1
|
Permezel F, Alty J, Harding IH, Thyagarajan D. Brain Networks Involved in Sensory Perception in Parkinson's Disease: A Scoping Review. Brain Sci 2023; 13:1552. [PMID: 38002513 PMCID: PMC10669548 DOI: 10.3390/brainsci13111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's Disease (PD) has historically been considered a disorder of motor dysfunction. However, a growing number of studies have demonstrated sensory abnormalities in PD across the modalities of proprioceptive, tactile, visual, auditory and temporal perception. A better understanding of these may inform future drug and neuromodulation therapy. We analysed these studies using a scoping review. In total, 101 studies comprising 2853 human participants (88 studies) and 125 animals (13 studies), published between 1982 and 2022, were included. These highlighted the importance of the basal ganglia in sensory perception across all modalities, with an additional role for the integration of multiple simultaneous sensation types. Numerous studies concluded that sensory abnormalities in PD result from increased noise in the basal ganglia and increased neuronal receptive field size. There is evidence that sensory changes in PD and impaired sensorimotor integration may contribute to motor abnormalities.
Collapse
Affiliation(s)
- Fiona Permezel
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
- Department of Neurology, Mayo Clinic, Rochester, MN 55901, USA
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart 7001, Australia;
| | - Ian H. Harding
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
| | - Dominic Thyagarajan
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
| |
Collapse
|
2
|
Korsun O, Renvall H, Nurminen J, Mäkelä JP, Pekkonen E. Modulation of sensory cortical activity by deep brain stimulation in advanced Parkinson's Disease. Eur J Neurosci 2022; 56:3979-3990. [PMID: 35560964 PMCID: PMC9544049 DOI: 10.1111/ejn.15692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Despite optimal oral drug treatment, about 90% of patients with Parkinson's disease develop motor fluctuation and dyskinesia within 5-10 years from the diagnosis. Moreover, the patients show non-motor symptoms in different sensory domains. Bilateral deep brain stimulation applied to the subthalamic nucleus is considered the most effective treatment in advanced Parkinson's disease and it has been suggested to affect sensorimotor modulation and relate to motor improvement in patients. However, observations on the relationship between sensorimotor activity and clinical improvement have remained sparse. Here we studied the somatosensory evoked magnetic fields in thirteen right-handed patients with advanced Parkinson's disease before and 7 months after stimulator implantation. Somatosensory processing was addressed with magnetoencephalography during alternated median nerve stimulation at both wrists. The strengths and the latencies of the ~60-ms responses at the contralateral primary somatosensory cortices were highly variable but detectable and reliably localized in all patients. The response strengths did not differ between preoperative and postoperative DBSON measurements. The change in the response strength between pre- and postoperative condition in the dominant left hemisphere of our right-handed patients correlated with the alleviation of their motor symptoms (p = 0.04). However, the result did not survive correction for multiple comparisons. Magnetoencephalography appears an effective tool to explore non-motor effects in patients with Parkinson's disease, and it may help in understanding the neurophysiological basis of deep brain stimulation. However, the high interindividual variability in the somatosensory responses and poor tolerability of DBSOFF condition warrants larger patient groups and measurements also in non-medicated patients.
Collapse
Affiliation(s)
- Olesia Korsun
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Hanna Renvall
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Jussi Nurminen
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Motion Analysis Laboratory, Children's Hospital, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jyrki P Mäkelä
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Insola A, Mazzone P, Della Marca G, Capozzo A, Vitale F, Scarnati E. Pedunculopontine tegmental Nucleus-evoked prepulse inhibition of the blink reflex in Parkinson's disease. Clin Neurophysiol 2021; 132:2729-2738. [PMID: 34417108 DOI: 10.1016/j.clinph.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects on the blink reflex (BR) of single stimuli applied to the pedunculopontine tegmental nucleus (PPTg). METHODS The BR was evoked by stimulating the supraorbital nerve (SON) in fifteen patients suffering from idiopathic Parkinson's disease (PD) who had electrodes monolaterally or bilaterally implanted in the PPTg for deep brain stimulation (DBS). Single stimuli were delivered to the PPTg through externalized electrode connection wires 3-4 days following PPTg implantation. RESULTS PPTg stimuli increased the latency and reduced duration, amplitude and area of the R2 component of the BR in comparison to the response recorded in the absence of PPTg stimulation. These effects were independent of the side of SON stimulation and were stable for interstimulus interval (ISI) between PPTg prepulse and SON stimulus from 0 to 110 ms. The PPTg-induced prepulse inhibition of the BR was bilaterally present in the brainstem. The R1 component was unaffected. CONCLUSIONS The prepulse inhibition of the R2 component may be modulated by the PPTg. SIGNIFICANCE These findings suggest that abnormalities of BR occurring in PD may be ascribed to a reduction of basal ganglia-mediated inhibition of brainstem excitability.
Collapse
Affiliation(s)
- Angelo Insola
- Clinical Neurophysiopathology, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy.
| | - Paolo Mazzone
- Functional and Stereotactic Neurosurgery, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy
| | - Giacomo Della Marca
- Institute of Neurology, Catholic University, Largo A.Gemelli 8, 00168 Rome, Italy
| | - Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
4
|
Frameless Stereotaxis for Subthalamic Nucleus Deep Brain Stimulation: An Innovative Method for the Direct Visualization of Electrode Implantation by Intraoperative X-ray Control. Brain Sci 2018; 8:brainsci8050090. [PMID: 29762549 PMCID: PMC5977081 DOI: 10.3390/brainsci8050090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022] Open
Abstract
The recent introduction of frameless devices has enabled stereotactic neurosurgery to reach a level of accuracy that is comparable to traditional frame-based methodologies. Among frameless devices, the Nexframe appears to be very useful in implanting electrodes into the subthalamic nucleus or other structures for deep brain stimulation in Parkinson’s disease. However, frameless devices, including the Nexframe, limit the possibility of intraoperative visual control of the placement of electrodes in the brain. Utilizing intraoperative O-arm Computed tomography (CT) scan or high-field Magnetic Resonance Imaging (MRI) could overcome this limitation, but their high cost restricts their use. Thus, in this paper we propose an innovation in Nexframe surgical planning that allows the intraoperative use of a C-arm X-ray apparatus to establish: (1) the progression of the electrode guide tube and the electrode in the brain; (2) the accuracy of the electrode trajectory; and (3) the correct attainment of the target. The proposed frameless technique using the Nexframe has been developed and successfully applied in our practice. It was shown to be helpful in overcoming the major issues that are usually encountered when electrodes are placed in the brain with frameless neurosurgery and reduced the risk of having to re-operate on patients to reposition the electrodes.
Collapse
|
5
|
Electroencephalographic read-outs of the modulation of cortical network activity by deep brain stimulation. Bioelectron Med 2018; 4:2. [PMID: 32232078 PMCID: PMC7098231 DOI: 10.1186/s42234-018-0003-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
Deep brain stimulation (DBS), a reversible and adjustable treatment for neurological and psychiatric refractory disorders, consists in delivering electrical currents to neuronal populations located in subcortical structures. The targets of DBS are spatially restricted, but connect to many parts of the brain, including the cortex, which might explain the observed clinical benefits in terms of symptomatology. The DBS mechanisms of action at a large scale are however poorly understood, which has motivated several groups to recently conduct many research programs to monitor cortical responses to DBS. Here we review the knowledge gathered from the use of electroencephalography (EEG) in patients treated by DBS. We first focus on the methodology to record and process EEG signals concurrently to DBS. In the second part of the review, we address the clinical and scientific benefits brought by EEG/DBS studies so far.
Collapse
|
6
|
Kang SY, Ma HI. N30 Somatosensory Evoked Potential Is Negatively Correlated with Motor Function in Parkinson's Disease. J Mov Disord 2016; 9:35-9. [PMID: 26828214 PMCID: PMC4734986 DOI: 10.14802/jmd.15038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/15/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022] Open
Abstract
Objective The aim of this study was to investigate frontal N30 status in Parkinson’s disease (PD) and to examine the correlation between the amplitude of frontal N30 and the severity of motor deficits. Methods The frontal N30 was compared between 17 PD patients and 18 healthy volunteers. Correlations between the amplitude of frontal N30 and the Unified Parkinson’s Disease Rating Scale (UPDRS) motor score of the more severely affected side was examined. Results The mean latency of the N30 was not significantly different between patients and healthy volunteers (p = 0.981), but the mean amplitude was lower in PD patients (p < 0.025). There was a significant negative correlation between the amplitude of N30 and the UPDRS motor score (r = -0.715, p = 0.013). Conclusions The frontal N30 status indicates the motor severity of PD. It can be a useful biomarker reflecting dopaminergic deficits and an objective measurement for monitoring the clinical severity of PD.
Collapse
Affiliation(s)
- Suk Yun Kang
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Hyeo-Il Ma
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
7
|
Alhourani A, McDowell MM, Randazzo MJ, Wozny TA, Kondylis ED, Lipski WJ, Beck S, Karp JF, Ghuman AS, Richardson RM. Network effects of deep brain stimulation. J Neurophysiol 2015; 114:2105-17. [PMID: 26269552 DOI: 10.1152/jn.00275.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022] Open
Abstract
The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies.
Collapse
Affiliation(s)
- Ahmad Alhourani
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael M McDowell
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Randazzo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas A Wozny
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Witold J Lipski
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah Beck
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jordan F Karp
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Avniel S Ghuman
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - R Mark Richardson
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Mazzone P, Insola A, Valeriani M, Caliandro P, Sposato S, Scarnati E. Uncertainty, misunderstanding and the pedunculopontine nucleus: the exhumation of an already buried dispute. Acta Neurochir (Wien) 2012; 154:1527-9; author reply 1531-3. [PMID: 22588336 DOI: 10.1007/s00701-012-1364-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/18/2012] [Indexed: 11/28/2022]
|
9
|
Mazzone P, Insola A, Valeriani M, Caliandro P, Sposato S, Scarnati E. Is urinary incontinence a true consequence of deep brain stimulation of the pedunculopontine tegmental nucleus in Parkinson's disease? Acta Neurochir (Wien) 2012; 154:831-4; author reply 839-41. [PMID: 22418767 DOI: 10.1007/s00701-012-1314-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
|
10
|
Yeh IJ, Tsang EW, Hamani C, Moro E, Mazzella F, Poon YY, Lozano AM, Chen R. Somatosensory evoked potentials recorded from the human pedunculopontine nucleus region. Mov Disord 2011; 25:2076-83. [PMID: 20669321 DOI: 10.1002/mds.23233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pedunculopontine nucleus region (PPNR) is an integral component of the midbrain locomotor region and has widespread connections with the cortex, thalamus, brain stem, cerebellum, spinal cord, and especially, the basal ganglia. No previous study examined the somatosensory connection of the PPNR in human. We recorded somatosensory evoked potentials (SEP) from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in the PPNR in 8 patients (6 with Parkinson's disease, 2 with progressive supranuclear palsy). Monopolar recordings from the PPNR contacts showed triphasic or biphasic potentials. The latency of the largest negative peak was between 16.8 and 18.7 milliseconds. Bipolar derivation revealed phase reversal with median nerve stimulation contralateral to the DBS electrode in 6 patients. There was no difference in SEP amplitude and latency between on and off medication states. We also studied the high frequency oscillations (HFOs) by filtering the signal between 500 and 2,500 Hz. The HFOs could be identified only from contralateral stimulation and had intraburst frequencies of 1061 ± 121 Hz, onset latencies of 13.8 ± 1.2 milliseconds, and burst durations of 7.3 ± 1.1 milliseconds. Among the 10 recordings with HFOs, only 1 had possible phase reversal in the bipolar derivation. Our results suggest that there are direct somatosensory inputs to the PPNR. The slow components and HFOs of the SEP have different origins.
Collapse
Affiliation(s)
- I-Jin Yeh
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Airaksinen K, Mäkelä JP, Taulu S, Ahonen A, Nurminen J, Schnitzler A, Pekkonen E. Effects of DBS on auditory and somatosensory processing in Parkinson's disease. Hum Brain Mapp 2010; 32:1091-9. [PMID: 20645306 DOI: 10.1002/hbm.21096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/23/2010] [Accepted: 04/13/2010] [Indexed: 11/11/2022] Open
Abstract
Motor symptoms of Parkinson's disease (PD) can be relieved by deep brain stimulation (DBS). The mechanism of action of DBS is largely unclear. Magnetoencephalography (MEG) studies on DBS patients have been unfeasible because of strong magnetic artifacts. An artifact suppression method known as spatiotemporal signal space separation (tSSS) has mainly overcome these difficulties. We wanted to clarify whether tSSS enables noninvasive measurement of the modulation of cortical activity caused by DBS. We have studied auditory and somatosensory-evoked fields (AEFs and SEFs) of advanced PD patients with bilateral subthalamic nucleus (STN) DBS using MEG. AEFs were elicited by 1-kHz tones and SEFs by electrical pulses to the median nerve with DBS on and off. Data could be successfully acquired and analyzed from 12 out of 16 measured patients. The motor symptoms were significantly relieved by DBS, which clearly enhanced the ipsilateral auditory N100m responses in the right hemisphere. Contralateral N100m responses and somatosensory P60m responses also had a tendency to increase when bilateral DBS was on. MEG with tSSS offers a novel and powerful tool to investigate DBS modulation of the evoked cortical activity in PD with high temporal and spatial resolution. The results suggest that STN-DBS modulates auditory processing in advanced PD. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Katja Airaksinen
- BioMag Laboratory, HUSLAB, Helsinki University Central Hospital (HUCH), Finland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Laser Literature Watch. Photomed Laser Surg 2006; 24:222-48. [PMID: 16706704 DOI: 10.1089/pho.2006.24.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|