1
|
González-Sánchez M, Ramírez-Expósito MJ, Martínez-Martos JM. Pathophysiology, Clinical Heterogeneity, and Therapeutic Advances in Amyotrophic Lateral Sclerosis: A Comprehensive Review of Molecular Mechanisms, Diagnostic Challenges, and Multidisciplinary Management Strategies. Life (Basel) 2025; 15:647. [PMID: 40283201 PMCID: PMC12029092 DOI: 10.3390/life15040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and evolving therapeutic strategies. Mechanistically, ALS arises from complex interactions between genetic mutations (e.g., in C9orf72, SOD1, TARDBP (TDP-43), and FUS) and dysregulated cellular pathways, including impaired RNA metabolism, protein misfolding, nucleocytoplasmic transport defects, and prion-like propagation of toxic aggregates. Phenotypic heterogeneity, manifesting as bulbar-, spinal-, or respiratory-onset variants, complicates its early diagnosis, which thus necessitates the rigorous application of the revised El Escorial criteria and emerging biomarkers such as neurofilament light chain. Clinically, ALS intersects with frontotemporal dementia (FTD) in up to 50% of the cases, driven by shared TDP-43 pathology and C9orf72 hexanucleotide expansions. Epidemiological studies have revealed a lifetime risk of 1:350, with male predominance (1.5:1) and peak onset between 50 and 70 years. Disease progression varies widely, with a median survival of 2-4 years post-diagnosis, underscoring the urgency for early intervention. Approved therapies, including riluzole (glutamate modulation), edaravone (antioxidant), and tofersen (antisense oligonucleotide), offer modest survival benefits, while dextromethorphan/quinidine alleviates the pseudobulbar affect. Non-pharmacological treatment advances, such as non-invasive ventilation (NIV), prolong survival by 13 months and improve quality of life, particularly in bulb-involved patients. Multidisciplinary care-integrating physical therapy, respiratory support, nutritional management, and cognitive assessments-is critical to addressing motor and non-motor symptoms (e.g., dysphagia, spasticity, sleep disturbances). Emerging therapies show promise in preclinical models. However, challenges persist in translating genetic insights into universally effective treatments. Ethical considerations, including euthanasia and end-of-life decision-making, further highlight the need for patient-centered communication and palliative strategies.
Collapse
Affiliation(s)
| | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, E23071 Jaén, Spain; (M.G.-S.); (M.J.R.-E.)
| |
Collapse
|
2
|
Yuan D, Jiang S, Xu R. Clinical features and progress in diagnosis and treatment of amyotrophic lateral sclerosis. Ann Med 2024; 56:2399962. [PMID: 39624969 PMCID: PMC11616751 DOI: 10.1080/07853890.2024.2399962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the central nervous system. Despite a large number of studies, the current prognosis of ALS is still not ideal. This article briefly describes the clinical features including epidemiology, genetic structure and clinical manifestations, as well as the progress of new diagnostic criteria and treatment of ALS. Meanwhile, we also discussed further both developments and improvements to enhance understanding and accelerating the introduction of the effective treatments of ALS.
Collapse
Affiliation(s)
- Dongxiang Yuan
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Crayle JI, Rampersaud E, Myers JR, Wuu J, Taylor JP, Wu G, Benatar M, Bedlack RS. Genetic Associations With an Amyotrophic Lateral Sclerosis Reversal Phenotype. Neurology 2024; 103:e209696. [PMID: 39079071 PMCID: PMC11286288 DOI: 10.1212/wnl.0000000000209696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The term "ALS Reversal" describes patients who initially meet diagnostic criteria for amyotrophic lateral sclerosis (ALS) or had clinical features most consistent with progressive muscular atrophy (PMA) but subsequently demonstrated substantial and sustained clinical improvement. The objective of this genome-wide association study (GWAS) was to identify correlates of this unusual clinical phenotype. METHODS Participants were recruited from a previously created database of individuals with the ALS Reversal phenotype. Whole-genome sequencing (WGS) data were compared with ethnicity-matched patients with typically progressive ALS enrolled through the CReATe Consortium's Phenotype-Genotype-Biomarker (PGB) study. These results were replicated using an independent ethnically matched WGS data set from Target ALS. Significant results were further explored with available databases of genetic regulatory markers and expression quantitative trait loci (eQTL) analysis. RESULTS WGS from 22 participants with documented ALS Reversals was compared with the PGB primary cohort (n = 103) and the Target ALS validation cohort (n = 140). Two genetic loci met predefined criteria for statistical significance (two-sided permutation p ≤ 0.01) and remained plausible after fine-mapping. The lead single nucleotide variant (SNV) from the first locus was rs4242007 (primary cohort GWAS OR = 12.0, 95% CI 4.1 to 34.6), which is in an IGFBP7 intron and is in near-perfect linkage disequilibrium with a SNV in the IGFBP7 promoter region. Both SNVs are associated with decreased frontal cortex IGFBP7 expression in eQTL data sets. Notably, 3 Reversals, but none of the typically progressive individuals (n = 243), were homozygous for rs4242007. The importance of the second locus, located near GRIP1, is uncertain given the absence of an associated effect on nearby gene transcription. DISCUSSION We found a significant association between the Reversal phenotype and an IGFBP7 noncoding SNV that is associated with IGFBP7 expression. This is biologically relevant as IGFBP7 is a reported inhibitor of the insulin growth factor-1 (IGF-1) receptor that activates the possibly neuroprotective IGF-1 signaling pathway. This finding is limited by small sample size but suggests that there may be merit in further exploration of IGF-1 pathway signaling as a therapeutic mechanism for ALS. TRIAL REGISTRATION INFORMATION This study was registered with ClinicalTrials.gov (NCT03464903) on March 14, 2018. The first participant was enrolled on June 22, 2018.
Collapse
Affiliation(s)
- Jesse I Crayle
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Evadnie Rampersaud
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Jason R Myers
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Joanne Wuu
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - J Paul Taylor
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Gang Wu
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Michael Benatar
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Richard S Bedlack
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
4
|
Stem Cell Therapy in Neuroimmunological Diseases and Its Potential Neuroimmunological Complications. Cells 2022; 11:cells11142165. [PMID: 35883607 PMCID: PMC9318423 DOI: 10.3390/cells11142165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Since the 1990s, transplantations of hematopoietic and mesenchymal stem cells (HSCT and MSCT) and dendritic cell (DCT) have been investigated for the treatment of neurological autoimmune disorders (NADs). With the growing number of transplanted patients, awareness of neuroimmunolgical complications has increased. Therefore, an overview of SCT for the most common NADs and reports of secondary immunity after SCT is provided. Methods: For this narrative review, a literature search of the PubMed database was performed. A total of 86 articles reporting on different SCTs in NADs and 61 articles dealing with immune-mediated neurological complications after SCT were included. For multiple sclerosis (MS), only registered trials and phase I/II or II studies were considered, whereas all available articles on other disorders were included. The different transplantation procedures and efficacy and safety data are presented. Results: In MS patients, beneficial effects of HSCT, MSCT, and DCT with a decrease in disability and stabilization of disease activity have been reported. These effects were also shown in other NADs mainly in case reports. In seven of 132 reported patients with immune-mediated neurological complications, the outcome was fatal. Conclusions: Phase III trials are ongoing for MS, but the role of SCT in other NADs is currently limited to refractory patients due to occasional serious complications.
Collapse
|
5
|
Ding Y, Botchway BOA, Zhang Y, Jin T, Liu X. The combination of autologous mesenchymal stem cell-derived exosomes and neurotrophic factors as an intervention for amyotrophic lateral sclerosis. Ann Anat 2022; 242:151921. [PMID: 35278658 DOI: 10.1016/j.aanat.2022.151921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
Amyotrophic lateral sclerosis is a chronic progressive degeneration of motor neurons and has a high mortality. Riluzole and edaravone are the only approved medications currently being used for amyotrophic lateral sclerosis in clinical settings. However, they can lead to serious complications, such as injuries to the liver and kidney. To date, there is no effective treatment for amyotrophic lateral sclerosis. In this regard, investigations concerning the employment of exosomes, mesenchymal stem cells, and neurotrophic factors to ameliorate amyotrophic lateral sclerosis are attracting considerable attention in the scientific community. Herein, we systematically analyze the relationship relevant to autologous mesenchymal stem cell derived-exosomes, neurotrophic factors and amyotrophic lateral sclerosis. Mesenchymal stem cells modulate immune response, mitigate oxidative stress, promote neuronal regeneration, and differentiate into neuronal and glial cells. Furthermore, exosomes from mesenchymal stem cells exert beneficial effects on their mother cells by preventing abnormal differentiation of mesenchymal stem cells. Similarly, neurotrophic factors regulate inflammatory response, stimulate the neuron repair, and the recovery of neuronal functioning. Therefore, autologous mesenchymal stem cells-derived exosomes combined with neurotrophic factors could potentially be an effective interventional medium for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China; School of Basic Medical Sciences, Hangzhou Normal University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
6
|
ALSUntangled 58: Azathioprine. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:592-594. [PMID: 32814467 DOI: 10.1080/21678421.2020.1809821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Staff NP, Jones DT, Singer W. Mesenchymal Stromal Cell Therapies for Neurodegenerative Diseases. Mayo Clin Proc 2019; 94:892-905. [PMID: 31054608 PMCID: PMC6643282 DOI: 10.1016/j.mayocp.2019.01.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/17/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells are multipotent cells that are being used to treat a variety of medical conditions. Over the past decade, there has been considerable excitement about using MSCs to treat neurodegenerative diseases, which are diseases that are typically fatal and without other robust therapies. In this review, we discuss the proposed MSC mechanisms of action in neurodegenerative diseases, which include growth factor secretion, exosome secretion, and attenuation of neuroinflammation. We then provide a summary of preclinical and early clinical work on MSC therapies in amyotrophic lateral sclerosis, multiple system atrophy, Parkinson disease, and Alzheimer disease. Continued rigorous and controlled studies of MSC therapies will be critical in order to establish efficacy and protect patients from possible untoward effects.
Collapse
|
8
|
Oskarsson B, Gendron TF, Staff NP. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin Proc 2018; 93:1617-1628. [PMID: 30401437 DOI: 10.1016/j.mayocp.2018.04.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons and other neuronal cells, leading to severe disability and eventually death from ventilatory failure. It has a prevalence of 5 in 100,000, with an incidence of 1.7 per 100,000, reflecting short average survival. The pathogenesis is incompletely understood, but defects of RNA processing and protein clearance may be fundamental. Repeat expansions in the chromosome 9 open reading frame 72 gene (C9orf72) are the most common known genetic cause of ALS and are seen in approximately 40% of patients with a family history and approximately 10% of those without. No environmental risk factors are proved to be causative, but many have been proposed, including military service. The diagnosis of ALS rests on a history of painless progressive weakness coupled with examination findings of upper and lower motor dysfunction. No diagnostic test is yet available, but electromyography and genetic tests can support the diagnosis. Care for patients is best provided by a multidisciplinary team, and most interventions are directed at managing symptoms. Two medications with modest benefits have Food and Drug Administration approval for the treatment of ALS: riluzole, a glutamate receptor antagonist, and, new in 2017, edaravone, a free radical scavenger. Many other encouraging treatment strategies are being explored in clinical trials for ALS; herein we review stem cell and antisense oligonucleotide gene therapies.
Collapse
|
9
|
Harrison D, Mehta P, van Es MA, Stommel E, Drory VE, Nefussy B, van den Berg LH, Crayle J, Bedlack R. “ALS reversals”: demographics, disease characteristics, treatments, and co-morbidities. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:495-499. [DOI: 10.1080/21678421.2018.1457059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Paul Mehta
- Agency for Toxic Substances and Disease Registry, National ALS Registry, Atlanta, GA, USA,
| | - Michael A. van Es
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands,
| | - Elijah Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | - Vivian E. Drory
- Department of Neurology, Tel-Aviv Medical Center, Tel-Aviv, Israel, and
| | - Beatrice Nefussy
- Department of Neurology, Tel-Aviv Medical Center, Tel-Aviv, Israel, and
| | | | - Jesse Crayle
- School of Medicine, Duke University, Durham, NC, USA,
| | - Richard Bedlack
- Department of Neurology, Duke University and Durham VA Medical Center, Durham, NC, USA
| | | |
Collapse
|
10
|
Tai H, Cui L, Guan Y, Liu M, Li X, Huang Y, Yuan J, Shen D, Li D, Zhai F. Amyotrophic Lateral Sclerosis and Myasthenia Gravis Overlap Syndrome: A Review of Two Cases and the Associated Literature. Front Neurol 2017; 8:218. [PMID: 28588549 PMCID: PMC5439131 DOI: 10.3389/fneur.2017.00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/04/2017] [Indexed: 01/21/2023] Open
Abstract
Objective To describe the characteristics of patients with amyotrophic lateral sclerosis (ALS) and myasthenia gravis (MG) overlap syndrome and explore the relationship between the two diseases. Methods We conducted a search of medical records at Peking Union Medical University Hospital from 1983 to 2015 for coexistence of ALS and MG and searched the PubMed database for all literature describing ALS and MG overlap syndrome published through December 2016. We analyzed the clinical and neurophysiological characteristics of patients by groups according to strict diagnostic criteria. Results We presented 2 patients in our database with combined ALS and MG, and together with 25 cases reported in the literature, the patients were divided into 4 groups: 12 patients with MG followed by ALS, 8 patients with ALS followed by MG, 5 ALS patients with false-positive anti-acetylcholine receptor, and the other 2 ALS patients with only myasthenia symptoms. Most patients had limb onset ALS, and myasthenia symptoms mainly affected ocular and bulbar muscles. Clinical and neurophysiological characteristics were summarized. Conclusion These findings support the conclusion that immunological mechanisms and alterations in the neuromuscular junction are related to ALS pathogenesis.
Collapse
Affiliation(s)
- Hongfei Tai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Huang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dawei Li
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Zhai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Ulusoy C, Zibandeh N, Yıldırım S, Trakas N, Zisimopoulou P, Küçükerden M, Tașlı H, Tzartos S, Göker K, Tüzün E, Akkoç T. Dental follicle mesenchymal stem cell administration ameliorates muscle weakness in MuSK-immunized mice. J Neuroinflammation 2015; 12:231. [PMID: 26646841 PMCID: PMC4673854 DOI: 10.1186/s12974-015-0451-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/04/2015] [Indexed: 01/09/2023] Open
Abstract
Background Myasthenia gravis (MG) is an antibody-mediated autoimmune disease of the neuromuscular junction (NMJ), mostly associated with acetylcholine receptor (AChR) antibodies. Around 5–10 % of MG patients show antibodies to muscle-specific tyrosine kinase (MuSK). Mesenchymal stem cell (MSC) administration has been shown to ameliorate muscle weakness in the experimental autoimmune myasthenia gravis (EAMG) model induced by AChR immunization. Methods To investigate the efficacy of stem cell treatment in MuSK-related EAMG, clinical and immunological features of MuSK-immunized mice with or without dental follicle MSC (DFMSC) treatment were compared. Results MuSK-immunized mice intravenously treated with DFMSC after second and third immunizations showed significantly lower EAMG incidence and severity and reduced serum anti-MuSK antibody, NMJ IgG, and C3 deposit levels and CD11b+ lymph node cell ratios. Moreover, lymph node cells of DFMSC-administered mice showed reduced proliferation and IL-6 and IL-12 production responses to MuSK stimulation. By contrast, proportions of B and T cell populations and production of a wide variety of cytokines were not affected from DFMSC treatment. Conclusions Our results suggest that DFMSC treatment shows its beneficial effects mostly through suppression of innate immune system, whereas other immune functions appear to be preserved. Stem cell treatment might thus constitute a specific and effective treatment method in MuSK-associated MG. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0451-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Canan Ulusoy
- Department of Neuroscience, Institute for Experimental Medical Research (DETAE), Istanbul University, Istanbul, Turkey
| | - Noushin Zibandeh
- Division of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Selin Yıldırım
- Division of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Nikolaos Trakas
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Melike Küçükerden
- Department of Neuroscience, Institute for Experimental Medical Research (DETAE), Istanbul University, Istanbul, Turkey
| | - Hatice Tașlı
- Department of Neuroscience, Institute for Experimental Medical Research (DETAE), Istanbul University, Istanbul, Turkey
| | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Kamil Göker
- Department of Oral and Maxillofacial Surgery, Marmara University Faculty of Dentistry, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Institute for Experimental Medical Research (DETAE), Istanbul University, Istanbul, Turkey. .,Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Capa, Turkey.
| | - Tunç Akkoç
- Division of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
12
|
|
13
|
Gothelf Y, Abramov N, Harel A, Offen D. Safety of repeated transplantations of neurotrophic factors-secreting human mesenchymal stromal stem cells. Clin Transl Med 2014; 3:21. [PMID: 25097724 PMCID: PMC4108239 DOI: 10.1186/2001-1326-3-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/20/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Therapies based on mesenchymal stem cells (MSC) have been shown to have potential benefit in several clinical studies. We have shown that, using a medium-based approach, MSC can be induced to secrete elevated levels of neurotropic factors, which have been shown to have protective effects in animal models of neurodegenerative diseases. These cells, designated MSC-NTF cells (Neurotrophic factor-secreting MSC, also known as NurOwn™) derived from the patient's own bone marrow, have been recently used for Phase I/II and Phase IIa clinical studies in patients with Amyotrophic Lateral Sclerosis (ALS). In these studies, ALS patients were subjected to a single administration of autologous MSC-NTF cells. The data from these studies indicate that the single administration of MSC-NTF cells is safe and well tolerated. In a recently published case report, it was shown that repeated MSC-NTF injections in an ALS patient treated on a compassionate basis were safe and well tolerated [Muscle Nerve 49:455-457, 2014]. METHODS In the current study we studied the toxicity and tolerability of three consecutive intramuscular injections (IM) of cryopreserved human MSC-NTF cells in C57BL/B6 mice to investigate the effect of repeated administration of these cells. RESULTS Monitoring of clinical signs and immune reactions showed that repeated injections of the cells did not lead to any serious adverse events. Pathology, histology and blood biochemistry parameters tested were found to be within normal ranges with no sign of tumor formation. CONCLUSIONS Based on these results we conclude that repeated injections of human MSC-NTF are well tolerated in mice. The results of this study suggest that if the outcomes of additional clinical studies point to the need for repeated treatments, such option can be considered safe.
Collapse
Affiliation(s)
- Yael Gothelf
- BrainStorm Cell Therapeutics, POB 10019, Kiryat Aryeh, Petach Tikva 49001, Israel
| | - Natalie Abramov
- BrainStorm Cell Therapeutics, POB 10019, Kiryat Aryeh, Petach Tikva 49001, Israel
| | - Adrian Harel
- BrainStorm Cell Therapeutics, POB 10019, Kiryat Aryeh, Petach Tikva 49001, Israel
| | - Daniel Offen
- BrainStorm Cell Therapeutics, POB 10019, Kiryat Aryeh, Petach Tikva 49001, Israel
| |
Collapse
|
14
|
Ilic D. Industry Update: Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions from 1 January 2013 until 28 February 2014. Regen Med 2014. [DOI: 10.2217/rme.14.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|