1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
2
|
Kumar N. Nutritional Neuropathies. Continuum (Minneap Minn) 2023; 29:1469-1491. [PMID: 37851039 DOI: 10.1212/con.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE This article reviews the etiologies, presentations, and management of neuropathies related to nutritional deficiencies. LATEST DEVELOPMENTS Peripheral neuropathy can be the predominant or only manifestation of certain nutrient deficiencies. Cognitive difficulties or involvement of other parts of the central nervous system, such as the optic nerve and spinal cord, may accompany nutritional peripheral neuropathies. In most patients, the nutritional deficiency may have a single predominant cause, but in some cases, multiple causes may coexist. Obesity, for unclear reasons, can be associated with nutrient deficiencies. The rising rates of bariatric surgery and the incidence of nutrient deficiencies following bariatric surgery make this a particularly relevant topic for neurologists. ESSENTIAL POINTS Neuropathies caused by nutrient deficiencies are preventable with appropriate supplementation in high-risk situations. Early recognition and prompt treatment are essential to ensure an optimal outcome and minimize neurologic morbidity.
Collapse
|
3
|
Bencsik P, Gömöri K, Szabados T, Sántha P, Helyes Z, Jancsó G, Ferdinandy P, Görbe A. Myocardial ischaemia reperfusion injury and cardioprotection in the presence of sensory neuropathy: Therapeutic options. Br J Pharmacol 2020; 177:5336-5356. [PMID: 32059259 PMCID: PMC7680004 DOI: 10.1111/bph.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
During the last decades, mortality from acute myocardial infarction has been dramatically reduced. However, the incidence of post-infarction heart failure is still increasing. Cardioprotection by ischaemic conditioning had been discovered more than three decades ago. Its clinical translation, however, is still an unmet need. This is mainly due to the disrupted cardioprotective signalling pathways in the presence of different cardiovascular risk factors, co-morbidities and the medication being taken. Sensory neuropathy is one of the co-morbidities that has been shown to interfere with cardioprotection. In the present review, we summarize the diverse aetiology of sensory neuropathies and the mechanisms by which these neuropathies may interfere with ischaemic heart disease and cardioprotective signalling. Finally, we suggest future therapeutic options targeting both ischaemic heart and sensory neuropathy simultaneously. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Péter Sántha
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Gábor Jancsó
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Péter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| |
Collapse
|
4
|
Toz H, Gozke E. Investigation of insulin resistance and vitamin E deficiency in chronic inflammatory demyelinatıng polyneuropathy: A 5-year retrospective study. NEUROL SCI NEUROPHYS 2020. [DOI: 10.4103/nsn.nsn_19_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Gwathmey KG, Grogan J. Nutritional neuropathies. Muscle Nerve 2019; 62:13-29. [PMID: 31837157 DOI: 10.1002/mus.26783] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022]
Abstract
Neuropathies associated with nutritional deficiencies are routinely encountered by the practicing neurologist. Although these neuropathies assume different patterns, most are length-dependent, sensory axonopathies. Cobalamin deficiency neuropathy is the exception, often presenting with a non-length-dependent sensory neuropathy. Patients with cobalamin and copper deficiency neuropathy characteristically have concomitant myelopathy, whereas vitamin E deficiency is uniquely associated with a spinocerebellar syndrome. In contrast to those nutrients for which deficiencies produce neuropathies, pyridoxine toxicity results in a non-length-dependent sensory neuronopathy. Deficiencies occur in the context of malnutrition, malabsorption, increased nutrient loss (such as with dialysis), autoimmune conditions such as pernicious anemia, and with certain drugs that inhibit nutrient absorption. When promptly identified, therapeutic nutrient supplementation may result in stabilization or improvement of these neuropathies.
Collapse
Affiliation(s)
| | - James Grogan
- University of Virginia, Charlottesville, Virginia
| |
Collapse
|
6
|
Wilmshurst JM, Ouvrier RA, Ryan MM. Peripheral nerve disease secondary to systemic conditions in children. Ther Adv Neurol Disord 2019; 12:1756286419866367. [PMID: 31447934 PMCID: PMC6691669 DOI: 10.1177/1756286419866367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
This review is an overview of systemic conditions that can be associated with peripheral nervous system dysfunction. Children may present with neuropathic symptoms for which, unless considered, a causative systemic condition may not be recognized. Similarly, some systemic conditions may be complicated by comorbid peripheral neuropathies, surveillance for which is indicated. The systemic conditions addressed in this review are critical illness polyneuropathy, chronic renal failure, endocrine disorders such as insulin-dependent diabetes mellitus and multiple endocrine neoplasia type 2b, vitamin deficiency states, malignancies and reticuloses, sickle cell disease, neurofibromatosis, connective tissue disorders, bowel dysmotility and enteropathy, and sarcoidosis. In some disorders presymptomatic screening should be undertaken, while in others there is no benefit from early detection of neuropathy. In children with idiopathic peripheral neuropathies, systemic disorders such as celiac disease should be actively excluded. While management is predominantly focused on symptomatic care through pain control and rehabilitation, some neuropathies improve with effective control of the underlying etiology and in a small proportion a more targeted approach is possible. In conclusion, peripheral neuropathies can be associated with a diverse range of medical conditions and unless actively considered may not be recognized and inadequately managed.
Collapse
Affiliation(s)
- Jo M. Wilmshurst
- Department of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s, Hospital Neuroscience Institute, University of Cape Town, Klipfontein Road, Cape Town, Western Cape, 7700, South Africa
| | - Robert A. Ouvrier
- The Institute of Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Sydney, Australia
| | - Monique M. Ryan
- Department of Neurology, Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Wilmshurst JM, Ouvrier RA. Neuropathies Secondary to Systemic Disorders. NEUROMUSCULAR DISORDERS OF INFANCY, CHILDHOOD, AND ADOLESCENCE 2015:418-430. [DOI: 10.1016/b978-0-12-417044-5.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Kraitsy K, Uecal M, Grossauer S, Bruckmann L, Pfleger F, Ropele S, Fazekas F, Gruenbacher G, Patz S, Absenger M, Porubsky C, Smolle-Juettner F, Tezer I, Molcanyi M, Fasching U, Schaefer U. Repetitive long-term hyperbaric oxygen treatment (HBOT) administered after experimental traumatic brain injury in rats induces significant remyelination and a recovery of sensorimotor function. PLoS One 2014; 9:e97750. [PMID: 24848795 PMCID: PMC4029808 DOI: 10.1371/journal.pone.0097750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022] Open
Abstract
Cells in the central nervous system rely almost exclusively on aerobic metabolism. Oxygen deprivation, such as injury-associated ischemia, results in detrimental apoptotic and necrotic cell loss. There is evidence that repetitive hyperbaric oxygen therapy (HBOT) improves outcomes in traumatic brain-injured patients. However, there are no experimental studies investigating the mechanism of repetitive long-term HBOT treatment-associated protective effects. We have therefore analysed the effect of long-term repetitive HBOT treatment on brain trauma-associated cerebral modulations using the lateral fluid percussion model for rats. Trauma-associated neurological impairment regressed significantly in the group of HBO-treated animals within three weeks post trauma. Evaluation of somatosensory-evoked potentials indicated a possible remyelination of neurons in the injured hemisphere following HBOT. This presumption was confirmed by a pronounced increase in myelin basic protein isoforms, PLP expression as well as an increase in myelin following three weeks of repetitive HBO treatment. Our results indicate that protective long-term HBOT effects following brain injury is mediated by a pronounced remyelination in the ipsilateral injured cortex as substantiated by the associated recovery of sensorimotor function.
Collapse
Affiliation(s)
- Klaus Kraitsy
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Muammer Uecal
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Stefan Grossauer
- Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Lukas Bruckmann
- Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Florentina Pfleger
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Clinical Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Franz Fazekas
- Clinical Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Gerda Gruenbacher
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Silke Patz
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Markus Absenger
- Core Facility Microscopy, Centre for Medical Research, Medical University of Graz, Graz, Austria
| | - Christian Porubsky
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Freyja Smolle-Juettner
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Irem Tezer
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marek Molcanyi
- Department of Neurosurgery, University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Ulrike Fasching
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Ute Schaefer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
9
|
|
10
|
Abstract
Neuropathies due to nutritional problems can affect certain patient populations and have a varied presentation because of multiple coexistent nutritional deficiencies. Clinicians should consider nutritional neuropathies in patients presenting with neuropathies. Clinicians should be alert for signs and symptoms of neuropathy in patients who have had bariatric surgery.
Collapse
Affiliation(s)
- Nancy Hammond
- University of Kansas Medical Center, 3599 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
11
|
Morsy MD, Mostafa OA, Hassan WN. A potential protective effect of alpha-tocopherol on vascular complication in spinal cord reperfusion injury in rats. J Biomed Sci 2010; 17:55. [PMID: 20609232 PMCID: PMC2909177 DOI: 10.1186/1423-0127-17-55] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/07/2010] [Indexed: 12/02/2022] Open
Abstract
Background Paraplegia remains a potential complication of spinal cord ischemic reperfusion injury (IRI) in which oxidative stress induced cyclooxygenase activities may contribute to ischemic neuronal damage. Prolonged administration of vitamin E (α-TOL), as a potent biological antioxidant, may have a protective role in this oxidative inflammatory ischemic cascade to reduce the incidence of paraplegia. The present study was designed to evaluate the preventive value of α-TOL in IRI of spinal cord. Methods For this study, 50 male Sprague-Dawley rats were used and divided into five experimental groups (n = 10): Control group (C); α-TOL control group (CE) which received intramuscular (i.m.) α-TOL injections (600 mg/kg); Sham operated group (S), IRI rats were subjected to laparotomy and clamping of the aorta just above the bifurcation for 45 min, then the clamp was released for 48 hrs for reperfusion; and IRIE rats group, received 600 mg/kg of α-TOL i.m. twice weekly for 6 weeks, followed by induction of IRI similar to the IRI group. At the end of the experimental protocol; motor, sensory and placing/stepping reflex evaluation was done. Plasma nitrite/nitrate (NOx) was measured. Then animals' spinal cord lumbar segments were harvested and homogenized for measurement of the levels of prostaglandin E2 (PGE2), malondialdehyde (MDA) and advanced oxidation products (AOPP), while superoxide dismutase (SOD) and catalase (CAT) activity were evaluated. Results Induction of IRI in rats resulted in significant increases in plasma levels of nitrite/nitrate (p < 0.001) and spinal cord homogenate levels of PGE2, MDA, advanced oxidation protein products AOPP and SOD with significant reduction (p < 0.001) in CAT homogenate levels. Significant impairment of motor, sensory functions and placing/stepping reflex was observed with IRI induction in the spinal cord (p < 0.001). α-TOL administration in IRIE group significantly improved all the previously measured parameters compared with IRI group. Conclusions α-TOL administration significantly prevents the damage caused by spinal cord IRI in rats with subsequent recovery of both motor and sensory functions. Alpha-tocopherol improves the oxidative stress level with subsequent reduction of the incidence of neurological deficits due to spinal cord IRI conditions.
Collapse
Affiliation(s)
- Mohamed D Morsy
- Physiology Department, College of Medicine, Menoufiya University, Egypt.
| | | | | |
Collapse
|
12
|
Abstract
Optimal functioning of the central and peripheral nervous system is dependent on a constant supply of appropriate nutrients. The first section of this review discusses neurologic manifestations related to deficiency of key nutrients such as vitamin B(12), folate, copper, vitamin E, thiamine, and others. The second section addresses neurologic complications related to bariatric surgery. The third sections includes neurologic presentations caused by nutrient deficiencies in the setting of alcoholism. The concluding section addresses neurologic deficiency diseases that have a geographic predilection.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
Ueda N, Suzuki Y, Rino Y, Takahashi T, Imada T, Takanashi Y, Kuroiwa Y. Correlation between neurological dysfunction with vitamin E deficiency and gastrectomy. J Neurol Sci 2009; 287:216-20. [PMID: 19709675 DOI: 10.1016/j.jns.2009.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We previously reported on vitamin E malabsorption after gastrectomy. In this study, we focused on neurological dysfunction due to serum vitamin E decrease during the postgastrectomy period in lager number of patients. METHODS We examined the type of gastrectomy, type of reconstruction, serum vitamin E level, and neurological status for 96 gastrectomy patients. RESULTS Low serum vitamin E levels were observed in 20 patients, and 10 of those patients suffered some neurological symptoms, i.e., peripheral neuropathy, limb or truncal ataxia. Vitamin E levels tended to decrease with time after gastrectomy, and the number of patients with low serum vitamin E levels increased at about 50 months after gastrectomy. This relationship was stronger in total gastrectomy patients than in subtotal gastrectomy patients. Ten patients were given oral vitamin E, and serum vitamin E levels normalized in 9 of the patients and neurological abnormalities improved in 8 patients. An oral intake of 300 mg or more of vitamin E was necessary for normalization of vitamin E levels. CONCLUSIONS Gastrectomy should be considered a risk for vitamin E deficiency and neurological disturbance over the long-term clinical course. An oral vitamin E supply can improve serum vitamin E levels and neurological symptoms.
Collapse
Affiliation(s)
- Naohisa Ueda
- Department of Neurology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Fusco C, Frattini D, Pisani F, Gellera C, Della Giustina E. Isolated vitamin E deficiency mimicking distal hereditary motor neuropathy in a 13-year-old boy. J Child Neurol 2008; 23:1328-30. [PMID: 18984846 DOI: 10.1177/0883073808318058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report an atypical neurophysiologic pattern of isolated vitamin E deficiency in a 13-year-old boy. Electroneurography- electromyography, somatosensory evoked potentials, serum vitamin E concentration and genetic analysis of the alpha-tocopherol transfer protein gene were performed. Nerve conduction study failed to show peripheral neuropathy whereas needle electromyography of distal muscles demonstrated chronic neurogenic motor unit potentials. Both clinical and neurophysiologic data fulfilled the criteria of distal hereditary motor neuropathy. Later on, somatosensory-evoked potential displayed absence of spinal and central response. The serum vitamin E level was low, and the patient was found to be homozygous for a 513insTT mutation in exon 3 of the alpha-tocopherol transfer protein gene. To our knowledge this is the first case of isolated deficiency of vitamin E that presents the classic neurophysiologic and clinical features of distal hereditary motor neuropathy.
Collapse
Affiliation(s)
- Carlo Fusco
- Pediatric Neurology Unit, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | | | | | | |
Collapse
|
15
|
Hilton-Jones D. Miscellaneous myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:397-409. [PMID: 18809012 DOI: 10.1016/s0072-9752(07)86020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|