3.6% (10 healthy subjects/15 patients) for end-systolic volume, end-diastolic volume, and ejection fraction, respectively. CONCLUSION The proposed framework enables 3D isotropic cardiac CINE in a single breath-hold scan of ˜20 s/˜26 s for LV/whole-heart coverage, showing good agreement with clinical 2D CINE scans in terms of LV functional assessment.
Collapse
Affiliation(s)
- Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Olivier Jaubert
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Masala N, Bastiaansen JAM, Di Sopra L, Roy CW, Piccini D, Yerly J, Colotti R, Stuber M. Free‐running 5D coronary MR angiography at 1.5T using LIBRE water excitation pulses. Magn Reson Med 2020; 84:1470-1485. [DOI: 10.1002/mrm.28221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Nemanja Masala
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Jessica A. M. Bastiaansen
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Christopher W. Roy
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Advanced Clinical Imaging Technology Siemens Healthcare AG Lausanne Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Roberto Colotti
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| |
Collapse
|
8
|
Küstner T, Bustin A, Jaubert O, Neji R, Prieto C, Botnar R. 3D Cartesian fast interrupted steady-state (FISS) imaging. Magn Reson Med 2019; 82:1617-1630. [PMID: 31197881 PMCID: PMC6772102 DOI: 10.1002/mrm.27830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE To enable intrinsic and efficient fat suppression in 3D Cartesian fast interrupted steady-state (FISS) acquisitions. METHODS A periodic interruption of the balanced steady-state free precession (bSSFP) readout train (FISS) has been previously proposed for 2D radial imaging. FISS modulates the bSSFP frequency response pattern in terms of shape, width and location of stop band (attenuated transverse magnetization). Depending on the FISS interruption rate, the stop band characteristic can be exploited to suppress the fat spectrum at 3.5 ppm, thus yielding intrinsic fat suppression. For conventional 2D Cartesian sampling, ghosting/aliasing artifacts along phase-encoding direction have been reported. In this work, we propose to extend FISS to 3D Cartesian imaging and report countermeasures for the previously observed ghosting/aliasing artifacts. Key parameters (dummy prepulses, spatial resolution, and interruption rate) are investigated to optimize fat suppression and image quality. FISS behavior is examined using extended phase graph simulations to recommend parametrizations which are validated in phantom and in vivo measurements on a 1.5T MRI scanner for 3 applications: upper thigh angiography, abdominal imaging, and free-running 5D CINE. RESULTS Using optimized parameters, 3D Cartesian FISS provides homogeneous and consistent fat suppression for all 3 applications. In upper thigh angiography, vessel structures can be recovered in FISS that are obscured in bSSFP. Fat suppression in free-running cardiac CINE resulted in less fat-related motion aliasing and yielded better image quality. CONCLUSION 3D Cartesian FISS is feasible and offers homogeneous intrinsic fat suppression for selected imaging parameters without the need for dedicated preparation pulses, making it a promising candidate for free-running fat-suppressed imaging.
Collapse
Affiliation(s)
- Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Aurélien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Olivier Jaubert
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|