1
|
Boğa Ç, Henning A. Bilateral orthogonality generative acquisitions method for homogeneous T 2 * images using parallel transmission at 7 T. Magn Reson Med 2025; 93:1043-1058. [PMID: 39375826 DOI: 10.1002/mrm.30329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE The novel bilateral orthogonality generative acquisitions method has been developed for homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images without the effects of transmit field inhomogeneity using a parallel-transmission (pTx) system at 7 T. THEORY AND METHODS A new method has been introduced using four low-angle gradient-echo (GRE) acquisitions to obtain homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast by removing the effects of transmit field inhomogeneity in the pTx system. First, two input images are obtained in circularly polarized mode and another mode in which the first transmit channel or channel group have an additional transmit phase of π. The last two acquisitions are single-channel acquisitions for a dual-channel system or single-channel group acquisitions for more than two channels. The introduced method is demonstrated in dual-channel and eight-channel pTx systems using phantom and whole-brain in vivo experiments. Noise performance of the proposed method is also tested against the ratio of two GRE acquisitions and the TIAMO (time-interleaved acquisitions of modes) method. RESULTS Th new method results in more homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast in the final images than the compared methods, particularly in the low-intensity regions of circularly polarized-mode images for the images obtained via ratio of the two GRE acquisitions. CONCLUSION The introduced method is easy to implement, robust, and provides homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images of the whole brain using pTx systems with any number of channels, compared with the ratio of the two GRE images and the TIAMO method.
Collapse
Affiliation(s)
- Çelik Boğa
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anke Henning
- UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Bosch D, Scheffler K. FastPtx: a versatile toolbox for rapid, joint design of pTx RF and gradient pulses using Pytorch's autodifferentiation. MAGMA (NEW YORK, N.Y.) 2024; 37:127-138. [PMID: 38064137 PMCID: PMC10876762 DOI: 10.1007/s10334-023-01134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVE With modern optimization methods, free optimization of parallel transmit pulses together with their gradient waveforms can be performed on-line within a short time. A toolbox which uses PyTorch's autodifferentiation for simultaneous optimization of RF and gradient waveforms is presented and its performance is evaluated. METHODS MR measurements were performed on a 9.4T MRI scanner using a 3D saturated single-shot turboFlash sequence for [Formula: see text] mapping. RF pulse simulation and optimization were done using a Python toolbox and a dedicated server. An RF- and Gradient pulse design toolbox was developed, including a cost function to balance different metrics and respect hardware and regulatory limits. Pulse performance was evaluated in GRE and MPRAGE imaging. Pulses for non-selective and for slab-selective excitation were designed. RESULTS Universal pulses for non-selective excitation reduced the flip angle error to an NRMSE of (12.3±1.7)% relative to the targeted flip angle in simulations, compared to (42.0±1.4)% in CP mode. The tailored pulses performed best, resulting in a narrow flip angle distribution with NRMSE of (8.2±1.0)%. The tailored pulses could be created in only 66 s, making it feasible to design them during an experiment. A 90° pulse was designed as preparation pulse for a satTFL sequence and achieved a NRMSE of 7.1%. We showed that both MPRAGE and GRE imaging benefited from the pTx pulses created with our toolbox. CONCLUSION The pTx pulse design toolbox can freely optimize gradient and pTx RF waveforms in a short time. This allows for tailoring high-quality pulses in just over a minute.
Collapse
Affiliation(s)
- Dario Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany.
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72074, Tübingen, Germany.
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72074, Tübingen, Germany
| |
Collapse
|
3
|
Bates S, Dumoulin SO, Folkers PJM, Formisano E, Goebel R, Haghnejad A, Helmich RC, Klomp D, van der Kolk AG, Li Y, Nederveen A, Norris DG, Petridou N, Roell S, Scheenen TWJ, Schoonheim MM, Voogt I, Webb A. A vision of 14 T MR for fundamental and clinical science. MAGMA (NEW YORK, N.Y.) 2023; 36:211-225. [PMID: 37036574 PMCID: PMC10088620 DOI: 10.1007/s10334-023-01081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE We outline our vision for a 14 Tesla MR system. This comprises a novel whole-body magnet design utilizing high temperature superconductor; a console and associated electronic equipment; an optimized radiofrequency coil setup for proton measurement in the brain, which also has a local shim capability; and a high-performance gradient set. RESEARCH FIELDS The 14 Tesla system can be considered a 'mesocope': a device capable of measuring on biologically relevant scales. In neuroscience the increased spatial resolution will anatomically resolve all layers of the cortex, cerebellum, subcortical structures, and inner nuclei. Spectroscopic imaging will simultaneously measure excitatory and inhibitory activity, characterizing the excitation/inhibition balance of neural circuits. In medical research (including brain disorders) we will visualize fine-grained patterns of structural abnormalities and relate these changes to functional and molecular changes. The significantly increased spectral resolution will make it possible to detect (dynamic changes in) individual metabolites associated with pathological pathways including molecular interactions and dynamic disease processes. CONCLUSIONS The 14 Tesla system will offer new perspectives in neuroscience and fundamental research. We anticipate that this initiative will usher in a new era of ultra-high-field MR.
Collapse
Affiliation(s)
- Steve Bates
- Tesla Engineering Ltd., Water Lane, Storrington, West Sussex, RH20 3EA, UK
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | | | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | | | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dennis Klomp
- Radiology Department, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anja G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yi Li
- Independent Researcher, Magdeburg, Germany
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
- Erwin L. Hahn Institute for Magnetic Resonance Imaging UNESCO World Cultural Heritage Zollverein, Kokereiallee 7, Building C84, 45141, Essen, Germany.
- Department of Clinical Neurophysiology (CNPH), Faculty Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Natalia Petridou
- Radiology Department, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Roell
- Neoscan Solutions GmbH, Joseph-von-Fraunhofer-Str. 6, 39106, Magdeburg, Germany
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Ingmar Voogt
- Wavetronica, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter MRI Centre, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
4
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
5
|
Bosch D, Bause J, Geldschläger O, Scheffler K. Optimized ultrahigh field parallel transmission workflow using rapid presaturated TurboFLASH transmit field mapping with a three-dimensional centric single-shot readout. Magn Reson Med 2022; 89:322-330. [PMID: 36120984 DOI: 10.1002/mrm.29459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To evaluate the usage of three-dimensional (3D) presaturated TurboFLASH (satTFL) for B 1 + $$ {\mathrm{B}}_1^{+} $$ and B 0 $$ {\mathrm{B}}_0 $$ mapping on single channel and parallel transmission (pTx) systems. METHODS B 1 + $$ {\mathrm{B}}_1^{+} $$ maps recorded with 3D satTFL were compared to maps from three other 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping sequences in an agar phantom. Furthermore, individual-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps of 18 human subjects were recorded with 3D satTFL using B 1 + $$ {\mathrm{B}}_1^{+} $$ interferometry. A neural network was trained for masking of the maps. RESULTS Out of the sequences compared satTFL was the only one with a mapping range exceeding well over 90°. In regions with lower flip angles there was high correspondence between satTFL and AFI. DREAM and double angle method also showed high qualitative similarity, however the magnitude differed from the other two measurements. The individual-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were successfully used for pTx pulse calculation in a separate study. CONCLUSION 3D satTFL can record high-quality B 1 + $$ {\mathrm{B}}_1^{+} $$ maps with a high dynamic range in a short time. Correspondence with AFI maps is high, while measurement duration is reduced drastically.
Collapse
Affiliation(s)
- Dario Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Jonas Bause
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ole Geldschläger
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Geldschläger O, Bosch D, Henning A. OTUP workflow: target specific optimization of the transmit k-space trajectory for flexible universal parallel transmit RF pulse design. NMR IN BIOMEDICINE 2022; 35:e4728. [PMID: 35297104 DOI: 10.1002/nbm.4728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. METHODS Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. RESULTS The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. CONCLUSIONS The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|