1
|
Liu C, Xiu C, Zou Y, Wu W, Huang Y, Wan L, Xu S, Han B, Zhang H. Cervical cancer diagnosis model using spontaneous Raman and Coherent anti-Stokes Raman spectroscopy with artificial intelligence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125353. [PMID: 39481169 DOI: 10.1016/j.saa.2024.125353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Cervical cancer is the fourth most common cancer worldwide. Histopathology, which is currently considered the gold standard for cervical cancer diagnosis, can be time-consuming and subjective. Therefore, there is an urgent need for a rapid, objective, and non-destructive cervical cancer detection technique. In this study, high-wavenumber spontaneous Raman spectroscopy was used to detect cervical squamous cell carcinoma and normal tissues. The levels of lipids, fatty acids, and proteins in cervical cancerous tissues were found to be higher than those in normal tissues. Raman difference spectroscopy revealed the most significant difference at 2928 cm-1. Additionally, a Coherent anti-Stokes Raman spectroscopy (CARS) instrument was employed to enhance the wavenumber signal intensity and sensitivity. The intrinsic relationship between CARS imaging and cervical lesions was established. The CARS images indicated that the intensity of normal cervical squamous cells was zero, whereas the intensities of keratinized and non-keratinized cervical squamous cell carcinoma tissues were significantly higher. Consequently, diagnostic outcomes could be obtained by observing CARS images with the naked eye. Furthermore, the characteristic structure of keratin pearls in keratinized cervical cancer could serve as a marker for subdividing cervical cancer types. Finally, a ConvNeXt network, a machine-learning model built from CARS images, was utilized to classify different types of tissue images. The results indicated a verification accuracy of 100 %, with a loss function of 0.0927. These findings suggest that the diagnostic model established using CARS images could efficiently diagnose cervical cancer, providing novel insights into the pathological diagnosis of this disease.
Collapse
Affiliation(s)
- Chenyang Liu
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Caifeng Xiu
- The Department of Cadre's Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Yongfang Zou
- The Department of Radiology, Changchun Infectious Disease Hospital, Changchun 130000, China.
| | - Weina Wu
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Yizhi Huang
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Lili Wan
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry of Jilin University, Changchun 130000, China.
| | - Bing Han
- The Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Haipeng Zhang
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Alix JJP, Plesia M, Hool SA, Coldicott I, Kendall CA, Shaw PJ, Mead RJ, Day JC. Fibre optic Raman spectroscopy for the evaluation of disease state in Duchenne muscular dystrophy: an assessment using the mdx model and human muscle. Muscle Nerve 2022; 66:362-369. [PMID: 35762576 PMCID: PMC9541045 DOI: 10.1002/mus.27671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022]
Abstract
Introduction/Aims Raman spectroscopy is an emerging technique for the evaluation of muscle disease. In this study we evaluate the ability of in vivo intramuscular Raman spectroscopy to detect the effects of voluntary running in the mdx model of Duchenne muscular dystrophy (DMD). We also compare mdx data with muscle spectra from human DMD patients. Methods Thirty 90‐day‐old mdx mice were randomly allocated to an exercised group (48‐hour access to a running wheel) and an unexercised group (n = 15 per group). In vivo Raman spectra were collected from both gastrocnemius muscles and histopathological assessment subsequently performed. Raman data were analyzed using principal component analysis–fed linear discriminant analysis (PCA‐LDA). Exercised and unexercised mdx muscle spectra were compared with human DMD samples using cosine similarity. Results Exercised mice ran an average of 6.5 km over 48 hours, which induced a significant increase in muscle necrosis (P = .03). PCA‐LDA scores were significantly different between the exercised and unexercised groups (P < .0001) and correlated significantly with distance run (P = .01). Raman spectra from exercised mice more closely resembled human spectra than those from unexercised mice. Discussion Raman spectroscopy provides a readout of the biochemical alterations in muscle in both the mdx mouse and human DMD muscle.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - Maria Plesia
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | - Sarah A Hool
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | | | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - John C Day
- Interface Analysis Centre, School of Physics, University of Bristol
| |
Collapse
|
3
|
Moors TE, Maat CA, Niedieker D, Mona D, Petersen D, Timmermans-Huisman E, Kole J, El-Mashtoly SF, Spycher L, Zago W, Barbour R, Mundigl O, Kaluza K, Huber S, Hug MN, Kremer T, Ritter M, Dziadek S, Geurts JJG, Gerwert K, Britschgi M, van de Berg WDJ. The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson's disease brain as revealed by multicolor STED microscopy. Acta Neuropathol 2021; 142:423-448. [PMID: 34115198 PMCID: PMC8357756 DOI: 10.1007/s00401-021-02329-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Various post-translationally modified (PTM) proteoforms of alpha-synuclein (aSyn)-including C-terminally truncated (CTT) and Serine 129 phosphorylated (Ser129-p) aSyn-accumulate in Lewy bodies (LBs) in different regions of the Parkinson's disease (PD) brain. Insight into the distribution of these proteoforms within LBs and subcellular compartments may aid in understanding the orchestration of Lewy pathology in PD. We applied epitope-specific antibodies against CTT and Ser129-p aSyn proteoforms and different aSyn domains in immunohistochemical multiple labelings on post-mortem brain tissue from PD patients and non-neurological, aged controls, which were scanned using high-resolution 3D multicolor confocal and stimulated emission depletion (STED) microscopy. Our multiple labeling setup highlighted a consistent onion skin-type 3D architecture in mature nigral LBs in which an intricate and structured-appearing framework of Ser129-p aSyn and cytoskeletal elements encapsulates a core enriched in CTT aSyn species. By label-free CARS microscopy we found that enrichments of proteins and lipids were mainly localized to the central portion of nigral aSyn-immunopositive (aSyn+) inclusions. Outside LBs, we observed that 122CTT aSyn+ punctae localized at mitochondrial membranes in the cytoplasm of neurons in PD and control brains, suggesting a physiological role for 122CTT aSyn outside of LBs. In contrast, very limited to no Ser129-p aSyn immunoreactivity was observed in brains of non-neurological controls, while the alignment of Ser129-p aSyn in a neuronal cytoplasmic network was characteristic for brains with (incidental) LB disease. Interestingly, Ser129-p aSyn+ network profiles were not only observed in neurons containing LBs but also in neurons without LBs particularly in donors at early disease stage, pointing towards a possible subcellular pathological phenotype preceding LB formation. Together, our high-resolution and 3D multicolor microscopy observations in the post-mortem human brain provide insights into potential mechanisms underlying a regulated LB morphogenesis.
Collapse
|
4
|
Eggers B, Schork K, Turewicz M, Barkovits K, Eisenacher M, Schröder R, Clemen CS, Marcus K. Advanced Fiber Type-Specific Protein Profiles Derived from Adult Murine Skeletal Muscle. Proteomes 2021; 9:proteomes9020028. [PMID: 34201234 PMCID: PMC8293376 DOI: 10.3390/proteomes9020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a heterogeneous tissue consisting of blood vessels, connective tissue, and muscle fibers. The last are highly adaptive and can change their molecular composition depending on external and internal factors, such as exercise, age, and disease. Thus, examination of the skeletal muscles at the fiber type level is essential to detect potential alterations. Therefore, we established a protocol in which myosin heavy chain isoform immunolabeled muscle fibers were laser microdissected and separately investigated by mass spectrometry to develop advanced proteomic profiles of all murine skeletal muscle fiber types. All data are available via ProteomeXchange with the identifier PXD025359. Our in-depth mass spectrometric analysis revealed unique fiber type protein profiles, confirming fiber type-specific metabolic properties and revealing a more versatile function of type IIx fibers. Furthermore, we found that multiple myopathy-associated proteins were enriched in type I and IIa fibers. To further optimize the assignment of fiber types based on the protein profile, we developed a hypothesis-free machine-learning approach, identified a discriminative peptide panel, and confirmed our panel using a public data set.
Collapse
Affiliation(s)
- Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
- Correspondence: (B.E.); (K.M.)
| | - Karin Schork
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christoph S. Clemen
- German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany;
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
- Correspondence: (B.E.); (K.M.)
| |
Collapse
|
5
|
Oda R, Agsalda-Garcia M, Loi N, Kamada N, Milne C, Killeen J, Choi SY, Lim E, Acosta-Maeda T, Misra A, Shiramizu B. Raman-Enhanced Spectroscopy Distinguishes Anal Squamous Intraepithelial Lesions in Human Immunodeficiency Virus-Serodiscordant Couples. AIDS Res Hum Retroviruses 2019; 35:287-294. [PMID: 30612435 DOI: 10.1089/aid.2018.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HIV-positive individuals are at increased risk for precancerous anal squamous intraepithelial lesions (SILs). Anal cytology and digital rectal examination are performed as screening tools, but extensive training and appropriate instruments are required to follow up on an abnormal anal cytology. Thus, novel approaches to SIL evaluation could improve better health care follow-up by efficient and timely diagnosis to offer treatment options. Recently, Raman-enhanced spectroscopy (RESpect) has emerged as a potential new tool for early identification of SIL. RESpect is a noninvasive, label-free, laser-based technique that identifies molecular composition of tissues and cells. HIV-serodiscordant couples had anal biopsies obtained during high-resolution anoscopy. RESpect was performed on the specimens. Principal component analysis of the data identified differences between normal and abnormal tissue as well as HIV-positive and HIV-negative individuals of each couple even with similar pathologies. RESpect has the potential to change the paradigm of anal pathology diagnosis and could provide insight into different pathways leading to SIL in HIV-serodiscordant couples.
Collapse
Affiliation(s)
- Robert Oda
- 1 Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Melissa Agsalda-Garcia
- 2 Department of Tropical Medicine, Medical Microbiology and Pharmacology, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Nicholas Loi
- 2 Department of Tropical Medicine, Medical Microbiology and Pharmacology, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Natalie Kamada
- 2 Department of Tropical Medicine, Medical Microbiology and Pharmacology, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Cris Milne
- 2 Department of Tropical Medicine, Medical Microbiology and Pharmacology, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Jeffrey Killeen
- 3 Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - So Yung Choi
- 4 Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Eunjung Lim
- 4 Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Tayro Acosta-Maeda
- 5 Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Anupam Misra
- 5 Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Bruce Shiramizu
- 2 Department of Tropical Medicine, Medical Microbiology and Pharmacology, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|