1
|
Cavalcante JGT, Ribeiro VHDS, Marqueti RDC, Paz IDA, Bastos JAI, Vaz MA, Babault N, Durigan JLQ. Effect of muscle length on maximum evoked torque, discomfort, contraction fatigue, and strength adaptations during electrical stimulation in adult populations: A systematic review. PLoS One 2024; 19:e0304205. [PMID: 38857245 PMCID: PMC11164398 DOI: 10.1371/journal.pone.0304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Neuromuscular electrical stimulation (NMES) can improve physical function in different populations. NMES-related outcomes may be influenced by muscle length (i.e., joint angle), a modulator of the force generation capacity of muscle fibers. Nevertheless, to date, there is no comprehensive synthesis of the available scientific evidence regarding the optimal joint angle for maximizing the effectiveness of NMES. We performed a systematic review to investigate the effect of muscle length on NMES-induced torque, discomfort, contraction fatigue, and strength training adaptations in healthy and clinical adult populations (PROSPERO: CRD42022332965). We conducted searches across seven electronic databases: PUBMED, Web of Science, EMBASE, PEDro, BIREME, SCIELO, and Cochrane, over the period from June 2022 to October 2023, without restricting the publication year. We included cross-sectional and longitudinal studies that used NMES as an intervention or assessment tool for comparing muscle lengths in adult populations. We excluded studies on vocalization, respiratory, or pelvic floor muscles. Data extraction was performed via a standardized form to gather information on participants, interventions, and outcomes. Risk of bias was assessed using the Revised Cochrane risk-of-bias tool for cross-over trials and the Physiotherapy Evidence Database scale. Out of the 1185 articles retrieved through our search strategy, we included 36 studies in our analysis, that included 448 healthy young participants (age: 19-40 years) in order to investigate maximum evoked torque (n = 268), contraction fatigability (n = 87), discomfort (n = 82), and muscle strengthening (n = 22), as well as six participants with spinal cord injuries, and 15 healthy older participants. Meta-analyses were possible for comparing maximal evoked torque according to quadriceps muscle length through knee joint angle. At optimal muscle length 50° - 70° of knee flexion, where 0° is full extension), there was greater evoked torque during nerve stimulation compared to very short (0 - 30°) (p<0.001, CI 95%: -2.03, -1.15 for muscle belly stimulation, and -3.54, -1.16 for femoral nerve stimulation), short (31° - 49°) (p = 0.007, CI 95%: -1.58, -0.25), and long (71° - 90°) (p<0.001, CI 95%: 0.29, 1.02) muscle lengths. At long muscle lengths, NMES evoked greater torque than very short (p<0.001, CI 95%: -2.50, -0.67) and short (p = 0.04, CI 95%: -2.22, -0.06) lengths. The shortest quadriceps length generated the highest perceived discomfort for a given current amplitude. The amount of contraction fatigability was greater when muscle length allowed greater torque generation in the pre-fatigue condition. Strength gains were greater for a protocol at the optimal muscle length than for short muscle length. The quality of evidence was very high for most comparisons for evoked torque. However, further studies are necessary to achieve certainty for the other outcomes. Optimal muscle length should be considered the primary choice during NMES interventions, as it promotes higher levels of force production and may facilitate the preservation/gain in muscle force and mass, with reduced discomfort. However, a longer than optimal muscle length may also be used, due to possible muscle lengthening at high evoked tension. Thorough understanding of these physiological principles is imperative for the appropriate prescription of NMES for healthy and clinical populations.
Collapse
Affiliation(s)
- Jonathan Galvão Tenório Cavalcante
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Victor Hugo de Souza Ribeiro
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Isabel de Almeida Paz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Aguillar Ivo Bastos
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Marco Aurélio Vaz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nicolas Babault
- Centre d’Expertise de la Performance, INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Burgundy Franche-Comté, Besançon, Dijon, France
| | - João Luiz Quagliotti Durigan
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
2
|
Uwamahoro R, Sundaraj K, Feroz FS. Effect of Forearm Postures and Elbow Joint Angles on Elbow Flexion Torque and Mechanomyography in Neuromuscular Electrical Stimulation of the Biceps Brachii. SENSORS (BASEL, SWITZERLAND) 2023; 23:8165. [PMID: 37836995 PMCID: PMC10575078 DOI: 10.3390/s23198165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023]
Abstract
Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle's response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study aimed to investigate the effects of forearm postures and elbow joint angles on the muscle torque and MMG signals. Measurements of the torque around the elbow and MMG of the biceps brachii (BB) muscle were conducted in 36 healthy subjects (age, 22.24 ± 2.94 years; height, 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) using an in-house elbow flexion testbed and neuromuscular electrical stimulation (NMES) of the BB muscle. The BB muscle was stimulated while the forearm was positioned in the neutral, pronation, or supination positions. The elbow was flexed at angles of 10°, 30°, 60°, and 90°. The study analyzed the impact of the forearm posture(s) and elbow joint angle(s) on the root-mean-square value of the torque (TQRMS). Subsequently, various MMG parameters, such as the root-mean-square value (MMGRMS), the mean power frequency (MMGMPF), and the median frequency (MMGMDF), were analyzed along the longitudinal, lateral, and transverse axes of the BB muscle fibers. The test-retest interclass correlation coefficient (ICC21) for the torque and MMG ranged from 0.522 to 0.828. Repeated-measure ANOVAs showed that the forearm posture and elbow flexion angle significantly influenced the TQRMS (p < 0.05). Similarly, the MMGRMS, MMGMPF, and MMGMDF showed significant differences among all the postures and angles (p < 0.05). However, the combined main effect of the forearm posture and elbow joint angle was insignificant along the longitudinal axis (p > 0.05). The study also found that the MMGRMS and TQRMS increased with increases in the joint angle from 10° to 60° and decreased at greater angles. However, during this investigation, the MMGMPF and MMGMDF exhibited a consistent decrease in response to increases in the joint angle for the lateral and transverse axes of the BB muscle. These findings suggest that the muscle contraction evoked by NMES may be influenced by the interplay between actin and myosin filaments, which are responsible for muscle contraction and are, in turn, influenced by the muscle length. Because restoring the function of limbs is a common goal in rehabilitation services, the use of MMG in the development of methods that may enable the real-time tracking of exact muscle dimensional changes and activation levels is imperative.
Collapse
Affiliation(s)
- Raphael Uwamahoro
- Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Melaka, Malaysia; (R.U.); (F.S.F.)
- Regional Centre of Excellence in Biomedical Engineering and e-Health, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Kenneth Sundaraj
- Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Melaka, Malaysia; (R.U.); (F.S.F.)
| | - Farah Shahnaz Feroz
- Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Melaka, Malaysia; (R.U.); (F.S.F.)
| |
Collapse
|
3
|
Cavalcante JGT, Marqueti RDC, Geremia JM, de Sousa Neto IV, Baroni BM, Silbernagel KG, Bottaro M, Babault N, Durigan JLQ. The Effect of Quadriceps Muscle Length on Maximum Neuromuscular Electrical Stimulation Evoked Contraction, Muscle Architecture, and Tendon-Aponeurosis Stiffness. Front Physiol 2021; 12:633589. [PMID: 33854439 PMCID: PMC8040804 DOI: 10.3389/fphys.2021.633589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
Muscle-tendon unit length plays a crucial role in quadriceps femoris muscle (QF) physiological adaptation, but the influence of hip and knee angles during QF neuromuscular electrical stimulation (NMES) is poorly investigated. We investigated the effect of muscle length on maximum electrically induced contraction (MEIC) and current efficiency. We secondarily assessed the architecture of all QF constituents and their tendon-aponeurosis complex (TAC) displacement to calculate a stiffness index. This study was a randomized, repeated measure, blinded design with a sample of twenty healthy men aged 24.0 ± 4.6. The MEIC was assessed in four different positions: supine with knee flexion of 60° (SUP60); seated with knee flexion of 60° (SIT60); supine with knee flexion of 20° (SUP20), and seated with knee flexion of 20° (SIT20). The current efficiency (MEIC/maximum tolerated current amplitude) was calculated. Ultrasonography of the QF was performed at rest and during NMES to measure pennation angle (θ p ) and fascicle length (L f ), and the TAC stiffness index. MEIC and current efficiency were greater for SUP60 and SIT60 compared to SUP20 and SIT20. The vastus lateralis and medialis showed lower θ p and higher L f at SUP60 and SIT60, while for the rectus femoris, in SUP60 there were lower θ p and higher L f than in all positions. The vastus intermedius had a similar pattern to the other vastii, except for lack of difference in θ p between SIT60 compared to SUP20 and SIT20. The TAC stiffness index was greater for SUP60. We concluded that NMES generate greater torque and current efficiency at 60° of knee flexion, compared to 20°. For these knee angles, lengthening the QF at the hip did not promote significant change. Each QF constituent demonstrated muscle physiology patterns according to hip and/or knee angles, even though a greater L f and lower θ p were predominant in SUP60 and SIT60. QF TAC index stiffened in more elongated positions, which probably contributed to enhanced force transmission and slightly higher torque in SUP60. Our findings may help exercise physiologist better understand the impact of hip and knee angles on designing more rational NMES stimulation strategies. CLINICAL TRIAL REGISTRATION www.ClinicalTrials.gov, identifier NCT03822221.
Collapse
Affiliation(s)
| | - Rita de Cassia Marqueti
- Graduate Program in Rehabilitation Sciences, Faculdade de Ceilândia, Centro Metropolitano, Universidade de Brasília, Brasília, Brazil
| | - Jeam Marcel Geremia
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ivo Vieira de Sousa Neto
- Graduate Program in Sciences and Technology in Health, Faculdade de Ceilândia, Centro Metropolitano, Universidade de Brasília, Brasília, Brazil
| | - Bruno Manfredini Baroni
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Martim Bottaro
- Departamento de Educação Física, Faculdade de Educação Física, Universidade de Brasília, Brasília, Brazil
| | - Nicolas Babault
- Unité Cognition, Action, et Plasticité Sensorimotrice, Faculté des Sciences du Sport, Université Bourgogne, Dijon, France
| | - João Luiz Quagliotti Durigan
- Graduate Program in Rehabilitation Sciences, Faculdade de Ceilândia, Centro Metropolitano, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
4
|
Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Islam MA, Kean VSP, Davis GM. Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury. Med Eng Phys 2016; 38:767-75. [PMID: 27289541 DOI: 10.1016/j.medengphy.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 11/30/2022]
Abstract
The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B. 1515 Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Md Anamul Islam
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Victor S P Kean
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Glen M Davis
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sports Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| |
Collapse
|
5
|
Broos S, Malisoux L, Theisen D, Francaux M, Deldicque L, Thomis MA. Role of alpha-actinin-3 in contractile properties of human single muscle fibers: a case series study in paraplegics. PLoS One 2012; 7:e49281. [PMID: 23145141 PMCID: PMC3493539 DOI: 10.1371/journal.pone.0049281] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/08/2012] [Indexed: 12/04/2022] Open
Abstract
A common nonsense polymorphism in the ACTN3 gene results in the absence of α-actinin-3 in XX individuals. The wild type allele has been associated with power athlete status and an increased force output in numeral studies, though the mechanisms by which these effects occur are unclear. Recent findings in the Actn3(-/-) (KO) mouse suggest a shift towards 'slow' metabolic and contractile characteristics of fast muscle fibers lacking α-actinin-3. Skinned single fibers from the quadriceps muscle of three men with spinal cord injury (SCI) were tested regarding peak force, unloaded shortening velocity, force-velocity relationship, passive tension and calcium sensitivity. The SCI condition induces an 'equal environment condition' what makes these subjects ideal to study the role of α-actinin-3 on fiber type expression and single muscle fiber contractile properties. Genotyping for ACTN3 revealed that the three subjects were XX, RX and RR carriers, respectively. The XX carrier's biopsy was the only one that presented type I fibers with a complete lack of type II(x) fibers. Properties of hybrid type II(a)/II(x) fibers were compared between the three subjects. Absence of α-actinin-3 resulted in less stiff type II(a)/II(x) fibers. The heterozygote (RX) exhibited the highest fiber diameter (0.121±0.005 mm) and CSA (0.012±0.001 mm(2)) and, as a consequence, the highest peak force (2.11±0.14 mN). Normalized peak force was similar in all three subjects (P = 0.75). Unloaded shortening velocity was highest in R-allele carriers (P<0.001). No difference was found in calcium sensitivity. The preservation of type I fibers and the absence of type II(x) fibers in the XX individual indicate a restricted transformation of the muscle fiber composition to type II fibers in response to long-term muscle disuse. Lack of α-actinin-3 may decrease unloaded shortening velocity and increase fiber elasticity.
Collapse
Affiliation(s)
- Siacia Broos
- Exercise Physiology Research Group, Department of Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| | - Laurent Malisoux
- Sports Medicine Research Laboratory, Public Research Center for Health, Grand-Duchy of Luxembourg, Luxembourg
| | - Daniel Theisen
- Sports Medicine Research Laboratory, Public Research Center for Health, Grand-Duchy of Luxembourg, Luxembourg
| | - Marc Francaux
- Faculté d’Éducation Physique et de Réadaption, Faculté de Médecine, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Exercise Physiology Research Group, Department of Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| | - Martine A. Thomis
- Physical Activity, Sports and Health Research Group, Department of Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| |
Collapse
|
6
|
Van Leeuwen DM, De Ruiter CJ, De Haan A. Effect of stimulation intensity on assessment of voluntary activation. Muscle Nerve 2012; 45:841-8. [DOI: 10.1002/mus.23343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Mrówczyński W, Celichowski J, Krutki P, Cabaj A, Sławińska U, Majczyński H. Changes of the force-frequency relationship in the rat medial gastrocnemius muscle after total transection and hemisection of the spinal cord. J Neurophysiol 2011; 105:2943-50. [DOI: 10.1152/jn.00687.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationships between the stimulation frequency and the force developed by motor units (MUs) of the medial gastrocnemius muscle were compared between intact rats and animals after total transection or hemisection of the spinal cord at the low thoracic level. The experiments on functionally isolated MUs were carried out 14, 30, 90, and 180 days after the spinal cord injury. Axons of investigated MUs were stimulated with trains of pulses at 10 progressively increased frequencies (from 1 to 150 Hz), and the force-frequency curves were plotted. Spinal cord hemisection resulted in a considerable leftward shift of force-frequency curves in all types of MUs. After the total transection, a leftward shift of the curve was observed in fast MUs, whereas there was a rightward shift in slow MUs. These changes coincided with a decrease of stimulation frequencies necessary to evoke 60% of maximal force. Moreover, the linear correlation between these stimulation frequencies and the twitch contraction time observed in intact rats was disrupted in all groups of animals with spinal cord injury. The majority of the observed changes reached the maximum 1 mo after injury, whereas the effects evoked by spinal cord hemisection were significantly smaller and nearly constant in the studied period. The results of this study can be important for the prediction of changes in force regulation in human muscles after various extends of spinal cord injury and in evaluation of the frequency of functional electrical stimulation used for training of impaired muscles.
Collapse
Affiliation(s)
| | - Jan Celichowski
- Department of Neurobiology, University School of Physical Education, Poznań; and
| | - Piotr Krutki
- Department of Neurobiology, University School of Physical Education, Poznań; and
| | - Anna Cabaj
- Nencki Institute of Experimental Biology and
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
8
|
Biering-Sørensen B, Kristensen IB, Kjaer M, Biering-Sørensen F. Muscle after spinal cord injury. Muscle Nerve 2009; 40:499-519. [PMID: 19705475 DOI: 10.1002/mus.21391] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order to determine optimal training protocols for maintaining skeletal muscle after paralysis.
Collapse
Affiliation(s)
- Bo Biering-Sørensen
- Clinic for Spinal Cord Injuries, NeuroScience Centre, Rigshospitalet, Copenhagen University Hospital, Havnevej 25, DK-3100 Hornbaek, Denmark.
| | | | | | | |
Collapse
|
9
|
Dormer GN, Teskey GC, MacIntosh BR. Force-frequency and force-length properties in skeletal muscle following unilateral focal ischaemic insult in a rat model. Acta Physiol (Oxf) 2009; 197:227-39. [PMID: 19432588 DOI: 10.1111/j.1748-1716.2009.02001.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Our purpose was to quantify skeletal muscle properties following unilateral focal ischaemic insult (stroke) in a rat model. METHODS Male rats were divided into two groups: stroke and 2 weeks recovery (n = 8) and control group (n = 7). Stroke was induced in the area of the motor neocortex containing hind limb corticospinal neurones. Contractile properties of the medial gastrocnemius muscle were measured in situ in both limbs. Force-length and force-frequency properties were measured before and 35 min after 5 min fatiguing stimulation. RESULTS Stroke resulted in bilateral tetanic fade during 200 Hz stimulation. When normalized to 100 Hz contractions, force at 200 Hz was 95.4 +/- 0.9% for the paretic muscles, 96.7 +/- 1.7% for non-paretic muscles and 102.2 +/- 1.0% for muscles of control rats (P = 0.006). Prior to fatiguing contractions, there was no difference in the length dependence of force. During repetitive contractions, active force fell significantly to 19 +/- 4 and 25 +/- 5% of initial force in paretic and non-paretic muscles of animals with a stroke respectively. In control animals active force fell to 37 +/- 5%. During repetitive contractions, fusion index increased in muscles of stroke animals to 1.0 +/- 0 but in control animals it was 0.95 +/- 0.02. There was selective force depression at short lengths for fatigued paretic muscle (significant difference at muscle lengths less than reference length -2 mm). CONCLUSION The tetanic fade at high stimulation frequencies indicates that there may be activation failure following focal ischaemic insult. The greater magnitude of fatigue and selective depression at short lengths following repetitive contractions should be investigated further.
Collapse
Affiliation(s)
- G N Dormer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
10
|
Pelletier CA, Hicks AL. The length-tension relationship of human dorsiflexor and plantarflexor muscles after spinal cord injury. Spinal Cord 2009; 48:202-6. [PMID: 19721452 DOI: 10.1038/sc.2009.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A cross-sectional design. OBJECTIVES To examine the length-tension relationship of dorsiflexion (DF) and plantarflexion (PF) muscle groups in seven individuals with chronic spinal cord injury (SCI; C2-T7; age 43+/-10.1 years) and compare it with a group of age and sex-matched able-bodied (AB) controls. SETTING McMaster University, Hamilton, ON, Canada. METHODS Isometric single twitch properties, 0.5-s tetanic contractions (SCI) and maximal voluntary contractions (AB) were measured at nine joint angles from 20 degrees DF to 20 degrees PF. RESULTS In the DF muscles, peak-evoked twitch (PT) torque occurred at 20 degrees PF for SCI (3.4+/-1.1 N m) and AB (3.8+/-1.4 N m) with no difference in peak torque between groups, whereas peak summated force occurred at 10 degrees PF in AB and 20 degrees PF in SCI (P<0.01). In the PF muscles, PT torque occurred at 15 degrees DF in AB (18.6+/-2.6 N m) and at 5 degrees DF (6.8+/-3.3 N m; P<0.01) in SCI, and peak-summated force occurred at 15 degrees DF in AB. The SCI group did not show any change in PF peak-summated force with varying joint angles. Rates of contraction and relaxation were not different between the two groups. CONCLUSIONS The results suggest a significant change in the length-tension relationship of the PF muscles after SCI, but no change in the DF muscle group. Rehabilitation programs should focus on maintaining PF muscle length in order to optimize muscle strength and function after SCI.
Collapse
Affiliation(s)
- C A Pelletier
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
11
|
Mrówczyński W, Celichowski J, Krutki P, Górska T, Majczyński H, Sławińska U. Time-related changes of motor unit properties in the rat medial gastrocnemius muscle after spinal cord injury. I. Effects of total spinal cord transection. J Electromyogr Kinesiol 2009; 20:523-31. [PMID: 19679493 DOI: 10.1016/j.jelekin.2009.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/05/2009] [Accepted: 07/08/2009] [Indexed: 11/28/2022] Open
Abstract
The contractile properties of motor units (MUs) were electrophysiologically investigated in the medial gastrocnemius (MG) muscle in 17 Wistar three-month-old female rats: 14, 30, 90 and 180 days after the total transection of the thoracic spinal cord and compared to those in intact (control) rats. A sag phenomenon, regularly observed in unfused tetani of fast units in intact animals at 40 Hz stimulation, almost completely disappeared in spinal rats. Therefore, the MUs of intact and spinal rats were classified as fast or slow types basing on 20 Hz tetanus index, the value of which was lower or equal 2.0 for fast and higher than 2.0 for slow MUs. The MUs composition of MG muscle changed with time after the spinal cord transection: an increasing proportion of fast fatigable (FF) units starting one month after injury and a disappearance of slow (S) units within the three months were observed. In all MUs investigated the twitch contraction and half-relaxation time were significantly prolonged after injury (p<0.01, Mann-Whitney U-test). Moreover, a decrease of the fatigue index for fast resistant (FR) and slow MUs was observed in subsequent groups of spinal rats. No significant changes were found between twitch forces in all MU types of spinal animals (p>0.05). However, due to a decrease of the maximal tetanic force, a significant rise of the twitch-to-tetanus ratio of all MUs in spinal rats was detected (p<0.01). The considerable reduction of ability to potentiate the force was noticed for fast, especially FF type MUs. In conclusion, the spinal cord transection leads to changes in the proportion of the three MU types in rat MG muscle. The majority of changes in MUs' contractile properties were developed progressively with time after the spinal cord injury. However, the most intensive alterations of twitch-time parameters were observed in rats one month after the transection.
Collapse
|
12
|
Altenburg TM, de Ruiter CJ, Verdijk PWL, van Mechelen W, de Haan A. Vastus lateralis surface and single motor unit electromyography during shortening, lengthening and isometric contractions corrected for mode-dependent differences in force-generating capacity. Acta Physiol (Oxf) 2009; 196:315-28. [PMID: 19032599 DOI: 10.1111/j.1748-1716.2008.01941.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Knee extensor neuromuscular activity, rectified surface electromyography (rsEMG) and single motor unit EMG was investigated during isometric (60 degrees knee angle), shortening and lengthening contractions (50-70 degrees, 10 degrees s(-1)) corrected for force-velocity-related differences in force-generating capacity. However, during dynamic contractions additional factors such as shortening-induced force losses and lengthening-induced force gains may also affect force capacity and thereby neuromuscular activity. Therefore, even after correction for force-velocity-related differences in force capacity we expected neuromuscular activity to be higher and lower during shortening and lengthening, respectively, compared to isometric contractions. METHODS rsEMG of the three superficial muscle heads was obtained in a first session [10 and 50% maximal voluntary contraction (MVC)] and additionally EMG of (46) vastus lateralis motor units was recorded during a second session (4-76% MVC). Using superimposed electrical stimulation, force-generating capacity for shortening and lengthening contractions was found to be 0.96 and 1.16 times isometric (Iso) force capacity respectively. Therefore, neuromuscular activity during submaximal shortening and lengthening was compared with isometric contractions of respectively 1.04Iso (=1/0.96) and 0.86Iso (=1/1.16). rsEMG and discharge rates were normalized to isometric values. RESULTS rsEMG behaviour was similar (P > 0.05) during both sessions. Shortening rsEMG (1.30 +/- 0.11) and discharge rate (1.22 +/- 0.13) were higher (P < 0.05) than 1.04Iso values (1.05 +/- 0.05 and 1.03 +/- 0.04 respectively), but lengthening rsEMG (1.05 +/- 0.12) and discharge rate (0.90 +/- 0.08) were not lower (P > 0.05) than 0.86Iso values (0.76 +/- 0.04 and 0.91 +/- 0.07 respectively). CONCLUSION When force-velocity-related differences in force capacity were taken into account, neuromuscular activity was not lower during lengthening but was still higher during shortening compared with isometric contractions.
Collapse
Affiliation(s)
- T M Altenburg
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Cheshire, UK.
| | | | | | | | | |
Collapse
|
13
|
Altenburg TM, de Haan A, Verdijk PWL, van Mechelen W, de Ruiter CJ. Vastus lateralis single motor unit EMG at the same absolute torque production at different knee angles. J Appl Physiol (1985) 2009; 107:80-9. [DOI: 10.1152/japplphysiol.90322.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single motor unit electromyographic (EMG) activity of the knee extensors was investigated at different knee angles with subjects ( n = 10) exerting the same absolute submaximal isometric torque at each angle. Measurements were made over a 20° range around the optimum angle for torque production (AngleTmax) and, where feasible, over a wider range (50°). Forty-six vastus lateralis (VL) motor units were recorded at 20.7 ± 17.9 %maximum voluntary contraction (%MVC) together with the rectified surface EMG (rsEMG) of the superficial VL muscle. Due to the lower maximal torque capacity at positions more flexed and extended than AngleTmax, single motor unit recruitment thresholds were expected to decrease and discharge rates were expected to increase at angles above and below AngleTmax. Unexpectedly, the recruitment threshold was higher ( P < 0.05) at knee angles 10° more extended (43.7 ± 22.2 N·m) and not different ( P > 0.05) at knee angles 10° more flexed (35.2 ± 17.9 N·m) compared with recruitment threshold at AngleTmax (41.8 ± 21.4 N·m). Also, unexpectedly the discharge rates were similar ( P > 0.05) at the three angles: 11.6 ± 2.2, 11.6 ± 2.1, and 12.3 ± 2.1 Hz. Similar angle independent discharge rates were also found for 12 units ( n = 5; 7.4 ± 5.4 %MVC) studied over the wider (50°) range, while recruitment threshold only decreased at more flexed angles. In conclusion, the similar recruitment threshold and discharge behavior of VL motor units during submaximal isometric torque production suggests that net motor unit activation did not change very much along the ascending limb of the knee-angle torque relationship. Several factors such as length-dependent twitch potentiation, which may contribute to this unexpected aspect of motor control, are discussed.
Collapse
|
14
|
Altenburg TM, de Ruiter CJ, Verdijk PW, van Mechelen W, de Haan A. Vastus lateralis surface and single motor unit EMG following submaximal shortening and lengthening contractions. Appl Physiol Nutr Metab 2008; 33:1086-95. [DOI: 10.1139/h08-092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20° at 10°/s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%–47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 ± 0.19) and discharge rate (1.11 ± 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 ± 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 ± 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.
Collapse
Affiliation(s)
- Teatske M. Altenburg
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Cheshire, UK
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, the Netherlands
- EMGO Institute and Department of Public and Occupational Health, VU University Medical Centre, Amsterdam, the Netherlands
| | - Cornelis J. de Ruiter
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Cheshire, UK
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, the Netherlands
- EMGO Institute and Department of Public and Occupational Health, VU University Medical Centre, Amsterdam, the Netherlands
| | - Peter W.L. Verdijk
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Cheshire, UK
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, the Netherlands
- EMGO Institute and Department of Public and Occupational Health, VU University Medical Centre, Amsterdam, the Netherlands
| | - Willem van Mechelen
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Cheshire, UK
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, the Netherlands
- EMGO Institute and Department of Public and Occupational Health, VU University Medical Centre, Amsterdam, the Netherlands
| | - Arnold de Haan
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Cheshire, UK
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, the Netherlands
- EMGO Institute and Department of Public and Occupational Health, VU University Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Dudley-Javoroski S, Littmann AE, Iguchi M, Shields RK. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing. J Appl Physiol (1985) 2008; 104:1574-82. [PMID: 18436697 DOI: 10.1152/japplphysiol.00892.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With long-term electrical stimulation training, paralyzed muscle can serve as an effective load delivery agent for the skeletal system. Muscle adaptations to training, however, will almost certainly outstrip bone adaptations, exposing participants in training protocols to an elevated risk for fracture. Assessing the physiological properties of the chronically paralyzed quadriceps may transmit unacceptably high shear forces to the osteoporotic distal femur. We devised a two-pulse doublet strategy to measure quadriceps physiological properties while minimizing the peak muscle force. The purposes of the study were 1) to determine the repeatability of the doublet stimulation protocol, and 2) to compare this protocol among individuals with and without spinal cord injury (SCI). Eight individuals with SCI and four individuals without SCI underwent testing. The doublet force-frequency relationship shifted to the left after SCI, likely reflecting enhancements in the twitch-to-tetanus ratio known to exist in paralyzed muscle. Posttetanic potentiation occurred to a greater degree in subjects with SCI (20%) than in non-SCI subjects (7%). Potentiation of contractile rate occurred in both subject groups (14% and 23% for SCI and non-SCI, respectively). Normalized contractile speed (rate of force rise, rate of force fall) reflected well-known adaptations of paralyzed muscle toward a fast fatigable muscle. The doublet stimulation strategy provided repeatable and sensitive measurements of muscle force and speed properties that revealed meaningful differences between subjects with and without SCI. Doublet stimulation may offer a unique way to test muscle physiological parameters of the quadriceps in subjects with uncertain musculoskeletal integrity.
Collapse
|
16
|
Celichowski J, Mrówczyński W, Krutki P, Górska T, Majczyński H, Sławińska U. Changes in contractile properties of motor units of the rat medial gastrocnemius muscle after spinal cord transection. Exp Physiol 2006; 91:887-95. [PMID: 16728457 DOI: 10.1113/expphysiol.2005.033076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of complete transection of the spinal cord at the level of Th9/10 on contractile properties of the motor units (MUs) in the rat medial gastrocnemius (MG) muscle were investigated. Our results indicate that 1 month after injury the contraction time (time-to-peak) and half-relaxation time were prolonged and the maximal tetanic force in most of the MUs in the MG muscle of spinal rats was reduced. The resistance to fatigue also decreased in most of the MUs in the MG of spinal animals. Moreover, the post-tetanic potentiation of twitches in MUs diminished after spinal cord transection. Criteria for the division of MUs into three types, namely slow (S), fast fatigue resistant (FR) and fast fatigable (FF), applied in intact animals, could not be directly used in spinal animals owing to changes in contractile properties of MUs. The 'sag' phenomenon observed in unfused tetani of fast units in intact animals essentially disappeared in spinal rats and it was only detected in few units, at low frequencies of stimulation only. Therefore, the MUs in spinal rats were classified as fast or slow on the basis of an adjusted borderline of 20 ms, instead of 18 ms as in intact animals, owing to a slightly longer contraction time of those fast motor units with the 'sag'. We conclude that all basic contractile properties of rat motor units in the medial gastrocnemius muscle are significantly changed 1 month after complete spinal cord transection, with the majority of motor units being more fatigable and slower than those of intact rats.
Collapse
Affiliation(s)
- Jan Celichowski
- Department of Neurobiology, University School of Physical Education, 60-352 Pozñan, Poland.
| | | | | | | | | | | |
Collapse
|