1
|
Demirel OB, Ghanbari F, Morales MA, Pierce P, Johnson S, Rodriguez J, Street JA, Nezafat R. Accelerated cardiac cine with spatio-coil regularized deep learning reconstruction. Magn Reson Med 2025; 93:1132-1148. [PMID: 39428898 DOI: 10.1002/mrm.30337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE To develop an iterative deep learning (DL) reconstruction with spatio-coil regularization and multichannel k-space data consistency for accelerated cine imaging. METHODS This study proposes a Spatio-Coil Regularized DL (SCR-DL) approach for iterative deep learning reconstruction incorporating multicoil information in data consistency and regularizer. SCR-DL uses shift-invariant convolutional kernels to interpolate missing k-space lines and reconstruct individual coil images, followed by a regularizer that operates simultaneously across spatial and coil dimensions using learned image priors. At 8-fold acceleration, SCR-DL was compared with Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA), sensitivity encoding (SENSE)-based DL and spatio-temporal regularized (STR)-DL reconstruction. In the retrospective undersampled cine, images were quantitatively evaluated using normalized mean square error (NMSE) and structural similarity index measure (SSIM). Additionally, agreement for left-ventricular ejection fraction and left-ventricular mass were assessed using prospectively accelerated cine images at 2-fold and 8-fold accelerations. RESULTS The SCR-DL algorithm successfully reconstructed highly accelerated cine images. SCR-DL had significant improvements in NMSE (0.03 ± 0.02) and SSIM (91.4% ± 2.7%) compared with GRAPPA (NMSE: 0.09 ± 0.04, SSIM: 69.9% ± 11.1%; p < 0.001), SENSE-DL (NMSE: 0.07 ± 0.04, SSIM: 86.9% ± 3.2%; p < 0.001), and STR-DL (NMSE: 0.04 ± 0.03, SSIM: 90.0% ± 2.5%; p < 0.001) with retrospective undersampled cine. Despite the 3-fold reduction in scan time, there was no difference between left-ventricular ejection fraction (59.8 ± 4.5 vs. 60.8 ± 4.8, p = 0.46) or left-ventricular mass (73.6 ± 19.4 g vs. 73.2 ± 19.7 g, p = 0.95) between R = 2 and R = 8 prospectively accelerated cine images. CONCLUSIONS SCR-DL enabled highly accelerated cardiac cine imaging, significantly reducing breath-hold time. Compared with GRAPPA or SENSE-DL, images reconstructed with SCR-DL showed superior NMSE and SSIM.
Collapse
Affiliation(s)
- Omer Burak Demirel
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Fahime Ghanbari
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Manuel Antonio Morales
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Pierce
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Johnson
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Rodriguez
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan Amy Street
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Heydari A, Ahmadi A, Kim TH, Bilgic B. Joint MAPLE: Accelerated joint T 1 and T 2 * $$ {{\mathrm{T}}_2}^{\ast } $$ mapping with scan-specific self-supervised networks. Magn Reson Med 2024; 91:2294-2309. [PMID: 38181183 PMCID: PMC11007829 DOI: 10.1002/mrm.29989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
PURPOSE Quantitative MRI finds important applications in clinical and research studies. However, it is encoding intensive and may suffer from prohibitively long scan times. Accelerated MR parameter mapping techniques have been developed to help address these challenges. Here, an accelerated joint T1,T 2 * $$ {{\mathrm{T}}_2}^{\ast } $$ , frequency and proton density mapping technique with scan-specific self-supervised network reconstruction is proposed to synergistically combine parallel imaging, model-based, and deep learning approaches to speed up parameter mapping. METHODS Proposed framework, Joint MAPLE, includes parallel imaging, signal modeling, and data consistency blocks which are optimized jointly in a combined loss function. A scan-specific self-supervised reconstruction is embedded into the framework, which takes advantage of multi-contrast data from a multi-echo, multi-flip angle, gradient echo acquisition. RESULTS In comparison with parallel reconstruction techniques powered by low-rank methods, emerging scan specific networks, and model-basedT 2 * $$ {{\mathrm{T}}_2}^{\ast } $$ estimation approaches, the proposed framework reduces the reconstruction error in parameter maps by approximately two-fold on average at acceleration rates as high as R = 16 with uniform sampling. It can outperform evaluated parallel reconstruction techniques up to four-fold on average in the presence of challenging sub-sampling masks. It is observed that Joint MAPLE performs well at extreme acceleration rates of R = 25 and R = 36 with error values less than 20%. CONCLUSION Joint MAPLE enables higher fidelity parameter estimation at high acceleration rates by synergistically combining parallel imaging and model-based parameter mapping and exploiting multi-echo, multi-flip angle datasets. Utilizing a scan-specific self-supervised reconstruction obviates the need for large data sets for training while improving the parameter estimation ability.
Collapse
Affiliation(s)
- Amir Heydari
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
| | - Abbas Ahmadi
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
| | - Tae Hyung Kim
- Department of Computer Engineering, Hongik University, Seoul, Korea
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Radiology, Harvard Medical School, Boston, MA, United States
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Radiology, Harvard Medical School, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
3
|
Liu C, Cui ZX, Jia S, Cheng J, Liu Y, Lin L, Hu Z, Xie T, Zhou Y, Zhu Y, Liang D, Zeng H, Wang H. DPP: deep phase prior for parallel imaging with wave encoding. Phys Med Biol 2024; 69:105013. [PMID: 38608645 DOI: 10.1088/1361-6560/ad3e5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Objective.In Magnetic Resonance (MR) parallel imaging with virtual channel-expanded Wave encoding, limitations are imposed on the ability to comprehensively and accurately characterize the background phase. These limitations are primarily attributed to the calibration process relying solely on center low-frequency Auto-Calibration Signals (ACS) data for calibration.Approach.To tackle the challenge of accurately estimating the background phase in wave encoding, a novel deep neural network model guided by deep phase priors is proposed with integrated virtual conjugate coil (VCC) extension. Concretely, within the proposed framework, the background phase is implicitly characterized by employing a carefully designed decoder convolutional neural network, leveraging the inherent characteristics of phase smoothness and compact support in the transformed domain. Furthermore, the proposed model with wave encoding benefits from additional priors, which incorporate transmission sparsity of the latent image and coil sensitivity smoothness.Main results.Ablation experiments were conducted to ascertain the proposed method's capability to implicitly represent CSM and the background phase. Subsequently, the superiority of the proposed method is demonstrated through confidence comparisons with competing methods, employing 4-fold and 5-fold acceleration experiments. In achieving 4-fold and 5-fold acceleration, the optimal quantitative metrics (PSNR/SSIM/NMSE) are 44.1359 dB/0.9863/0.0008 (4-fold) and 41.2074/0.9846/0.0017 (5-fold), respectively. Furthermore, the generalizability of the proposed method is further validated by conducting acceleration experiments with T1, T2, T2*, and various undersampling patterns. In addition, the DPP delivered much better performance than the conventional methods by exploring accelerated phase-sensitive SWI imaging. In SWI accelerated imaging, it also surpasses the optimal competing method in terms of (PSNR/SSIM/NMSE) with 0.096%/0.009%/0.0017%.Significance.The proposed method enables precise characterization of the background phase in the integrated VCC and wave encoding framework, supported via theoretical analysis and empirical findings. Our code is available at:https://github.com/sober235/DPP.
Collapse
Affiliation(s)
- Congcong Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Zhuo-Xu Cui
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Sen Jia
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Jing Cheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yuanyuan Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Ling Lin
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Taofeng Xie
- Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yihang Zhou
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, People's Republic of China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, People's Republic of China
| | - Yanjie Zhu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, People's Republic of China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, People's Republic of China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, People's Republic of China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Haifeng Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, People's Republic of China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Oscanoa JA, Ong F, Iyer SS, Li Z, Sandino CM, Ozturkler B, Ennis DB, Pilanci M, Vasanawala SS. Coil sketching for computationally efficient MR iterative reconstruction. Magn Reson Med 2024; 91:784-802. [PMID: 37848365 DOI: 10.1002/mrm.29883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Parallel imaging and compressed sensing reconstructions of large MRI datasets often have a prohibitive computational cost that bottlenecks clinical deployment, especially for three-dimensional (3D) non-Cartesian acquisitions. One common approach is to reduce the number of coil channels actively used during reconstruction as in coil compression. While effective for Cartesian imaging, coil compression inherently loses signal energy, producing shading artifacts that compromise image quality for 3D non-Cartesian imaging. We propose coil sketching, a general and versatile method for computationally-efficient iterative MR image reconstruction. THEORY AND METHODS We based our method on randomized sketching algorithms, a type of large-scale optimization algorithms well established in the fields of machine learning and big data analysis. We adapt the sketching theory to the MRI reconstruction problem via a structured sketching matrix that, similar to coil compression, considers high-energy virtual coils obtained from principal component analysis. But, unlike coil compression, it also considers random linear combinations of the remaining low-energy coils, effectively leveraging information from all coils. RESULTS First, we performed ablation experiments to validate the sketching matrix design on both Cartesian and non-Cartesian datasets. The resulting design yielded both improved computatioanal efficiency and preserved signal-to-noise ratio (SNR) as measured by the inverse g-factor. Then, we verified the efficacy of our approach on high-dimensional non-Cartesian 3D cones datasets, where coil sketching yielded up to three-fold faster reconstructions with equivalent image quality. CONCLUSION Coil sketching is a general and versatile reconstruction framework for computationally fast and memory-efficient reconstruction.
Collapse
Affiliation(s)
- Julio A Oscanoa
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Frank Ong
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Siddharth S Iyer
- Department of Electrical Engineering and Computer Science, Massachussetts Institute of Technology, Cambridge, Massachussetts, USA
| | - Zhitao Li
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Christopher M Sandino
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Batu Ozturkler
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Mert Pilanci
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | |
Collapse
|
5
|
Zhang J, Yi Z, Zhao Y, Xiao L, Hu J, Man C, Lau V, Su S, Chen F, Leong ATL, Wu EX. Calibrationless reconstruction of
uniformly‐undersampled multi‐channel MR
data with deep learning estimated
ESPIRiT
maps. Magn Reson Med 2023; 90:280-294. [PMID: 37119514 DOI: 10.1002/mrm.29625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE To develop a truly calibrationless reconstruction method that derives An Eigenvalue Approach to Autocalibrating Parallel MRI (ESPIRiT) maps from uniformly-undersampled multi-channel MR data by deep learning. METHODS ESPIRiT, one commonly used parallel imaging reconstruction technique, forms the images from undersampled MR k-space data using ESPIRiT maps that effectively represents coil sensitivity information. Accurate ESPIRiT map estimation requires quality coil sensitivity calibration or autocalibration data. We present a U-Net based deep learning model to estimate the multi-channel ESPIRiT maps directly from uniformly-undersampled multi-channel multi-slice MR data. The model is trained using fully-sampled multi-slice axial brain datasets from the same MR receiving coil system. To utilize subject-coil geometric parameters available for each dataset, the training imposes a hybrid loss on ESPIRiT maps at the original locations as well as their corresponding locations within the standard reference multi-slice axial stack. The performance of the approach was evaluated using publicly available T1-weighed brain and cardiac data. RESULTS The proposed model robustly predicted multi-channel ESPIRiT maps from uniformly-undersampled k-space data. They were highly comparable to the reference ESPIRiT maps directly computed from 24 consecutive central k-space lines. Further, they led to excellent ESPIRiT reconstruction performance even at high acceleration, exhibiting a similar level of errors and artifacts to that by using reference ESPIRiT maps. CONCLUSION A new deep learning approach is developed to estimate ESPIRiT maps directly from uniformly-undersampled MR data. It presents a general strategy for calibrationless parallel imaging reconstruction through learning from the coil and protocol-specific data.
Collapse
Affiliation(s)
- Junhao Zhang
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Zheyuan Yi
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen China
| | - Yujiao Zhao
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Linfang Xiao
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Jiahao Hu
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen China
| | - Christopher Man
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Vick Lau
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Shi Su
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Fei Chen
- Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen China
| | - Alex T. L. Leong
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| |
Collapse
|
6
|
Ryu K, Alkan C, Vasanawala SS. Improving high frequency image features of deep learning reconstructions via k-space refinement with null-space kernel. Magn Reson Med 2022; 88:1263-1272. [PMID: 35426470 PMCID: PMC9246879 DOI: 10.1002/mrm.29261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Deep learning (DL) based reconstruction using unrolled neural networks has shown great potential in accelerating MRI. However, one of the major drawbacks is the loss of high-frequency details and textures in the output. The purpose of the study is to propose a novel refinement method that uses null-space kernel to refine k-space and improve blurred image details and textures. METHODS The proposed method constrains the output of the DL to comply to the linear neighborhood relationship calibrated in the auto-calibration lines. To demonstrate efficacy, we tested our refinement method on the DL reconstruction under a variety of conditions (i.e., dataset, unrolled neural networks, and under-sampling scheme). Specifically, the method was tested on three large-scale public datasets (knee and brain) from fastMRI's multi-coil track. RESULTS The proposed scheme visually reduces the structural error in the k-space domain, enhance the homogeneity of the k-space intensity. Consequently, reconstructed image shows sharper images with enhanced details and textures. The proposed method is also successful in improving high-frequency image details (SSIM, GMSD) without sacrificing overall image error (PSNR). CONCLUSION Our findings imply that refining DL output using the proposed method may generally improve DL reconstruction as tested with various large-scale dataset and networks.
Collapse
Affiliation(s)
- Kanghyun Ryu
- Department of Radiology, Stanford University, CA, USA
| | - Cagan Alkan
- Department of Electrical Engineering, Stanford University, CA, USA
| | | |
Collapse
|
7
|
Cho J, Liao C, Tian Q, Zhang Z, Xu J, Lo WC, Poser BA, Stenger VA, Stockmann J, Setsompop K, Bilgic B. Highly accelerated EPI with wave encoding and multi-shot simultaneous multislice imaging. Magn Reson Med 2022; 88:1180-1197. [PMID: 35678236 DOI: 10.1002/mrm.29291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To introduce wave-encoded acquisition and reconstruction techniques for highly accelerated EPI with reduced g-factor penalty and image artifacts. THEORY AND METHODS Wave-EPI involves application of sinusoidal gradients during the EPI readout, which spreads the aliasing in all spatial directions, thereby taking better advantage of 3D coil sensitivity profiles. The amount of voxel spreading that can be achieved by the wave gradients during the short EPI readout period is constrained by the slew rate of the gradient coils and peripheral nerve stimulation monitor. We propose to use a "half-cycle" sinusoidal gradient to increase the amount of voxel spreading that can be achieved while respecting the slew and stimulation constraints. Extending wave-EPI to multi-shot acquisition minimizes geometric distortion and voxel blurring at high in-plane resolutions, while structured low-rank regularization mitigates shot-to-shot phase variations. To address gradient imperfections, we propose to use different point spread functions for the k-space lines with positive and negative polarities, which are calibrated with a FLEET-based reference scan. RESULTS Wave-EPI enabled whole-brain single-shot gradient-echo (GE) and multi-shot spin-echo (SE) EPI acquisitions at high acceleration factors at 3T and was combined with g-Slider encoding to boost the SNR level in 1 mm isotropic diffusion imaging. Relative to blipped-CAIPI, wave-EPI reduced average and maximum g-factors by up to 1.21- and 1.37-fold at Rin × Rsms = 3 × 3, respectively. CONCLUSION Wave-EPI allows highly accelerated single- and multi-shot EPI with reduced g-factor and artifacts and may facilitate clinical and neuroscientific applications of EPI by improving the spatial and temporal resolution in functional and diffusion imaging.
Collapse
Affiliation(s)
- Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Congyu Liao
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Zijing Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jinmin Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Wei-Ching Lo
- Siemens Medical Solutions, Boston, Massachusetts, USA
| | - Benedikt A Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - V Andrew Stenger
- MR Research Program, Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kawin Setsompop
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Arvinte M, Vishwanath S, Tewfik AH, Tamir JI. Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2021; 12906:350-360. [PMID: 35059693 PMCID: PMC8767765 DOI: 10.1007/978-3-030-87231-1_34] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accelerated multi-coil magnetic resonance imaging reconstruction has seen a substantial recent improvement combining compressed sensing with deep learning. However, most of these methods rely on estimates of the coil sensitivity profiles, or on calibration data for estimating model parameters. Prior work has shown that these methods degrade in performance when the quality of these estimators are poor or when the scan parameters differ from the training conditions. Here we introduce Deep J-Sense as a deep learning approach that builds on unrolled alternating minimization and increases robustness: our algorithm refines both the magnetization (image) kernel and the coil sensitivity maps. Experimental results on a subset of the knee fastMRI dataset show that this increases reconstruction performance and provides a significant degree of robustness to varying acceleration factors and calibration region sizes.
Collapse
Affiliation(s)
- Marius Arvinte
- The University of Texas at Austin, Austin, TX 78705, USA
| | | | - Ahmed H Tewfik
- The University of Texas at Austin, Austin, TX 78705, USA
| | | |
Collapse
|