1
|
Norman O, Koivunen J, Kaarteenaho R, Salo AM, Mäki JM, Myllyharju J, Pihlajaniemi T, Heikkinen A. Contribution of collagen XIII to lung function and development of pulmonary fibrosis. BMJ Open Respir Res 2023; 10:e001850. [PMID: 38568728 PMCID: PMC10729248 DOI: 10.1136/bmjresp-2023-001850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/30/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Collagen XIII is a transmembrane collagen associated with neuromuscular junction development, and in humans its deficiency results in congenital myasthenic syndrome type 19 (CMS19), which leads to breathing difficulties. CMS19 patients usually have restricted lung capacity and one patient developed chronic lung disease. In single-cell RNA sequencing studies, collagen XIII has been identified as a marker for pulmonary lipofibroblasts, which have been implicated in the resolution of pulmonary fibrosis. METHODS We investigated the location and function of collagen XIII in the lung to understand the origin of pulmonary symptoms in human CMS19 patients. Additionally, we performed immunostainings on idiopathic pulmonary fibrosis (IPF) samples (N=5) and both normal and fibrotic mouse lung. To study whether the lack of collagen XIII predisposes to restrictive lung disease, we exposed Col13a1-modified mice to bleomycin-induced pulmonary fibrosis. RESULTS Apparently normal alveolar septum sections of IPF patients' lungs stained faintly for collagen XIII, and its expression was pinpointed to the septal fibroblasts in the mouse lung. Lung capacity was increased in mice lacking collagen XIII by over 10%. In IPF samples, collagen XIII was expressed by basal epithelial cells, hyperplastic alveolar epithelial cells and stromal cells in fibrotic areas, but the development of pulmonary fibrosis was unaffected in collagen XIII-deficient mice. CONCLUSIONS Changes in mouse lung function appear to represent a myasthenic manifestation of collagen XIII deficiency. We suggest that respiratory muscle myasthenia is the primary cause of the breathing problems suffered by CMS19 patients in addition to skeletal deformities. Induction of collagen XIII expression in the IPF patients' lungs warrants further studies to reveal collagen XIII-dependent disease mechanisms.
Collapse
Affiliation(s)
- Oula Norman
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jarkko Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Center for Internal Medicine and Respiratory Medicine, Oulu University Hospital, Oulu, Finland
| | - Antti M Salo
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Joni M Mäki
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Kemppainen AV, Finnilä MA, Heikkinen A, Härönen H, Izzi V, Kauppinen S, Saarakkala S, Pihlajaniemi T, Koivunen J. The CMS19 disease model specifies a pivotal role for collagen XIII in bone homeostasis. Sci Rep 2022; 12:5866. [PMID: 35393492 PMCID: PMC8990013 DOI: 10.1038/s41598-022-09653-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the COL13A1 gene result in congenital myasthenic syndrome type 19 (CMS19), a disease of neuromuscular synapses and including various skeletal manifestations, particularly facial dysmorphisms. The phenotypic consequences in Col13a1 null mice (Col13a1−/−) recapitulate the muscle findings of the CMS19 patients. Collagen XIII (ColXIII) is exists as two forms, a transmembrane protein and a soluble molecule. While the Col13a1−/− mice have poorly formed neuromuscular junctions, the prevention of shedding of the ColXIII ectodomain in the Col13a1tm/tm mice results in acetylcholine receptor clusters of increased size and complexity. In view of the bone abnormalities in CMS19, we here studied the tubular and calvarial bone morphology of the Col13a1−/− mice. We discovered several craniofacial malformations, albeit less pronounced ones than in the human disease, and a reduction of cortical bone mass in aged mice. In the Col13a1tm/tm mice, where ColXIII is synthesized but the ectodomain shedding is prevented due to a mutation in a protease recognition sequence, the cortical bone mass decreased as well with age and the cephalometric analyses revealed significant craniofacial abnormalities but no clear phenotypical pattern. To conclude, our data indicates an intrinsic role for ColXIII, particularly the soluble form, in the upkeep of bone with aging and suggests the possibility of previously undiscovered bone pathologies in patients with CMS19.
Collapse
Affiliation(s)
- A V Kemppainen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - M A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - A Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - H Härönen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - V Izzi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.,Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Foundation for the Finnish Cancer Institute, Tukholmankatu 8, 00130, Helsinki, Finland
| | - S Kauppinen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - T Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - J Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
3
|
Kediha MI, Tazir M, Sternberg D, Eymard B, Alipacha L. Moderate phenotype of a congenital myasthenic syndrome type 19 caused by mutation of the COL13A1 gene: a case report. J Med Case Rep 2022; 16:134. [PMID: 35337379 PMCID: PMC8957144 DOI: 10.1186/s13256-022-03268-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Congenital myasthenic syndromes caused by mutations in the COL13A1 gene are very rare and have a phenotype described as severe. We present the first case of congenital myasthenic syndrome described in Algeria and the Maghreb with a new mutation of this gene. Case presentation We present an 8-year-old Algerian female patient, who presented with a moderate phenotype with bilateral ptosis that fluctuates during the day and has occurred since birth. During the investigation, and despite the very probable congenital origin, we ruled out other diagnoses that could induce pathology of the neuromuscular junction. The genetic study confirmed our diagnosis suspicion by highlighting a new mutation in the COL13A1 gene. Conclusion We report a case with a mutation of the Col13A1 gene, reported in the Maghreb (North Africa), and whose phenotype is moderate compared with the majority of cases found in the literature.
Collapse
Affiliation(s)
- Mohamed Islam Kediha
- Neurology Department, Mustapha Bacha University Hospital, Benyoucef Benkhedda University, Algiers, Algeria. .,Neurology Department, Pitié Salpetriére University Hospital, Paris, France.
| | - Meriem Tazir
- Neurology Department, Mustapha Bacha University Hospital, Benyoucef Benkhedda University, Algiers, Algeria.,Neurology Department, Pitié Salpetriére University Hospital, Paris, France
| | - Damien Sternberg
- Myogenetics Laboratory, Pitié Salpetriére University Hospital, Paris, France.,Neurology Department, Pitié Salpetriére University Hospital, Paris, France
| | - Bruno Eymard
- Myogenetics Laboratory, Pitié Salpetriére University Hospital, Paris, France.,Neurology Department, Pitié Salpetriére University Hospital, Paris, France
| | - Lamia Alipacha
- Neurology Department, Mustapha Bacha University Hospital, Benyoucef Benkhedda University, Algiers, Algeria.,Neurology Department, Pitié Salpetriére University Hospital, Paris, France
| |
Collapse
|
4
|
Wakabayashi T. Transmembrane Collagens in Neuromuscular Development and Disorders. Front Mol Neurosci 2021; 13:635375. [PMID: 33536873 PMCID: PMC7848082 DOI: 10.3389/fnmol.2020.635375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular development is a multistep process and involves interactions among various extracellular and transmembrane molecules that facilitate the precise targeting of motor axons to synaptogenic regions of the target muscle. Collagenous proteins with transmembrane domains have recently emerged as molecules that play essential roles in multiple aspects of neuromuscular formation. Membrane-associated collagens with interrupted triple helices (MACITs) are classified as an unconventional subtype of the collagen superfamily and have been implicated in cell adhesion in a variety of tissues, including the neuromuscular system. Collagen XXV, the latest member of the MACITs, plays an essential role in motor axon growth within the developing muscle. In humans, loss-of-function mutations of collagen XXV result in developmental ocular motor disorders. In contrast, collagen XIII contributes to the formation and maintenance of neuromuscular junctions (NMJs), and disruption of its function leads to the congenital myasthenic syndrome. Transmembrane collagens are conserved not only in mammals but also in organisms such as C. elegans, where a single MACIT, COL-99, has been documented to function in motor innervation. Furthermore, in C. elegans, a collagen-like transmembrane protein, UNC-122, is implicated in the structural and functional integrity of the NMJ. This review article summarizes recent advances in understanding the roles of transmembrane collagens and underlying molecular mechanisms in multiple aspects of neuromuscular development and disorders.
Collapse
Affiliation(s)
- Tomoko Wakabayashi
- Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Nicolau S, Kao JC, Liewluck T. Trouble at the junction: When myopathy and myasthenia overlap. Muscle Nerve 2019; 60:648-657. [PMID: 31449669 DOI: 10.1002/mus.26676] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Although myopathies and neuromuscular junction disorders are typically distinct, their coexistence has been reported in several inherited and acquired conditions. Affected individuals have variable clinical phenotypes but typically display both a decrement on repetitive nerve stimulation and myopathic findings on muscle biopsy. Inherited causes include myopathies related to mutations in BIN1, DES, DNM2, GMPPB, MTM1, or PLEC and congenital myasthenic syndromes due to mutations in ALG2, ALG14, COL13A1, DOK7, DPAGT1, or GFPT1. Additionally, a decrement due to muscle fiber inexcitability is observed in certain myotonic disorders. The identification of a defect of neuromuscular transmission in an inherited myopathy may assist in establishing a molecular diagnosis and in selecting patients who would benefit from pharmacological correction of this defect. Acquired cases meanwhile stem from the co-occurrence of myasthenia gravis or Lambert-Eaton myasthenic syndrome with an immune-mediated myopathy, which may be due to paraneoplastic disorders or exposure to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Justin C Kao
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | | |
Collapse
|