1
|
He L, Jiang B, Peng Y, Zhang X, Liu M. NMR Based Methods for Metabolites Analysis. Anal Chem 2025; 97:5393-5406. [PMID: 40048643 PMCID: PMC11923949 DOI: 10.1021/acs.analchem.4c06477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Metabolite analysis is essential for understanding the biochemical processes and pathways that sustain life, providing insights into the complex interactions within cellular systems and clinical examinations. This review explores recent applications of nuclear magnetic resonance (NMR) spectroscopy in metabolite studies. Various methods enhancing analytical accuracy for metabolome profiling and metabolic pathway studies, including spectral simplification techniques, quantitative NMR, high-resolution MAS NMR, and isotopic labeling, are discussed. The application of NMR in in situ and in vivo studies is also covered, highlighting in-cell NMR and in vivo MRS techniques. Last but not least, we discuss recent advancements in NMR hyperpolarization, with a focus on dynamic nuclear polarization (DNP), chemically induced dynamic nuclear polarization (CIDNP), para-hydrogen-induced polarization (PHIP), and signal amplification by reversible exchange (SABRE). These advancements offer significant potential for enhancing the sensitivity and accuracy of metabolite studies and are expected to further deepen the study and understanding of metabolites and metabolic pathways.
Collapse
Affiliation(s)
- Lichun He
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| | - Bin Jiang
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| | - Yun Peng
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| | - Xu Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| | - Maili Liu
- State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 101408, China
- Optics
Valley Laboratory, Hubei 430074, China
| |
Collapse
|
2
|
Wang Y, Yang L, Shang Y, Huang Y, Ju C, Zheng H, Zhao W, Liu J. Identifying Minimal Hepatic Encephalopathy: A New Perspective from Magnetic Resonance Imaging. J Magn Reson Imaging 2025; 61:11-24. [PMID: 38149764 DOI: 10.1002/jmri.29179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Type C hepatic encephalopathy (HE) is a condition characterized by brain dysfunction caused by liver insufficiency and/or portal-systemic blood shunting, which manifests as a broad spectrum of neurological or psychiatric abnormalities, ranging from minimal HE (MHE), detectable only by neuropsychological or neurophysiological assessment, to coma. Though MHE is the subclinical phase of HE, it is highly prevalent in cirrhotic patients and strongly associated with poor quality of life, high risk of overt HE, and mortality. It is, therefore, critical to identify MHE at the earliest and timely intervene, thereby minimizing the subsequent complications and costs. However, proper and sensitive diagnosis of MHE is hampered by its unnoticeable symptoms and the absence of standard diagnostic criteria. A variety of neuropsychological or neurophysiological tests have been performed to diagnose MHE. However, these tests are nonspecific and susceptible to multiple factors (eg, aging, education), thereby limiting their application in clinical practice. Thus, developing an objective, effective, and noninvasive method is imperative to help detect MHE. Magnetic resonance imaging (MRI), a noninvasive technique which can produce many objective biomarkers by different imaging sequences (eg, Magnetic resonance spectroscopy, DWI, rs-MRI, and arterial spin labeling), has recently shown the ability to screen MHE from NHE (non-HE) patients accurately. As advanced MRI techniques continue to emerge, more minor changes in the brain could be captured, providing new means for early diagnosis and quantitative assessment of MHE. In addition, the advancement of artificial intelligence in medical imaging also presents the potential to mine more effective diagnostic biomarkers and further improves the predictive efficiency of MHE. Taken together, advanced MRI techniques may provide a new perspective for us to identify MHE in the future. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yisong Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Longtao Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Youlan Shang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yijie Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Ju
- Department of Radiology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
3
|
Zhan H, Liu J, Fang Q, Huang Y, Chen X, Ni Y, Zhou L, Chen Z. Combining Fast Pure Shift NMR and GEMSTONE-Based Selective TOCSY for Efficient NMR Analysis of Complex Systems. Anal Chem 2024; 96:13742-13748. [PMID: 39115999 DOI: 10.1021/acs.analchem.4c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
As one of the commonly used intact detection techniques, liquid NMR spectroscopy offers unparalleled insights into the chemical environments, structures, and dynamics of molecules. However, it generally encounters the challenges of crowded or even overlapped spectra, especially when probing complex sample systems containing numerous components and complicated molecular structures. Herein, we exploit a general NMR protocol for efficient NMR analysis of complex systems by combining fast pure shift NMR and GEMSTONE-based selective TOCSY. First, this protocol enables ultrahigh-selective observation on the coupling networks that are totally correlated with targeted resonances or components, even where they are situated in severely overlapped spectral regions. Second, pure shift simplification is introduced to enhance the spectral resolution and further resolve the subspectra containing spectral congestion, thus facilitating the dissection of overlapped spectra. Additionally, sparse sampling accompanied by spectral reconstruction is adopted to significantly accelerate acquisition and improve spectral quality. The advantages of this protocol were demonstrated on different complex sample systems, including a challenging compound of estradiol, a mixture of sucrose and d-glucose, and natural grape juice, verifying its feasibility and power, and boosting the potential application landscapes in various chemical fields.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jiawei Liu
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiyuan Fang
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xinyu Chen
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Ni
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lingling Zhou
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Zhan H, Chen Y, Cui Y, Zeng Y, Feng X, Tan C, Huang C, Lin E, Huang Y, Chen Z. Pure-Shift-Based Proton Magnetic Resonance Spectroscopy for High-Resolution Studies of Biological Samples. Int J Mol Sci 2024; 25:4698. [PMID: 38731917 PMCID: PMC11083948 DOI: 10.3390/ijms25094698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications are generally confined by spectral congestion caused by numerous biological metabolites contained within the limited proton frequency range. Herein, we propose a pure-shift-based 1H localized MRS method as a proof of concept for high-resolution studies of biological samples. Benefitting from the spectral simplification from multiplets to singlet peaks, this method addresses the challenge of spectral congestion encountered in conventional MRS experiments and facilitates metabolite analysis from crowded NMR resonances. The performance of the proposed pure-shift 1H MRS method is demonstrated on different kinds of samples, including brain metabolite phantom and in vitro biological samples of intact pig brain tissue and grape tissue, using a 7.0 T animal MRI scanner. This proposed MRS method is readily implemented in common commercial NMR/MRI instruments because of its generally adopted pulse-sequence modules. Therefore, this study takes a meaningful step for MRS studies toward potential applications in metabolite analysis and disease diagnosis.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| | - Yulei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yinping Cui
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yunsong Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiaozhen Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chunhua Tan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Enping Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Saleh MG, Prescot A, Chang L, Cloak C, Cunningham E, Subramaniam P, Renshaw PF, Yurgelun-Todd D, Zöllner HJ, Roberts TP, Edden RA, Ernst T. Glutamate measurements using edited MRS. Magn Reson Med 2024; 91:1314-1322. [PMID: 38044723 PMCID: PMC10865745 DOI: 10.1002/mrm.29929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE To demonstrate J-difference coediting of glutamate using Hadamard encoding and reconstruction of Mescher-Garwood-edited spectroscopy (HERMES). METHODS Density-matrix simulations of HERMES (TE 80 ms) and 1D J-resolved (TE 31-229 ms) of glutamate (Glu), glutamine (Gln), γ-aminobutyric acid (GABA), and glutathione (GSH) were performed. HERMES comprised four sub-experiments with editing pulses applied as follows: (A) 1.9/4.56 ppm simultaneously (ONGABA /ONGSH ); (B) 1.9 ppm only (ONGABA /OFFGSH ); (C) 4.56 ppm only (OFFGABA /ONGSH ); and (D) 7.5 ppm (OFFGABA /OFFGSH ). Phantom HERMES and 1D J-resolved experiments of Glu were performed. Finally, in vivo HERMES (20-ms editing pulses) and 1D J-resolved (TE 31-229 ms) experiments were performed on 137 participants using 3 T MRI scanners. LCModel was used for quantification. RESULTS HERMES simulation and phantom experiments show a Glu-edited signal at 2.34 ppm in the Hadamard sum combination A+B+C+D with no overlapping Gln signal. The J-resolved simulations and phantom experiments show substantial TE modulation of the Glu and Gln signals across the TEs, whose average yields a well-resolved Glu signal closely matching the Glu-edited signal from the HERMES sum spectrum. In vivo quantification of Glu show that the two methods are highly correlated (p < 0.001) with a bias of ∼10%, along with similar between-subject coefficients of variation (HERMES/TE-averaged: ∼7.3%/∼6.9%). Other Hadamard combinations produce the expected GABA-edited (A+B-C-D) or GSH-edited (A-B+C-D) signal. CONCLUSION HERMES simulation and phantom experiments show the separation of Glu from Gln. In vivo HERMES experiments yield Glu (without Gln), GABA, and GSH in a single MRS scan.
Collapse
Affiliation(s)
- Muhammad G. Saleh
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Prescot
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Christine Cloak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Eric Cunningham
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Punitha Subramaniam
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT, USA
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT, USA
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Timothy P.L. Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Yang X, Liu Y, Fu CX, Chu YH, Chen Q, Wang H, Wei DX, Yao YF. Selectively Probing the Magnetic Resonance Signals of γ-Aminobutyric Acid in Human Brains In Vivo. J Magn Reson Imaging 2024; 59:954-963. [PMID: 37312270 DOI: 10.1002/jmri.28853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in human brains, playing a role in the pathogenesis of various psychiatric disorders. Current methods have some non-neglectable shortcomings and noninvasive and accurate detection of GABA in human brains is long-term challenge. PURPOSE To develop a pulse sequence capable of selectively detecting and quantifying the 1 H signal of GABA in human brains based on optimal controlled spin singlet order. STUDY TYPE Prospective. SUBJECTS/PHANTOM A phantom of GABA (pH = 7.3 ± 0.1) and 11 healthy subjects (5 females and 6 males, body mass index: 21 ± 3 kg/m2 , age: 25 ± 4 years). FIELD STRENGTH/SEQUENCE 7 Tesla, 3 Tesla, GABA-targeted magnetic resonance spectroscopy (GABA-MRS-7 T, GABA-MRS-3 T), magnetization prepared two rapid acquisition gradient echoes sequence. ASSESSMENT By using the developed pulse sequences applied on the phantom and healthy subjects, the signals of GABA were successfully selectively probed. Quantification of the signals yields the concentration of GABA in the dorsal anterior cingulate cortex (dACC) in human brains. STATISTICAL TESTS Frequency. RESULTS The 1 H signals of GABA in the phantom and in the human brains of healthy subjects were successfully detected. The concentration of GABA in the dACC of human brains was 3.3 ± 1.5 mM. DATA CONCLUSION The developed pulse sequences can be used to selectively probe the 1 H MR signals of GABA in human brains in vivo. EVIDENCE LEVEL 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Xue Yang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Ying Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Cai-Xia Fu
- Application Developments, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, 518057, China
| | - Ying-Hua Chu
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Qun Chen
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Da-Xiu Wei
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Ye-Feng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
7
|
Lu J, Jerschow A, Korenchan DE. Selective filtration of NMR signals arising from weakly- and strongly-coupled spin systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107529. [PMID: 37572586 DOI: 10.1016/j.jmr.2023.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing chemical and biological systems. However, in complex solutions with similar molecular components, NMR signals can overlap, making it challenging to distinguish and quantify individual species. In this paper, we introduce new spectral editing sequences that exploit the differences in nuclear spin interactions (J-couplings) between weakly- and strongly-coupled two-spin systems. These sequences selectively attenuate or nullify undesired spin magnetization while they preserve the desired signals, resulting in simplified NMR spectra and potentially facilitating single-species imaging applications. We demonstrate the effectiveness of our approach using a 31P spectral filtration method on a model system of nicotinamide dinucleotide (NAD), which exists in oxidized (NAD+) and reduced (NADH) forms. The presented sequences are robust to field inhomogeneity, do not require additional sub-spectra, and retain a significant portion of the original signal.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA
| | - David E Korenchan
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 75 3rd Ave., Room 1400A, Charlestown, 02129, MA, USA.
| |
Collapse
|