1
|
Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. Absence of T-box transcription factor 21 limits neuromuscular junction recovery after nerve injury in T-bet-knockout mice. Front Cell Dev Biol 2025; 13:1535323. [PMID: 40162097 PMCID: PMC11949913 DOI: 10.3389/fcell.2025.1535323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Terminal Schwann cells (tSCs), at the neuromuscular junction (NMJ), play critical roles in the repair of motor axon terminals at muscle, and rebuild neuronal signaling following nerve injury. Knowledge of mediators impacting tSCs post-nerve injury and in disease may guide beneficial therapies to improve motor outcomes. We previously found T-box transcription factor 21 (TBX21/TBET), classically associated with T-helper1 cells and immune cell recruitment, is expressed in tSCs at the mouse NMJ. The purpose of this study was to examine effects of Tbx21 absence during NMJ regeneration following peripheral nerve injury. Methods Wildtype (WT) and Tbet-knockout (Tbet-KO) mice underwent sciatic nerve transection and immediate repair. Functional muscle recovery assessment was performed with muscle force testing on mice at 2-, 3-, 4-, and 6-week (wks) and 6 months after nerve injury repair. Morphometric analyses of NMJ reinnervation, tSC number, and tSC processes were evaluated. Full NMJ reinnervation was defined as ≥75% coverage of endplates by axons. A minimum of three mice were evaluated in each group, and 50-100 NMJs were evaluated per mouse. Results Tbet-KO mice had significantly diminished muscle function compared to WT mice at every time point beyond 3 weeks. Tbet-KO mice showed just over half of the muscle force generated by WT mice at 4 weeks and 6 weeks post-injury and repair. By 6 months, Tbet-KO mice generated only 84.1% the muscle force of WT mice. Tbet-KO mice showed significantly decreased levels of fully reinnervated NMJs compared to WT mice at each time point tested. Tbet-KO mice also showed a lower number of tSCs with reduced cytoplasmic processes beyond NMJ area and lower number of immune cells during process of NMJ regeneration. Discussion Our findings show that the Tbx21 transcription factor promotes NMJ reinnervation to regain muscle function following nerve injury.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Research Scientist, Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Curtis Broberg
- Research Student, Washington University School of Medicine, St. Louis, MO, United States
| | - Alison K. Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Gould TW, Ko CP, Willison H, Robitaille R. Perisynaptic Schwann Cells: Guardians of Neuromuscular Junction Integrity and Function in Health and Disease. Cold Spring Harb Perspect Biol 2025; 17:a041362. [PMID: 38858074 PMCID: PMC11694759 DOI: 10.1101/cshperspect.a041362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The neuromuscular junction (NMJ) is a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury, and able to adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by perisynaptic Schwann cells (PSCs), glial cells at this synapse. They regulate synaptic efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions with trophic-related factors. Alteration of these fundamental roles of PSCs is also important in the maladapted response of NMJs in various diseases and in aging.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA
| | - Hugh Willison
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, Scotland
| | - Richard Robitaille
- Département de neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
3
|
Hoffman DB, Basten AM, Sorensen JR, Raymond-Pope CJ, Lillquist TJ, Call JA, Corona BT, Greising SM. Response of terminal Schwann cells following volumetric muscle loss injury. Exp Neurol 2023; 365:114431. [PMID: 37142114 PMCID: PMC10227691 DOI: 10.1016/j.expneurol.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
An often-overlooked component of traumatic skeletal muscle injuries is the impact on the nervous system and resultant innervation of the affected muscles. Recent work in a rodent model of volumetric muscle loss (VML) injury demonstrated a progressive, secondary loss of neuromuscular junction (NMJ) innervation, supporting a role of NMJ dysregulation in chronic functional deficits. Terminal Schwann cells (tSCs) are known to be vital for the maintenance of NMJ structure and function, in addition to guiding repair and regeneration after injury. However, the tSC response to a traumatic muscle injury such as VML is not known. Thus, a study was conducted to investigate the effect of VML on tSC morphological characteristics and neurotrophic signaling proteins in adult male Lewis rats that underwent VML injury to the tibialis anterior muscle using a temporal design with outcome assessments at 3, 7, 14, 21, and 48 days post-injury. The following salient observations were made; first, although there is a loss of innervation over time, the number of tSCs per NMJ increases, significantly so at 48 days post-injury compared to control. The degree of NMJ fragmentation was positively correlated with tSC number after injury. Moreover, neurotrophic factors such as NRG1 and BDNF are elevated after injury through at least 48 days. These results were unanticipated and in contrast to neurodegenerative disease models, in which there is a reduction in tSC number that precedes denervation. However, we found that while there are more tSCs per NMJ after injury, they cover a significantly smaller percent of the post-synaptic endplate area compared to control. These findings support a sustained increase in neurotrophic activity and tSC number after VML, which is a maladaptive response occurring in parallel to other aspects of the VML injury, such as over-accumulation of collagen and aberrant inflammatory signaling.
Collapse
Affiliation(s)
- Daniel B Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Alec M Basten
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jacob R Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, NC 27101, United States of America
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
4
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
5
|
Li WY, Li ZG, Fu XM, Wang XY, Lv ZX, Sun P, Zhu XF, Wang Y. Transgenic Schwann cells overexpressing POU6F1 promote sciatic nerve regeneration within acellular nerve allografts. J Neural Eng 2022; 19. [PMID: 36317259 DOI: 10.1088/1741-2552/ac9e1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Objective.Acellular nerve allograft (ANA) is an effective surgical approach used to bridge the sciatic nerve gap. The molecular regulators of post-surgical recovery are not well-known. Here, we explored the effect of transgenic Schwann cells (SCs) overexpressing POU domain class 6, transcription factor 1 (POU6F1) on sciatic nerve regeneration within ANAs. We explored the functions of POU6F1 in nerve regeneration by using a cell model of H2O2-induced SCs injury and transplanting SCs overexpressing POU6F1 into ANA to repair sciatic nerve gaps.Approach.Using RNA-seq, Protein-Protein Interaction network analysis, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we identified a highly and differentially expressed transcription factor, POU6F1, following ANA treatment of sciatic nerve gap. Expressing a high degree of connectivity, POU6F1 was predicted to play a role in peripheral nervous system myelination.Main results.To test the role of POU6F1 in nerve regeneration after ANA, we infected SCs with adeno-associated virus-POU6F1, demonstrating that POU6F1 overexpression promotes proliferation, anti-apoptosis, and migration of SCsin vitro. We also found that POU6F1 significantly upregulated JNK1/2 and c-Jun phosphorylation and that selective JNK1/2 inhibition attenuated the effects of POU6F1 on proliferation, survival, migration, and JNK1/2 and c-Jun phosphorylation. The direct interaction of POU6F1 and activated JNK1/2 was subsequently confirmed by co-immunoprecipitation. In rat sciatic nerve injury model with a 10 mm gap, we confirmed the pattern of POU6F1 upregulation and co-localization with transplanted SCs. ANAs loaded with POU6F1-overexpressing SCs demonstrated the enhanced survival of transplanted SCs, axonal regeneration, myelination, and functional motor recovery compared to the ANA group loaded by SCs-only in line within vitrofindings.Significance.This study identifies POU6F1 as a novel regulator of post-injury sciatic nerve repair, acting through JNK/c-Jun signaling in SCs to optimize therapeutic outcomes in the ANA surgical approach.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Zhi-Gang Li
- The Second Department of General Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Xiu-Mei Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical College, Chengde 067000, People's Republic of China.,Hebei Key Laboratory of Nerve Injury and Repair, Chengde 067000, People's Republic of China
| | - Xiao-Yu Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Zhong-Xiao Lv
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Ping Sun
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Xiao-Feng Zhu
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| |
Collapse
|
6
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
7
|
Walker CL. Progress in perisynaptic Schwann cell and neuromuscular junction research. Neural Regen Res 2021; 17:1273-1274. [PMID: 34782570 PMCID: PMC8643052 DOI: 10.4103/1673-5374.327334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Chandler L Walker
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Neuromusculoskeletal Research Group, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|