1
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
2
|
Režić Mužinić N, Markotić A, Pavelin S, Polančec D, Buljubašić Šoda M, Bralić A, Šoda J, Mastelić A, Mikac U, Jerković A, Rogić Vidaković M. Expression of CD40 and CD192 in Classical Monocytes in Multiple Sclerosis Patients Assessed with Transcranial Magnetic Stimulation. Biomedicines 2023; 11:2870. [PMID: 37893243 PMCID: PMC10603866 DOI: 10.3390/biomedicines11102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Expression of CD40 and CD192 markers in different monocyte subpopulations has been reported to be altered in people with MS (pwMS). Also, functional connectivity of the corticospinal motor system pathway alterations has been proved by transcranial magnetic stimulation (TMS). The study objective was to investigate the expression of CD40 and CD192 in classical (CD14++CD16-), intermediate CD14++CD16+ and non-classical (CD14+CD16++) blood monocyte subpopulations in pwMS, undergoing neurophysiological TMS assessment of the corticospinal tract integrity by recording motor-evoked potentials (MEPs). Radiological examination on lesion detection with MRI was performed for 23 patients with relapsing-remitting MS treated with teriflunomide. Then, immunological analysis was conducted on peripheral blood samples collected from the patients and 10 healthy controls (HC). The blood samples were incubated with anti-human CD14, CD16, CD40 and CD192 antibodies. Next, pwMS underwent neurological testing of functional disability (EDSS) and TMS assessment with recording MEPs from upper and lower extremity muscles. The results show that in comparison to HC subjects, both pwMS with normal and altered MEP findings (prolonged MEP latency or absent MEP response) had significantly decreased surface receptor expression measured (MFIs) of CD192 and increased CD40 MFI in classical monocytes, and significantly increased percentages of classical and total monocytes positive for CD40. Knowing CD40's pro-inflammatory action, and CD192 as a molecule that enables the passing of monocytes into the brain, decreased CD192 in classical monocytes could represent a beneficial anti-inflammatory parameter.
Collapse
Affiliation(s)
- Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia
| | | | | | - Antonia Bralić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia
| | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Angela Mastelić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Una Mikac
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Jerković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
3
|
Rogić Vidaković M, Ćurković Katić A, Pavelin S, Bralić A, Mikac U, Šoda J, Jerković A, Mastelić A, Dolić K, Markotić A, Đogaš Z, Režić Mužinić N. Transcranial Magnetic Stimulation Measures, Pyramidal Score on Expanded Disability Status Scale and Magnetic Resonance Imaging of Corticospinal Tract in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:1118. [PMID: 37892848 PMCID: PMC10604490 DOI: 10.3390/bioengineering10101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Probing the cortic ospinal tract integrity by transcranial magnetic stimulation (TMS) could help to understand the neurophysiological correlations of multiple sclerosis (MS) symptoms. Therefore, the study objective was, first, to investigate TMS measures (resting motor threshold-RMT, motor evoked potential (MEP) latency, and amplitude) of corticospinal tract integrity in people with relapsing-remitting MS (pwMS). Then, the study examined the conformity of TMS measures with clinical disease-related (Expanded Disability Status Scale-EDSS) and magnetic resonance imaging (MRI) results (lesion count) in pwMS. The e-field navigated TMS, MRI, and EDSS data were collected in 23 pwMS and compared to non-clinical samples. The results show that pwMS differed from non-clinical samples in MEP latency for upper and lower extremity muscles. Also, pwMS with altered MEP latency (prolonged or absent MEP response) had higher EDSS, general and pyramidal, functional scores than pwMS with normal MEP latency finding. Furthermore, the RMT intensity for lower extremity muscles was predictive of EDSS functional pyramidal scores. TMS/MEP latency findings classified pwMS as the same as EDSS functional pyramidal scores in 70-83% of cases and were similar to the MRI results, corresponding to EDSS functional pyramidal scores in 57-65% of cases. PwMS with altered MEP latency differed from pwMS with normal MEP latency in the total number of lesions in the brain corticospinal and cervical corticospinal tract. The study provides preliminary results on the correspondence of MRI and TMS corticospinal tract evaluation results with EDSS functional pyramidal score results in MS.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia; (A.J.); (Z.Đ.)
| | - Ana Ćurković Katić
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | - Antonia Bralić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia; (A.B.); (K.D.)
| | - Una Mikac
- Department of Psychology, Faculty of Humanities and Social Sciences University of Zagreb, 10000 Zagreb, Croatia;
| | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Faculty of Maritime Studies, Department for Marine Electrical Engineering and Information Technologies, University of Split, 21000 Split, Croatia;
| | - Ana Jerković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia; (A.J.); (Z.Đ.)
| | - Angela Mastelić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.); (A.M.); (N.R.M.)
| | - Krešimir Dolić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia; (A.B.); (K.D.)
- Department of Radiology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.); (A.M.); (N.R.M.)
| | - Zoran Đogaš
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia; (A.J.); (Z.Đ.)
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.); (A.M.); (N.R.M.)
| |
Collapse
|
4
|
Jitsakulchaidej P, Wivatvongvana P, Kitisak K. Normal parameters for diagnostic transcranial magnetic stimulation using a parabolic coil with biphasic pulse stimulation. BMC Neurol 2022; 22:510. [PMID: 36585660 PMCID: PMC9805266 DOI: 10.1186/s12883-022-02977-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/10/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND TMS is being used to aid in the diagnosis of central nervous system (CNS) illnesses. It is useful in planning rehabilitation programs and setting appropriate goals for patients. We used a parabolic coil with biphasic pulse stimulation to find normal values for diagnostic TMS parameters. OBJECTIVES 1. To determine the normal motor threshold (MT), motor evoked potentials (MEP), central motor conduction time (CMCT), intracortical facilitation (ICF), short-interval intracortical inhibition (SICI), and silent period (SP) values. 2. To measure the MEP latencies of abductor pollicis brevis (APB) and extensor digitorum brevis (EDB) at various ages, heights, and arm and leg lengths. STUDY DESIGN Descriptive Study. SETTING Department of Rehabilitation Medicine, Chiang Mai University, Thailand. SUBJECTS Forty-eight healthy participants volunteered for the study. METHODS All participants received a single diagnostic TMS using a parabolic coil with biphasic pulse stimulation on the left primary motor cortex (M1). All parameters: MT, MEP, CMCT, ICF, SICI, and SP were recorded through surface EMGs at the right APB and EDB. Outcome parameters were reported by the mean and standard deviation (SD) or median and interquartile range (IQR), according to data distribution. MEP latencies of APB and EDB were also measured at various ages, heights, and arm and leg lengths. RESULTS APB-MEP latencies at 120% and 140% MT were 21.77 ± 1.47 and 21.17 ± 1.44 ms. APB-CMCT at 120% and 140% MT were 7.81 ± 1.32 and 7.19 ± 1.21 ms. APB-MEP amplitudes at 120% and 140% MT were 1.04 (0.80-1.68) and 2.24 (1.47-3.52) mV. EDB-MEP latencies at 120% and 140% MT were 37.14 ± 2.85 and 36.46 ± 2.53 ms. EDB-CMCT at 120% and 140% MT were 14.33 ± 2.50 and 13.63 ± 2.57 ms. EDB-MEP amplitudes at 120% and 140% MT were 0.60 (0.38-0.98) and 0.95 (0.69-1.55) mV. ICF amplitudes of APB and EDB were 2.26 (1.61-3.49) and 1.26 (0.88-1.98) mV. SICI amplitudes of APB and EDB were 0.21 (0.13-0.51) and 0.18 (0.09-0.29) mV. MEP latencies of APB at 120% and 140% MT were different between heights < 160 cm and ≥ 160 cm (p < 0.001 and p < 0.001) and different between arm lengths < 65 and ≥ 65 cm (p = 0.022 and p = 0.002). CONCLUSION We established diagnostic TMS measurements using a parabolic coil with a biphasic pulse configuration. EDB has a higher MT than APB. The 140/120 MEP ratio of APB and EDB is two-fold. The optimal MEP recording for APB is 120%, whereas EDB is 140% of MT. CMCT by the F-wave is more convenient and tolerable for patients. ICF provides a twofold increase in MEP amplitude. SICI provides a ¼-fold of MEP amplitude. SP from APB and EDB are 121.58 ± 21.50 and 181.01 ± 40.99 ms, respectively. Height and MEP latencies have a modest relationship, whereas height and arm length share a strong positive correlation.
Collapse
Affiliation(s)
- Pimthong Jitsakulchaidej
- grid.7132.70000 0000 9039 7662Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Pakorn Wivatvongvana
- grid.7132.70000 0000 9039 7662Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Kittipong Kitisak
- grid.7132.70000 0000 9039 7662Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
5
|
Shi Y, Peng L, Zou G, Chen Z, Wan L, Tang Z, Hou X, Peng H, Wang C, Shen L, Xia K, Qiu R, Tang B, Jiang H. Characterization of the central motor conduction time in a large cohort of spinocerebellar ataxia type 3 patients. Parkinsonism Relat Disord 2022; 104:58-63. [PMID: 36244162 DOI: 10.1016/j.parkreldis.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/04/2022] [Accepted: 10/04/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Spinocerebellar ataxia type 3 (SCA3) is the most common subtype of hereditary ataxia. Few studies reported the CMCT features in SCA3, but with inconsistent findings. So far, CMCT in SCA3 remains largely unknown. METHODS This study included 86 SCA3 patients and 80 healthy controls. Motor-evoked potentials were recorded bilaterally from upper and lower limbs muscles by TMS using a double-cone coil attached to CCY-IA magnetic stimulator. CMCT was determined using F wave and paravertebral magnetic stimulation (PMS). The statistical analyses were performed using R software. RESULTS In our study, 36.5% of SCA3 patients had a slight prolongation of CMCT in lower limbs, but not upper limbs, uncorrelated with disease severity. Moreover, SCA3 patients with Babinski signs did not necessarily have abnormal CMCT, and vice versa. Our study demonstrated that PMS is a reliable method as F wave for detecting CMCT in SCA3. Additionally, CMCT to lower limbs was positively correlated with height, but not with age, sex, or weight in healthy controls. CONCLUSIONS A small proportion of SCA3 patients had a slight prolongation of CMCT in lower limbs, but not upper limbs, uncorrelated with disease severity. Furthermore, CMCT measures were observed irrespective of pyramidal sign in SCA3; however, patients with abnormal CMCT had a higher incidence of the pyramidal sign.
Collapse
Affiliation(s)
- Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Guangdong Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Zhichao Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Chunrong Wang
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China; School of Basic Medical Science, Central South University, Changsha, China.
| |
Collapse
|
6
|
De Oliveira HM, Silsby M, Jaiser SR, Lai HM, Pavey N, Kiernan MC, Williams TL, Vucic S, Baker MR. Electrodiagnostic findings in facial onset sensory motor neuronopathy (FOSMN). Clin Neurophysiol 2022; 140:228-238. [PMID: 35599162 DOI: 10.1016/j.clinph.2022.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023]
|
7
|
Sadoughi B, Andreadis K. Evaluation of Laryngeal Motor Neuropathy Using Transcranial Magnetic Stimulation-Mediated Evoked Potentials. Laryngoscope 2022; 132 Suppl 10:S1-S12. [PMID: 35166372 DOI: 10.1002/lary.30062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Contemporary evaluation of vocal fold motion impairment largely relies on clinical laryngoscopy, with the diagnoses of vocal fold paresis (VFPa) and paralysis (VFP) being based on identification of partial and complete restriction of gross vocal fold motion, respectively. No consensus exists on the diagnostic criteria of VFPa. Laryngeal electromyography does not offer any insight into nerve conduction velocity without the adjunction of nerve conduction studies, which are impractical to perform on laryngeal nerves due to their anatomic location. The present study aims to assess the feasibility of laryngeal nerve conduction studies using transcranial magnetic stimulation (TMS)-mediated myogenic evoked potentials in the evaluation of laryngeal motor nerve function. STUDY DESIGN Prospective controlled cohort study. METHODS Enrollment of three groups of subjects defined as healthy volunteers, subjects with clinically diagnosed unilateral VFP, and subjects with clinically diagnosed unilateral VFPa of peripheral etiology. Electrodiagnostic studies consisting of bilateral stimulation of the laryngeal motor cortex, proximal cisternal, and peripheral portions of the vagus nerves were performed using figure-of-eight magnetic stimulation coils, and myogenic evoked potentials recorded from bilateral thyroarytenoid, cricothyroid, and posterior cricoarytenoid muscles using indwelling hook wire electrodes. Conduction latencies were plotted against demographic and anthropometric variables. Values obtained in healthy volunteers were used as normative references and compared to aggregated latencies of VFP and VFPa groups. RESULTS Enrolled subjects included 19 healthy volunteers, 5 subjects with VFP, and 4 subjects with VFPa. Normative laryngeal nerve conduction latency ranges measured in healthy subjects were comparable to prior published values, and recorded latencies increased in positive correlation with age. VFPa subjects exhibited increased latencies in affected nerve sites, while VFP subjects presented more variability in electrophysiologic manifestations, mostly dependent on their degree of compensatory reinnervation. Aberrant and synkinetic reinnervation patterns were more predominant in the VFP group than the VFPa group. CONCLUSIONS Laryngeal nerve conduction studies using TMS-mediated myogenic evoked potentials are safely feasible. They may serve as a useful complement to laryngeal electromyography in the evaluation of motor laryngeal neuropathy and represent a promising diagnostic modality in the evaluation of VFPa. Based on the present study's findings, the commonly accepted notion of VFPa as a manifestation of a less severe form of neuropathy than VFP may be unsubstantiated. Aging may contribute to progressive motor nerve dysfunction. Future investigations are needed to ascertain the role of nerve conduction studies in clinical laryngology practice. LEVEL OF EVIDENCE 3 Laryngoscope, 2022.
Collapse
Affiliation(s)
- Babak Sadoughi
- Sean Parker Institute for the Voice, Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York, U.S.A
| | - Katerina Andreadis
- Sean Parker Institute for the Voice, Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York, U.S.A
| |
Collapse
|
8
|
Eisen A, Lemon R. The motor deficit of ALS reflects failure to generate muscle synergies for complex motor tasks, not just muscle strength. Neurosci Lett 2021; 762:136171. [PMID: 34391870 DOI: 10.1016/j.neulet.2021.136171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Customarily the motor deficits that develop in ALS are considered in terms of muscle weakness. Functional rating scales used to assess ALS in terms of functional decline do not measure the deficits when performing complex motor tasks, that make up the human skilled motor repertoire, best exemplified by tasks requiring skilled hand and finger movement. This repertoire depends primarily upon the strength of direct corticomotoneuronal (CM) connectivity from primary motor cortex to the motor units subserving skilled movements. Our review prompts the question: if accumulating evidence suggests involvement of the CM system in the early stages of ALS, what kinds of motor deficit might be expected to result, and is current methodology able to identify such deficits? We point out that the CM system is organized not in "commands" to individual muscles, but rather encodes the building blocks of complex and intricate movements, which depend upon synergy between not only the prime mover muscles, but other muscles that stabilize the limb during skilled movement. Our knowledge of the functional organization of the CM system has come both from invasive studies in non-human primates and from advanced imaging and neurophysiological techniques in humans, some of which are now being applied in ALS. CM pathology in ALS has consequences not only for muscle strength, but importantly in the failure to generate complex motor tasks, often involving elaborate muscle synergies. Our aim is to encourage innovative methodology specifically directed to assessing complex motor tasks, failure of which is likely a very early clinical deficit in ALS.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada.
| | - Roger Lemon
- Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
9
|
Geevasinga N, Van den Bos M, Menon P, Vucic S. Utility of Transcranial Magnetic Simulation in Studying Upper Motor Neuron Dysfunction in Amyotrophic Lateral Sclerosis. Brain Sci 2021; 11:brainsci11070906. [PMID: 34356140 PMCID: PMC8304017 DOI: 10.3390/brainsci11070906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by progressive dysfunction of the upper and lower motor neurons. The disease can evolve over time from focal limb or bulbar onset to involvement of other regions. There is some clinical heterogeneity in ALS with various phenotypes of the disease described, from primary lateral sclerosis, progressive muscular atrophy and flail arm/leg phenotypes. Whilst the majority of ALS patients are sporadic in nature, recent advances have highlighted genetic forms of the disease. Given the close relationship between ALS and frontotemporal dementia, the importance of cortical dysfunction has gained prominence. Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiological tool to explore the function of the motor cortex and thereby cortical excitability. In this review, we highlight the utility of TMS and explore cortical excitability in ALS diagnosis, pathogenesis and insights gained from genetic and variant forms of the disease.
Collapse
|
10
|
Okamoto Y, Ishii D, Yamamoto S, Ishibashi K, Wakatabi M, Kohno Y, Numata K. Relationship Between Motor Function, DTI, and Neurophysiological Parameters in Patients with Stroke in the Recovery Rehabilitation unit. J Stroke Cerebrovasc Dis 2021; 30:105889. [PMID: 34062310 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES We investigated the relationship between pyramidal tract evaluation indexes (i.e., diffusion tensor imaging, transcranial magnetic stimulation (TMS)-induced motor-evoked potential (MEP), and central motor conduction time (CMCT) on admission to the recovery rehabilitation unit) and motor functions at discharge in patients with ischemic or hemorrhagic stroke. MATERIALS AND METHODS Seventeen patients were recruited (12 men; 57.9 ± 10.3 years). The mean fractional anisotropy (FA) values of the right and left posterior limbs of the internal capsule were estimated using a computer-automated method. We determined the ratios of FA values in the affected and unaffected hemispheres (rFA), TMS-induced MEP, and the ratios of CMCT in the affected and unaffected hemispheres (rCMCT) and examined their association with motor functions (Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT)) at discharge. RESULTS Higher rFA values of the posterior limb of the internal capsule on admission to the recovery rehabilitation unit led to a better recovery of upper limb function (FMA: r = 0.78, p < 0.001; ARAT: r = 0.74, p = 0.001). Patients without MEP had poorer recovery of upper limb function than those with MEP (FMA: p < 0.001; ARAT: p = 0.001). The higher the rCMCT, the poorer the recovery of upper limb function (ARAT: r = -0.93, p < 0.001). However, no association was observed between the pyramidal tract evaluation indexes and recovery of lower limb motor function. CONCLUSIONS Evaluating the pyramidal tract is useful for predicting upper limb function prognosis, but not for lower limb function prognosis.
Collapse
Affiliation(s)
- Yoshitaka Okamoto
- Department of Rehabilitation, University of Tsukuba Hospital, 2-1-2, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan; Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba 260-8670, Japan.
| | - Satoshi Yamamoto
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, 4733 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0331, Japan
| | - Masahiro Wakatabi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, 4733 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0331, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Kenji Numata
- Department of Physical Therapy, Tokyo Professional University of Health Sciences, 2-22-10 Shiohama, Koto-ku, Tokyo 135-0043, Japan
| |
Collapse
|
11
|
Eisen A. The Dying Forward Hypothesis of ALS: Tracing Its History. Brain Sci 2021; 11:brainsci11030300. [PMID: 33673524 PMCID: PMC7997258 DOI: 10.3390/brainsci11030300] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
The site of origin of amyotrophic lateral sclerosis (ALS), although unsettled, is increasingly recognized as being cortico-fugal, which is a dying-forward process primarily starting in the corticomotoneuronal system. A variety of iterations of this concept date back to over 150 years. Recently, the hallmark TAR DNA-binding protein 43 (TDP-43) pathology, seen in >95% of patients with ALS, has been shown to be largely restricted to corticofugal projecting neurons (“dying forward”). Possibly, soluble but toxic cytoplasmic TDP-43 could enter the axoplasm of Betz cells, subsequently causing dysregulation of nuclear protein in the lower brainstem and spinal cord anterior horn cells. As the disease progresses, cortical involvement in ALS becomes widespread, including or starting with frontotemporal dementia, implying a broader view of ALS as a brain disease. The onset at the motor and premotor cortices should be considered a nidus at the edge of multiple cortical networks which eventually become disrupted, causing failure of a widespread cortical connectome.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
12
|
Abstract
This is an historical account of Canadian pioneers working in amyotrophic lateral sclerosis (ALS) in the 1970s and 1980s. Key contributions included the development of specialized clinics, the ALS Society of Canada, human motor unit estimates in vivo, use of transcranial magnetic stimulation (TMS), the dementias of ALS, the importance of neurofilaments and axonal flow, neuroinflammation and immunity related to ALS, use of tissue culture to study pathogenesis, and the story of ALS in Guam. Their work set the stage for future generations of ALS physicians and scientists to bring about meaningful therapies and hopefully a cure for ALS.
Collapse
|
13
|
Tokimura R, Murakami T, Ugawa Y. Central motor conduction time reveals upper motor neuron involvement masked by lower motor neuron impairment in a significant portion of patients with amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 131:1896-1901. [PMID: 32593964 DOI: 10.1016/j.clinph.2020.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/13/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE We retrospectively investigated the utility of the central motor conduction time (CMCT) in detecting upper motor neuron (UMN) involvements in patients with amyotrophic lateral sclerosis (ALS). METHODS Fifty-two ALS patients and 12 disease control patients participated in this study. Surface electromyograms were recorded from the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. We stimulated the motor cortex, brainstem, and spinal nerve using transcranial magnetic stimulation (TMS) in order to measure the cortical, brainstem, and spinal latencies. We divided the ALS patients into 2 subgroups (with UMN impairment vs. without UMN impairment) and calculated the rates of abnormal CMCT prolongation judged by their comparison with the normal ranges obtained by the measurement in the control patients. RESULTS The CMCTs in the FDI and TA were abnormally prolonged in over 40% of the ALS patients with UMN impairment and in nearly 30% of those without UMN impairment. CONCLUSIONS CMCT shows UMN dysfunction in ALS patients without clinical UMN impairment. SIGNIFICANCE TMS still has diagnostic utility in a significant portion of ALS patients.
Collapse
Affiliation(s)
- Ryo Tokimura
- Department of Neurology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Japan.
| | - Takenobu Murakami
- Department of Neurology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Japan; Department of Neurology, Tottori Prefectural Kousei Hospital, 150 Higashishowacho, Kurayoshi, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Japan; Department of Human Neurophysiology, Fukushima Medical University, 1 Hikarigaoka, Fukusima, Japan
| |
Collapse
|
14
|
Electrodiagnosis of Amyotrophic Lateral Sclerosis: A Review of Existing Guidelines. J Clin Neurophysiol 2020; 37:294-298. [DOI: 10.1097/wnp.0000000000000682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
15
|
Olivieri G, Pro S, Diodato D, Di Capua M, Longo D, Martinelli D, Bertini E, Dionisi-Vici C. Corticospinal tract damage in HHH syndrome: a metabolic cause of hereditary spastic paraplegia. Orphanet J Rare Dis 2019; 14:208. [PMID: 31443672 PMCID: PMC6708179 DOI: 10.1186/s13023-019-1181-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare disorder of urea cycle characterized by progressive pyramidal and cerebellar dysfunction, whose pathophysiology is not yet fully understood. Here we describe the spectrum of the long fibers involvement in HHH syndrome, attempting a correlation between clinical, electrophysiological and neuro-radiological data. METHODS Nine HHH patients were longitudinally evaluated by clinical examination, neurophysiological assessment including motor (MEPs), somato-sensory evoked potentials (PESS) and nerve conduction velocity (NCV), brain and spinal cord MRI RESULTS: All patients had pyramidal dysfunction and 3/9 an overt spastic paraplegia. Mild to moderate cerebellar signs were found in 7/9, intellectual disability in 8/9. At lower limbs, MEPs resulted abnormal in 7/8 patients and PESS in 2/8; peripheral sensory-motor neuropathy was found in 1/9. MRI documented atrophic changes in supra-tentorial brain regions in 6/9 patients, cerebellum in 6/9, spinal cord in 3/7. CONCLUSIONS A predominant corticospinal dysfunction is evident in HHH syndrome, along with milder cerebellar signs, intellectual disability of variable degree and rare peripheral neuropathy. Phenotypical similarities with other disorders affecting the urea cycle (argininemia and pyrroline-5-carboxylate synthetase deficiency) suggest possible common mechanisms contributing in the maintenance of the corticospinal tract integrity. HHH syndrome phenotype largely overlaps with complex Hereditary Spastic Paraplegias (HSPs), in the list of which it should be included, emphasizing the importance to screen all the unsolved cases of HSPs for metabolic biomarkers.
Collapse
Affiliation(s)
- Giorgia Olivieri
- Division of Metabolism, Department of Pediatric Specialties, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Stefano Pro
- Neurophysiology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| | - Daria Diodato
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Di Capua
- Neurophysiology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric Specialties, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Enrico Bertini
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Specialties, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
16
|
Cantone M, Lanza G, Vinciguerra L, Puglisi V, Ricceri R, Fisicaro F, Vagli C, Bella R, Ferri R, Pennisi G, Di Lazzaro V, Pennisi M. Age, Height, and Sex on Motor Evoked Potentials: Translational Data From a Large Italian Cohort in a Clinical Environment. Front Hum Neurosci 2019. [PMID: 31214003 DOI: 10.3389/fnhum.2019.00185.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction Motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) are known to be susceptible to several sources of variability. However, conflicting evidences on individual characteristics in relatively small sample sizes have been reported. We investigated the effect of age, height, and sex on MEPs of the motor cortex and spinal roots in a large cohort. Methods A total of 587 subjects clinically and neuroradiologically intact were included. MEPs were recorded during mild tonic contraction through a circular coil applied over the "hot spot" of the first dorsal interosseous and tibialis anterior muscles (TAs), bilaterally. Central motor conduction time (CMCT) was estimated as the difference between MEP cortical latency and the peripheral motor conduction time (PMCT) by cervical or lumbar magnetic stimulation. Peak-to-peak MEP amplitude to cortical stimulation and right-to-left difference of each parameter were also measured. Results After Bonferroni correction, general linear (multiple) regression analysis showed that both MEP cortical latency and PMCT at four limbs positively correlated with age and height. At lower limbs, an independent effect of sex on the same measures was also observed (with females showing smaller values than males). CMCT correlated with both age (negatively) and height (positively) when analyzed by a single regression; however, with a multiple regression analysis this significance disappeared, due to the correction for the multicollinearity within the dataset. Conclusion Physical individual features need to be considered for a more accurate and meaningful MEPs interpretation. Both in clinical practice and in research setting, patients and controls should be matched for age, height, and sex.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy.,Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Luisa Vinciguerra
- Department of Neurology and Stroke Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Valentina Puglisi
- Department of Neurology and Stroke Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Riccardo Ricceri
- Department of Internal Medicine, Sant'Anna Hospital, AUSL Reggio Emilia, Castelnovo ne' Monti, Italy
| | - Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Carla Vagli
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-Medico, Rome, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Pathophysiology and Diagnosis of ALS: Insights from Advances in Neurophysiological Techniques. Int J Mol Sci 2019; 20:ijms20112818. [PMID: 31185581 PMCID: PMC6600525 DOI: 10.3390/ijms20112818] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder of the motor neurons, characterized by focal onset of muscle weakness and incessant disease progression. While the presence of concomitant upper and lower motor neuron signs has been recognized as a pathognomonic feature of ALS, the pathogenic importance of upper motor neuron dysfunction has only been recently described. Specifically, transcranial magnetic stimulation (TMS) techniques have established cortical hyperexcitability as an important pathogenic mechanism in ALS, correlating with neurodegeneration and disease spread. Separately, ALS exhibits a heterogeneous clinical phenotype that may lead to misdiagnosis, particularly in the early stages of the disease process. Cortical hyperexcitability was shown to be a robust diagnostic biomarker if ALS, reliably differentiating ALS from neuromuscular mimicking disorders. The present review will provide an overview of key advances in the understanding of ALS pathophysiology and diagnosis, focusing on the importance of cortical hyperexcitability and its relationship to advances in genetic and molecular processes implicated in ALS pathogenesis.
Collapse
|
18
|
Cantone M, Lanza G, Vinciguerra L, Puglisi V, Ricceri R, Fisicaro F, Vagli C, Bella R, Ferri R, Pennisi G, Di Lazzaro V, Pennisi M. Age, Height, and Sex on Motor Evoked Potentials: Translational Data From a Large Italian Cohort in a Clinical Environment. Front Hum Neurosci 2019; 13:185. [PMID: 31214003 PMCID: PMC6558095 DOI: 10.3389/fnhum.2019.00185] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) are known to be susceptible to several sources of variability. However, conflicting evidences on individual characteristics in relatively small sample sizes have been reported. We investigated the effect of age, height, and sex on MEPs of the motor cortex and spinal roots in a large cohort. METHODS A total of 587 subjects clinically and neuroradiologically intact were included. MEPs were recorded during mild tonic contraction through a circular coil applied over the "hot spot" of the first dorsal interosseous and tibialis anterior muscles (TAs), bilaterally. Central motor conduction time (CMCT) was estimated as the difference between MEP cortical latency and the peripheral motor conduction time (PMCT) by cervical or lumbar magnetic stimulation. Peak-to-peak MEP amplitude to cortical stimulation and right-to-left difference of each parameter were also measured. RESULTS After Bonferroni correction, general linear (multiple) regression analysis showed that both MEP cortical latency and PMCT at four limbs positively correlated with age and height. At lower limbs, an independent effect of sex on the same measures was also observed (with females showing smaller values than males). CMCT correlated with both age (negatively) and height (positively) when analyzed by a single regression; however, with a multiple regression analysis this significance disappeared, due to the correction for the multicollinearity within the dataset. CONCLUSION Physical individual features need to be considered for a more accurate and meaningful MEPs interpretation. Both in clinical practice and in research setting, patients and controls should be matched for age, height, and sex.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Department of Neurology IC, Oasi Research Institute – IRCCS, Troina, Italy
| | - Luisa Vinciguerra
- Department of Neurology and Stroke Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Valentina Puglisi
- Department of Neurology and Stroke Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Riccardo Ricceri
- Department of Internal Medicine, Sant’Anna Hospital, AUSL Reggio Emilia, Castelnovo ne’ Monti, Italy
| | - Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Carla Vagli
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute – IRCCS, Troina, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-Medico, Rome, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Christidi F, Karavasilis E, Velonakis G, Rentzos M, Zambelis T, Zouvelou V, Xirou S, Ferentinos P, Efstathopoulos E, Kelekis N, Evdokimidis I, Karandreas N. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study. Brain Imaging Behav 2019; 12:1730-1741. [PMID: 29417490 DOI: 10.1007/s11682-018-9841-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The association between gray matter (GM) density and neurophysiologic changes is still unclear in amyotrophic lateral sclerosis (ALS). We evaluated the relationship between GM density and motor system integrity combining voxel-based morphometry (VBM) and transcranial magnetic stimulation (TMS) in ALS. We included 17 ALS patients and 22 healthy controls (HC) who underwent 3D-T1-weighted imaging. Among the ALS group, we applied left motor cortex single-pulse TMS. We used whole-brain VBM comparing ALS and HC in GM density. We also conducted regression analysis to examine correlations between GM density and the following TMS parameters: motor evoked potential (MEP)/M ratio and central motor conduction time (CMCT). We found significantly decreased GM density in ALS patients in several frontal, temporal, parietal/occipital and cerebellar regions (p < 0.001 uncorrected; cluster-extent threshold k = 100 voxels per cluster). With regards to TMS parameters, ALS patients showed mostly increased MEP/M ratio and modest prolongation of CMCT. MEP/M ratio was associated with GM density in (a) rolandic operculum/inferior frontal gyrus/precentral gyrus; anterior cingulate gyrus; inferior temporal gyrus; superior parietal lobule; cuneus; superior occipital gyrus and cerebellum (positive association) and (b) paracentral lobule/supplementary motor area (negative association). CMCT was associated with GM density in (a) inferior frontal gyrus and middle cingulated gyrus (positive association) and (b) superior parietal lobule; cuneus and cerebellum (negative association). Our findings support a significant interaction between motor and extra-motor structural and functional changes and highlight that motor and extra-motor GM integrity may underlie TMS parameters of motor function in ALS patients.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece.
| | - Efstratios Karavasilis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Sophia Xirou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| |
Collapse
|
20
|
Jaiser SR, Mitra D, Williams TL, Baker MR. Mills' syndrome revisited. J Neurol 2019; 266:667-679. [PMID: 30631918 PMCID: PMC6394692 DOI: 10.1007/s00415-019-09186-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
Mills' syndrome is an idiopathic, slowly progressive, spastic hemiparesis. We describe three cases that have been under review for a minimum of 11 years (range 11-19). In all patients, symptoms started in a leg, with a mean age of onset of 59 years (range 53-63). The only abnormality on laboratory investigations was a mildly elevated CSF protein in one case. MRI demonstrated focal T2 hyper-intensity located eccentrically in the cervical cord ipsilateral to the symptomatic side. No cerebral abnormality was demonstrated. Whilst visual and somatosensory evoked potentials were unremarkable, motor evoked potentials were abnormal in all patients: central motor conduction times were significantly prolonged unilaterally in two patients and bilaterally but asymmetrically in the third. Beta-band (15-30 Hz) intermuscular coherence, a potentially more sensitive method of assessing upper motor neuron integrity, was absent unilaterally in one patient and bilaterally in the other two. One patient developed amyotrophy and thus a picture of amyotrophic lateral sclerosis after 16 years, suggesting that Mills' syndrome is part of the motor neuron disease spectrum. Both amyotrophy and subclinical contralateral upper motor neuron disease can therefore be features of Mills' syndrome. However, even with the most sensitive electrodiagnostic techniques, unilateral upper motor neuron disease can remain the only abnormality for as long as 10 years. We conclude that whilst Mills' syndrome should be classified as a motor neuron disorder, it is a distinct nosological entity which can be distinguished from amyotrophic lateral sclerosis, upper motor neuron-dominant amyotrophic lateral sclerosis and primary lateral sclerosis. We propose diagnostic criteria for Mills' syndrome, and estimate a point prevalence of at least 1.2:1,000,000 based on our well-defined referral population in the North of England.
Collapse
Affiliation(s)
- Stephan R Jaiser
- Institute of Neuroscience, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Department of Neurology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.,Department of Clinical Neurophysiology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Dipayan Mitra
- Institute of Neuroscience, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Department of Neuroradiology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Timothy L Williams
- Department of Neurology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Mark R Baker
- Institute of Neuroscience, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. .,Department of Neurology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK. .,Department of Clinical Neurophysiology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
21
|
Chen M, Summers RLS, Goding GS, Samargia S, Ludlow CL, Prudente CN, Kimberley TJ. Evaluation of the Cortical Silent Period of the Laryngeal Motor Cortex in Healthy Individuals. Front Neurosci 2017; 11:88. [PMID: 28326007 PMCID: PMC5339278 DOI: 10.3389/fnins.2017.00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Objective: This work aimed to evaluate the cortical silent period (cSP) of the laryngeal motor cortex (LMC) using the bilateral thyroarytenoid (TA) muscles with transcranial magnetic stimulation (TMS). Methods: In 11 healthy participants, fine-wire electromyography (EMG) was used to record bilateral TA muscle responses to single pulse TMS delivered to the LMC in both hemispheres. Peripheral responses to stimulation over the mastoid, where the vagus nerve exits the skull, were collected to verify the central origin of the cortical stimulation responses by comparing the latencies. Results: The cSP duration ranged from 41.7 to 66.4 ms. The peripherally evoked motor-evoked potential (MEP) peak occurred 5–9 ms earlier than the cortical responses (for both sides of TAs: p < 0.0001) with no silent period. The right TA MEP latencies were earlier than the left TA responses for both peripheral and cortical measures (p ≤ 0.0001). Conclusion: These findings demonstrate the feasibility of measuring cSP of LMC based on intrinsic laryngeal muscles responses during vocalization in healthy volunteers. Significance: The technique could be used to study the pathophysiology of neurological disorders that affect TA muscles, such as spasmodic dysphonia. Further, the methodology has application to other muscles of the head and neck not accessible using surface electrodes.
Collapse
Affiliation(s)
- Mo Chen
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota Minneapolis, MN, USA
| | - Rebekah L S Summers
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota Minneapolis, MN, USA
| | - George S Goding
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota Minneapolis, MN, USA
| | - Sharyl Samargia
- Department of Communication Sciences and Disorders, University of Wisconsin River Falls Campus River Falls, WI, USA
| | - Christy L Ludlow
- Department of Communication Sciences and Disorders, James Madison University Harrisonburg, VA, USA
| | - Cecília N Prudente
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota Minneapolis, MN, USA
| | - Teresa J Kimberley
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
22
|
Szelényi A, Wölfle J, Fischer I, Steiger HJ, Sabel M. Comparison of a special designed high intensity coil to a standard round coil-TMS-setting. J Neurosci Methods 2017; 279:72-78. [PMID: 28104487 DOI: 10.1016/j.jneumeth.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Routine diagnostic Transcranial Magnetic Stimulation (TMS) is performed with a round coil (RC) for cranial and spinal root stimulation, being less successful for motor evoked potentials (MEP) of lower limb muscles. MEP elicited with a special configured flat figure-of-eight coil designed for high intensity stimulation (HI-coil) were compared to RC with regard to handling, efficiency, and physiological properties of MEP. NEW METHODS MEP elicited with HI-coil and 9-cm diameter RC for cortical, spinal and peripheral stimulation (PES) were compared for Motor threshold (MT), latencies and amplitudes of bilateral Abductor pollicis brevis (APB) and Abductor hallucis muscles (AH). RESULTS AND COMPARISON WITH EXISTING METHODS MT for HI-coil were significantly lower for cortical and spinal root stimulation compared to RC (APB: 37% vs. 48%; AH: 58% vs. 72%). MEP-latencies elicited with HI-coil and RC were without significant difference. AH-MEP amplitudes were significantly larger for HI-coil cortical (705±980μV vs. 370±280μV) and root stimulation (260±210μV vs. 151±100μV). Amplitudes elicited by PES compared to HI-coil were always significantly larger. CONCLUSION Results for cortical and spinal root stimulation with regards to latencies and amplitudes for APB were equivalent between HI-coil and RC. PES was superior in achieving supramaximal stimulation in terms of amplitudes. The use of the HI-coil might be advantageous for MEP of lower extremity muscles with emphasis on pathologic conditions requiring higher stimulation intensities.
Collapse
Affiliation(s)
- Andrea Szelényi
- Department of Neurosurgery, Hospital of the Ludwig Maximilians University Munich (LMU), Munich, Germany.
| | - Julia Wölfle
- Department of Neurosurgery, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Igor Fischer
- Department of Neurosurgery, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
23
|
Imajo Y, Kanchiku T, Suzuki H, Yoshida Y, Funaba M, Nishida N, Fujimoto K, Taguchi T. Effects of differences in age and body height on normal values of central motor conduction time determined by F-waves. J Spinal Cord Med 2017; 40:181-187. [PMID: 26832330 PMCID: PMC5430475 DOI: 10.1080/10790268.2015.1117193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES To investigate the effect on central motor conduction time (CMCT) based on the relationship between age and height in normal subjects. DESIGN Retrospective study. METHODS One hundred and ninety nine normal subjects (107 men and 92 women; mean age 39.0 ± 16.4 years; mean height 164.5 ± 8.8 cm) participated in the study. The approximate ages of subjects were as follows: 82 (20-29 years old), 32 (30-39 years old), 32 (40-49 years old), 28 (50-59 years old), and 25 (≧60 years old). The heights of 9, 49, 79, 53, and 9 subjects were <150 cm, 150-160 cm, 160-170 cm, 170-180 cm, and >180 cm, respectively. CMCT- abductor digiti minimi (ADM) and abductor hallucis (AH) were calculated by subtracting the peripheral motor conduction time (PMCT) from the onset latency of motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation. PMCT was calculated from the latencies of the compound muscle action potentials (CMAPs) and F-waves as follows: (latency of CMAPs + latency of F-waves -1)/2. OUTCOME MEASURES CMCT-ADM and CMCT-AH. RESULTS The normative values were 5.2 ± 0.8 ms and 11.8 ± 1.3 ms for CMCT-ADM and CMCT-AH, respectively. CMCT-ADM was not significantly correlated with age (P = 0.196) and body height (P = 0.158). CMCT-AH had significantly positive, linear correlations with age and body height (CMCT-AH = 0.014 × age + 10.971, P = 0.011, R = 0.179 and CMCT-AH = 0.026 × body height + 7.158, P = 0.010, R = 0.182). CONCLUSIONS We suggest normative values of 3.2-7.2 ms in CMCT-ADM for subjects exerting slight effort on ADM regardless age and body height. CMCT-AH had significantly positive, linear correlations with age and body height.
Collapse
Affiliation(s)
- Yasuaki Imajo
- Correspondence to: Yasuaki Imajo, Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, 1–1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Geevasinga N, Menon P, Özdinler PH, Kiernan MC, Vucic S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 2016; 12:651-661. [DOI: 10.1038/nrneurol.2016.140] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Hwang P, Sohn MK, Jee S, Lee H. Transcranial Motor Evoked Potentials of Lower Limbs Can Prognosticate Ambulation in Hemiplegic Stroke Patients. Ann Rehabil Med 2016; 40:383-91. [PMID: 27446774 PMCID: PMC4951356 DOI: 10.5535/arm.2016.40.3.383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/24/2015] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To examine the association between motor evoked potentials (MEPs) in lower limbs and ambulatory outcomes of hemiplegic stroke patients. METHODS Medical records of hemiplegic patients with the first ever stroke who received inpatient rehabilitation from January 2013 to May 2014 were reviewed. Patient who had diabetes, quadriplegia, bilateral lesion, brainstem lesion, severe musculoskeletal problem, and old age over 80 years were excluded. MEPs in lower limbs were measured when they were transferred to the Department of Rehabilitation Medicine. Subjects were categorized into three groups (normal, abnormal, and absent response) according to MEPs findings. Berg Balance Scale (BBS) and Functional Ambulation Category (FAC) at initial and discharge were compared among the three groups by one-way analysis of variance (ANOVA). Correlation was determined using a linear regression model. RESULTS Fifty-eight hemiplegic patients were included. BBS and FAC at discharge were significantly (ANOVA, p<0.001) different according to MEPs findings. In linear regression model of BBS and FAC using stepwise selection, patients' age (p<0.01), BBS at admission (p<0.01), and MEPs (p<0.01) remained significant covariates. In regression assumption model of BBS and FAC at admission, MEPs and gender were significant covariates. CONCLUSION Initial MEPs of lower limbs can prognosticate the ambulatory outcomes of hemiplegic patients.
Collapse
Affiliation(s)
- Pyoungsik Hwang
- Department of Rehabilitation Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Kyun Sohn
- Department of Rehabilitation Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sungju Jee
- Department of Rehabilitation Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyunkeun Lee
- Department of Rehabilitation Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
26
|
Abstract
ABSTRACT:Glutamate excitotoxicity is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). We report the results of a double blind, placebo controlled, trial using 100 mg of oral daily lamotrigine (3,5-diamino-6-(2,3 dichlorophenyl)-l,2,4-triazine) which inhibits glutamate release. 67 patients were entered and at trial termination of 1.5 years 15 had withdrawn (9 active and 6 placebo) and 12 had died (6 active and 6 placebo). Mean age at entry was 57.5 years for the active and 58.6 years for the placebo groups. Patients were seen at 3 monthly intervals and scored according to neurological deficit based upon age of onset, bulbar and respiratory involvement, ambulation and functional disability. The mean change in clinical scores for the active versus placebo groups over the trial period was 7.1 ± 3.3 and 9.0 ± 3.3 respectively (0.05 < p < 0.10). Changes in cortical threshold and MEP/CMAP ratios to magnetic stimulation also did not differ significantly between the two groups. We conclude that lamotrigine in the doses administered does not alter the course of ALS.
Collapse
|
27
|
Mancuso R, Navarro X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog Neurobiol 2015; 133:1-26. [PMID: 26253783 DOI: 10.1016/j.pneurobio.2015.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motoneurons, leading to muscle weakness and paralysis, and finally death. Considerable recent advances have been made in basic research and preclinical therapeutic attempts using experimental models, leading to increasing clinical and translational research in the context of this disease. In this review we aim to summarize the most relevant findings from a variety of aspects about ALS, including evaluation methods, animal models, pathophysiology, and clinical findings, with particular emphasis in understanding the role of every contributing mechanism to the disease for elucidating the causes underlying degeneration of motoneurons and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
28
|
Spinal cord injury affects I-wave facilitation in human motor cortex. Brain Res Bull 2015; 116:93-7. [DOI: 10.1016/j.brainresbull.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 02/03/2023]
|
29
|
Jaiser SR, Barnes JD, Baker SN, Baker MR. A multiple regression model of normal central and peripheral motor conduction times. Muscle Nerve 2015; 51:706-12. [PMID: 25154476 PMCID: PMC4858813 DOI: 10.1002/mus.24427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 12/11/2022]
Abstract
Introduction The effects of age, height, and gender on magnetic central and peripheral motor conduction times (CMCT, PMCT) were analyzed using a multiple regression model. Methods Motor evoked potentials were recorded in 91 healthy volunteers. Magnetic stimulation was performed over the primary motor cortex (cortical latency) and over the cervical and lumbar spines (spinal latency). The spinal latency was taken as an estimate of PMCT and was subtracted from cortical latency to yield CMCT. Results Lower limb CMCT correlated significantly with height only; there were no significant predictors for upper limb CMCT. Upper and lower limb PMCT correlated with both age and height. Conclusions This is among the largest studies of CMCT in normal subjects. The multiple regression model unifies previously reported simple regression analyses, reconciles past discrepancies, and allows normal ranges to be individualized. Muscle Nerve51:706–712, 2015
Collapse
Affiliation(s)
- Stephan R Jaiser
- Institute of Neuroscience, Henry Wellcome Building, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
30
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1935] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
31
|
Pre- and postoperative evaluation of patients with lumbosacral disc herniation by neurophysiological and clinical assessment. Spine (Phila Pa 1976) 2014; 39:1792-800. [PMID: 25010094 DOI: 10.1097/brs.0000000000000510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The application of complex neurophysiological examination including motor evoked potentials (MEP) for pre- and postoperative evaluation of patients experiencing acute sciatica. OBJECTIVE The assessment of sensitivity and specificity of needle electromyography, MEP, and H-reflex examinations. The comparative analysis of preoperative and postoperative neurophysiological examination. SUMMARY OF BACKGROUND DATA In spite of the fact that complex neurophysiological diagnostic tools seem to be important for interpretation of incompatible results of neuroimaging and clinical examination, especially in the patients qualified for surgical treatment, their application has never been completely analyzed and documented. METHODS Pre- and postoperative electromyography, electroneurography, F-waves, H-reflex, and MEP examination were performed in 23 patients with confirmed disc-root conflict at lumbosacral spine. Clinical evaluation included examination of sensory perception for L5-S1 dermatomes, muscles strength with Lovett's scale, deep tendon reflexes, pain intensity with visual analogue scale, and straight leg raising test. RESULTS Sensitivity of electromyography at rest and MEP examination for evaluation of L5-S1 roots injury was 22% to 63% and 31% to 56% whereas specificity was 71% to 83% and 57% to 86%, respectively. H-reflex sensitivity and specificity for evaluation of S1 root injury were 56% and 67%, respectively. A significant improvement of root latency parameter in postoperative MEP studies as compared with preoperative was recorded for L5 (P = 0.039) and S1 root's levels (P = 0.05). CONCLUSION The analysis of the results from neurophysiological tests together with neuroimaging and clinical examination allow for a precise preoperative indication of the lumbosacral roots injury and accurate postoperative evaluation of patients experiencing sciatica. LEVEL OF EVIDENCE 3.
Collapse
|
32
|
Martin-Vaquero P, da Costa RC. Transcranial magnetic motor evoked potentials in Great Danes with and without clinical signs of cervical spondylomyelopathy: association with neurological findings and magnetic resonance imaging. Vet J 2014; 201:327-32. [PMID: 24929532 DOI: 10.1016/j.tvjl.2014.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic motor evoked potentials (TMMEPs) assess the functional integrity of the descending motor pathways, which are typically compromised in canine cervical spondylomyelopathy (CSM). The objective of this prospective study was to establish the reference ranges of TMMEP latency and amplitude in clinically normal (control) Great Danes (GDs), compare TMMEPs obtained in GDs with and without CSM, and determine whether there is any association between TMMEP data and severity of neurological signs or magnetic resonance imaging (MRI) findings. Twenty-nine client-owned GDs were enrolled (15 controls, 14 CSM-affected). All dogs underwent TMMEPs under sedation, and latencies and amplitudes were recorded from the extensor carpi radialis (ECR) and cranial tibial (CT) muscles. MRI of the cervical vertebral column was performed to evaluate the presence and severity of spinal cord (SC) compression, and the presence of SC signal changes. ECR and CT latencies were significantly longer in CSM-affected than control GDs. No significant differences between groups were found for amplitudes or neuronal path lengths. For the CT TMMEPs, CSM-affected GDs with moderate and severe clinical signs had significantly longer latencies than those with mild clinical signs. Significantly longer CT latencies were found in dogs with moderate and severe SC compression compared with dogs with mild compression. CT TMMEPs could not be recorded in 7/9 CSM-affected GDs with SC signal changes. These results provide a reference range for TMMEPs of clinically normal GDs. The use of TMMEPs is a valid ancillary test to assess the integrity of motor pathways in GDs with CSM.
Collapse
Affiliation(s)
- P Martin-Vaquero
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp St., Columbus, OH 43210, USA.
| | - R C da Costa
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp St., Columbus, OH 43210, USA
| |
Collapse
|
33
|
Fisher KM, Chinnery PF, Baker SN, Baker MR. Enhanced reticulospinal output in patients with (REEP1) hereditary spastic paraplegia type 31. J Neurol 2013; 260:3182-4. [PMID: 24221643 PMCID: PMC3843367 DOI: 10.1007/s00415-013-7178-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/27/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022]
Affiliation(s)
- K M Fisher
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
34
|
Vucic S, Kiernan MC. Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:561-575. [PMID: 24112924 DOI: 10.1016/b978-0-444-53497-2.00045-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the motor neurons in the motor cortex, brainstem, and spinal cord. The clinical phenotype of ALS is underscored by a combination of upper and lower motor neuron dysfunction. Although this phenotype was observed over 100 years ago, the site of ALS onset and the pathophysiological mechanisms underlying the development of motor neuron degeneration remain to be elucidated. Transcranial magnetic stimulation (TMS) enables noninvasive assessment of the functional integrity of the motor cortex and its corticomotoneuronal projections. To date, TMS studies have established cortical dysfunction in ALS, with cortical hyperexcitability being an early feature in sporadic forms of ALS and preceding the clinical onset of familial ALS. Taken together, a central origin of ALS is supported by TMS studies, with an anterograde dying-forward mechanism implicated in ALS pathogenesis. Of further relevance, TMS techniques reliably distinguish ALS from mimic disorders, despite a compatible peripheral disease burden, thereby suggesting a potential diagnostic utility of TMS in ALS. This chapter reviews the mechanisms underlying the generation of TMS parameters utilized in assessment of cortical excitability, the contribution of TMS in enhancing the understanding of ALS pathophysiology, and the potential diagnostic utility of TMS techniques in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| | | |
Collapse
|
35
|
Kawakita H, Kameyama O, Ogawa R, Hayes KC, Wolfe DL, Allatt RD. Reinforcement of motor evoked potentials by remote muscle contraction. J Electromyogr Kinesiol 2012; 1:96-106. [PMID: 20870499 DOI: 10.1016/1050-6411(91)90003-n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/1991] [Indexed: 11/27/2022] Open
Abstract
We investigated the effects of remote muscle contraction on the amplitude and latency of motor-evoked potentials (MEPs) recorded from tibialis anterior and lateral gastrocnemius after transcranial magnetic stimulation of the motor cortex. In particular, consideration was given to the effects of unilateral handgrip of different strengths, jaw clench, and combined bilateral handgrip (Jendrassik maneuver) and jaw clench. Eight healthy adult volunteer subjects (six women, two men) participated in the main study. The clinical usefulness of this form of facilitation was subsequently demonstrated in three patients with myelopathy. Transcranial magnetic stimulation of the motor cortex was delivered from a Cadwell MES-10 (100% intensity) with a 9.5-cm circular coil positioned with the rim over the vertex. Stimuli were delivered ∼ 1 s after initiation of reinforcement. In the main study of normal subjects, surface recordings of the evoked compound muscle action potentials were made bilaterally from anterior tibialis and lateral gastrocnemius. In the individual studies of patients, MEPs were also recorded from abductor pollicis brevis and other muscles innervated from roots below the level of lesion. The principal results showed that unilateral handgrip (50 and 100% maximum voluntary contraction, MVC) of either hand enhanced the amplitude of MEPs bilaterally in both tibialis anterior and lateral gastrocnemius in all normal subiects (p < 0.05). The mean increase in amplitude associated with 100% MVC unilateral handgrip was >300% of the control value when the subject was relaxed (p < 0.01). The bilateral Jendrassik maneuver and jaw clench were also effective in increasing (p < 0.05) MEP amplitude in both muscle groups. These two procedures did not yield the same degree of reinforcement as 100% unilateral handgrip. Remote muscle contractions induced a reduction in MEP latency of 1-2 ms (p < 0.05). The clinical importance of these observations was demonstrated by the fact that remote muscle reinforcement enabled identification of low-amplitude MEPs that might otherwise have been missed in the three patients with spinal cord trauma.
Collapse
Affiliation(s)
- H Kawakita
- Department of Orthopaedic Surgery, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Matsumoto H, Konoma Y, Shimizu T, Okabe S, Shirota Y, Hanajima R, Terao Y, Ugawa Y. Aging influences central motor conduction less than peripheral motor conduction: A transcranial magnetic stimulation study. Muscle Nerve 2012; 46:932-6. [DOI: 10.1002/mus.23430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2012] [Indexed: 11/08/2022]
|
37
|
Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Solé J, Siebner HR. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2012; 123:858-82. [PMID: 22349304 DOI: 10.1016/j.clinph.2012.01.010] [Citation(s) in RCA: 859] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 01/16/2012] [Accepted: 01/22/2012] [Indexed: 11/29/2022]
Abstract
Transcranial magnetic stimulation (TMS) is an established neurophysiological tool to examine the integrity of the fast-conducting corticomotor pathways in a wide range of diseases associated with motor dysfunction. This includes but is not limited to patients with multiple sclerosis, amyotrophic lateral sclerosis, stroke, movement disorders, disorders affecting the spinal cord, facial and other cranial nerves. These guidelines cover practical aspects of TMS in a clinical setting. We first discuss the technical and physiological aspects of TMS that are relevant for the diagnostic use of TMS. We then lay out the general principles that apply to a standardized clinical examination of the fast-conducting corticomotor pathways with single-pulse TMS. This is followed by a detailed description of how to examine corticomotor conduction to the hand, leg, trunk and facial muscles in patients. Additional sections cover safety issues, the triple stimulation technique, and neuropediatric aspects of TMS.
Collapse
Affiliation(s)
- S Groppa
- Department of Neurology, Christian Albrechts University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Menon P, Kiernan MC, Vucic S. Appearance, phenomenology and diagnostic utility of the split hand in amyotrophic lateral sclerosis. Neurodegener Dis Manag 2011. [DOI: 10.2217/nmt.11.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The split hand has been increasingly recognized as a clinical feature of amyotrophic lateral sclerosis (ALS), heralded by preferential wasting of the thenar group of muscles and the first dorsal interosseous. Although the mechanisms underlying the development of the split hand in ALS remain to be fully elucidated, a cortical basis has been suggested, thereby supporting the notion of upper motor neuron primacy in ALS pathophysiology. In addition, quantifying the split-hand phenomena through the recent development of a novel split-hand index, appears to robustly differentiate ALS from mimic disorders. Taken together, the split-hand index appears to be a useful neurophysiological parameter that has the potential to aid the diagnostic pathway in ALS. The current review discusses the pathophysiological, diagnostic and prognostic utility of the split-hand index in ALS.
Collapse
Affiliation(s)
- Parvathi Menon
- Sydney Medical School Westmead, University of Sydney, NSW, Australia; Department of Neurology, Westmead Hospital, Cnr Hawkesbury and Darcy Roads, Westmead, NSW, 2145, Australia
| | - Matthew C Kiernan
- Neuroscience Research Australia, University of New South Wales, NSW, Australia
| | | |
Collapse
|
39
|
Stump nerve signals during transcranial magnetic motor cortex stimulation recorded in an amputee via longitudinal intrafascicular electrodes. Exp Brain Res 2011; 210:1-11. [DOI: 10.1007/s00221-011-2571-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
40
|
Livingston SC, Goodkin HP, Ingersoll CD. The influence of gender, hand dominance, and upper extremity length on motor evoked potentials. J Clin Monit Comput 2010; 24:427-36. [PMID: 21110222 DOI: 10.1007/s10877-010-9267-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022]
Abstract
UNLABELLED Motor evoked potentials (MEPs) induced through transcranial magnetic stimulation (TMS) are susceptible to several sources of variability including gender, hand dominance, and upper extremity length. Conflicting evidence on the relationship between MEPs and subject characteristics has been reported. OBJECTIVE The purposes of this study were to determine if MEPs are different between genders and between right- and left-hand dominant subjects, and to determine if MEPs are correlated with upper extremity length. METHODS Using a case-control design, we recorded MEPs from 45 healthy subjects (age 21.6 ± 2.0 years; 24 females, 21 males) with a MagStim200 stimulating coil positioned over the primary motor cortex. Evoked responses were recorded by surface EMG electrodes from the abductor pollicis brevis, abductor digiti minimi and first dorsal interosseous muscles contralateral to the site of TMS. Evoked responses were analyzed to determine motor thresholds, latencies and amplitudes. Central motor conduction time (CMCT) was estimated from MEP, M response, and F wave latencies. RESULTS Gender and hand dominance did not significantly influence thresholds, MEP amplitudes, or CMCT (P > .05). MEP latencies were moderately correlated with upper extremity length (R = .62 right median, R = .50 left median, R = .45 right ulnar, R = .51 left ulnar MEP latency, P < .01). An ANCOVA using upper extremity length as the covariate demonstrated no significant differences between genders (Wilk's λ = .89, F = 2.45, P = .10). After adjusting MEP latencies to upper limb length, no significant differences were observed between dominant and non-dominant limbs (F = .002, P = .97 median, and F = .03, P = .56 ulnar) nor between genders (F = 2.7, P = .11 median; F = .05, P = .82 ulnar). CONCLUSIONS Variability in MEP latencies between genders was due to differences in upper extremity length. Adjusting MEP latencies to upper limb length is recommended for more accurate comparison and meaningful interpretation between subjects. Hand dominance and gender do not significantly influence motor thresholds, MEP amplitude, or CMCT.
Collapse
Affiliation(s)
- Scott C Livingston
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Wethington 204C, Lexington, KY 40536-0200, USA.
| | | | | |
Collapse
|
41
|
Matsumoto H, Hanajima R, Shirota Y, Hamada M, Terao Y, Ohminami S, Furubayashi T, Nakatani-Enomoto S, Ugawa Y. Cortico-conus motor conduction time (CCCT) for leg muscles. Clin Neurophysiol 2010; 121:1930-3. [DOI: 10.1016/j.clinph.2010.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 11/29/2022]
|
42
|
LIVINGSTON SCOTTC, INGERSOLL CHRISTOPHERD. INTRA-RATER RELIABILITY OF A TRANSCRANIAL MAGNETIC STIMULATION TECHNIQUE TO OBTAIN MOTOR EVOKED POTENTIALS. Int J Neurosci 2009; 118:239-56. [DOI: 10.1080/00207450701668020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Floyd AG, Yu QP, Piboolnurak P, Tang MX, Fang Y, Smith WA, Yim J, Rowland LP, Mitsumoto H, Pullman SL. Transcranial magnetic stimulation in ALS: utility of central motor conduction tests. Neurology 2009; 72:498-504. [PMID: 19204259 DOI: 10.1212/01.wnl.0000341933.97883.a4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate transcranial magnetic stimulation (TMS) measures as clinical correlates and longitudinal markers of amyotrophic lateral sclerosis (ALS). METHODS We prospectively studied 60 patients with ALS subtypes (sporadic ALS, familial ALS, progressive muscular atrophy, and primary lateral sclerosis) using single pulse TMS, recording from abductor digiti minimi (ADM) and tibialis anterior (TA) muscles. We evaluated three measures: 1) TMS motor response threshold to the ADM, 2) central motor conduction time (CMCT), and 3) motor evoked potential amplitude (correcting for peripheral changes). Patients were evaluated at baseline, compared with controls, and followed every 3 months for up to six visits. Changes were analyzed using generalized estimation equations to test linear trends with time. RESULTS TMS threshold, CMCT, and TMS amplitude correlated (p < 0.05) with clinical upper motor neuron (UMN) signs at baseline and were different (p < 0.05) from normal controls in at least one response. Seventy-eight percent of patients with UMN (41/52) and 50% (4/8) of patients without clinical UMN signs had prolonged CMCT. All three measures revealed significant deterioration over time: TMS amplitude showed the greatest change, decreasing 8% per month; threshold increased 1.8% per month; and CMCT increased by 0.9% per month. CONCLUSIONS Transcranial magnetic stimulation (TMS) findings, particularly TMS amplitude, can objectively discriminate corticospinal tract involvement in amyotrophic lateral sclerosis (ALS) from controls and assess the progression of ALS. While central motor conduction time and response threshold worsen by less than 2% per month, TMS amplitude decrease averages 8% per month, and may be a useful objective marker of disease progression.
Collapse
Affiliation(s)
- A G Floyd
- Clinical Motor Physiology Laboratory, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per 100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio approximately 1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1-2 years. Paralysis is progressive and leads to death due to respiratory failure within 2-3 years for bulbar onset cases and 3-5 years for limb onset ALS cases. Most ALS cases are sporadic but 5-10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2-5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival.
Collapse
Affiliation(s)
- Lokesh C Wijesekera
- MRC centre for Neurodegeneration Research, Department of Clinical Neuroscience, Box 41, Institute of Psychiatry, Kings College London, London, SE5 8AF, UK
| | - P Nigel Leigh
- MRC centre for Neurodegeneration Research, Department of Clinical Neuroscience, Box 41, Institute of Psychiatry, Kings College London, London, SE5 8AF, UK
| |
Collapse
|
45
|
Rayegani SM, Hollisaz MT, Hafezi R, Nassirzadeh S. Application of magnetic motor stimulation for measuring conduction time across the lower part of the brachial plexus. J Brachial Plex Peripher Nerve Inj 2008; 3:7. [PMID: 18321392 PMCID: PMC2292182 DOI: 10.1186/1749-7221-3-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 03/06/2008] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The objective of this study was to calculate central motor conduction time (CMCT) of median and ulnar nerves in normal volunteers. Conduction time across the lower part of the brachial plexus was measured by using magnetic stimulation over the motor cortex and brachial plexus and recording the evoked response in hand muscles. DESIGN This descriptive study was done on 112 upper limbs of healthy volunteers. Forty-six limbs belonging to men and sixty-six belonging to women were studied by magnetic stimulation of both motor cortex and brachial plexus and recording the evoked response in thenar and hypothenar muscles. Stimulation of the motor cortex gives rise to absolute latency of each nerve whereas stimulation of the brachial plexus results in peripheral conduction time. The difference between these two values was considered the central motor conduction time (CMCT). RESULTS In summary the result are as follows; Cortex-thenar latency = 21.4 ms (SD = 1.7), CMCT-thenar = 9.6 ms (SD = 1.9), Cortex-hypothenar latency = 21.3 ms (SD = 1.8), CMCT-hypothenar = 9.4 ms (SD = 1.8). CONCLUSION These findings showed that there is no meaningful difference between two genders. CMCT calculated by this method is a little longer than that obtained by electrical stimulation that is due to the more distally placed second stimulation. We recommend magnetic stimulation as the method of choice to calculate CMCT and its use for lower brachial plexus conduction time. This method could serve as a diagnostic tool for diagnosis of lower plexus entrapment and injuries especially in early stages.
Collapse
Affiliation(s)
- Seyed Mansoor Rayegani
- Associate Professor of Physical Medicine and Rehabilitationn, shohada medical center, Shahid Beheshti University, M C Tehran, Iran
| | - Mohammad Taghi Hollisaz
- Professor of Physical Medicine & Rehabilitation, Baghiatallah University of Medical Sciences, Tehran, Iran
| | - Rahmatollah Hafezi
- Assistant Professor of Physical Medicine & Rehabilitation, Baghiatallah University of Medical Sciences, Tehran, Iran
| | - Shahriar Nassirzadeh
- Assistant Professor of Physical Medicine & Rehabilitation, Ahwaz University of Medical Sciences, Iran
| |
Collapse
|
46
|
Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rösler KM, Triggs WJ, Ugawa Y, Ziemann U. The clinical diagnostic utility of transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol 2008; 119:504-532. [DOI: 10.1016/j.clinph.2007.10.014] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 12/11/2022]
|
47
|
Assessment of cervical myelopathy using transcranial magnetic stimulation and prediction of prognosis after laminoplasty. Spine (Phila Pa 1976) 2008; 33:E15-20. [PMID: 18165736 DOI: 10.1097/brs.0b013e31815e5dae] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study investigated the clinical usefulness of motor-evoked potentials (MEPs) produced by transcranial magnetic stimulation of the brain for cervical myelopathy patients. OBJECTIVE The purpose of this study was to determine the usefulness of MEPs for the assessment of the severity of myelopathy and prediction of the outcome of laminoplasty. SUMMARY OF BACKGROUND DATA Magnetic stimulation has been widely used for examination of the descending excitatory motor pathways in the central nervous system, but little attention has been paid to cervical myelopathy. METHODS We measured the MEPs of 56 patients who underwent surgery for cervical myelopathy. The MEPs from the abductor pollicis brevis, abductor digiti minimi, tibialis anterior, and abductor hallucis muscle were evoked by transcranial magnetic brain stimulation. The latency from the anterior horn cell of the spinal cord to the hand or foot muscles was also measured, with the F-value [(F + M - 1)/2] calculated. This was followed by estimation of the central motor conduction time (CMCT). Severity of clinical disability was scored on the basis of symptoms according to a modified ADL scale for cervical myelopathy of the Japanese Orthopedic Association (JOA) score. RESULTS The average CMCT of the symptomatic side significantly correlated with the preoperative JOA score. The average CMCT of the symptomatic side significantly correlated with the 1-year postoperative JOA score. The average CMCT for patients with poor outcome was significantly longer than that for patients with good outcome. CMCT of 15 milliseconds or more in the upper extremities or that of 22 milliseconds or more in the lower extremities indicated poor prognosis. CONCLUSION In patients with cervical myelopathy, the CMCT significantly correlated with the results of clinical assessment. These findings regarding the duration of CMCT may be useful parameters in spinal pathology for prediction of the outcome of surgical treatment.
Collapse
|
48
|
Alisauskiene M, Magistris MR, Vaiciene N, Truffert A. Electrophysiological evaluation of motor pathways to proximal lower limb muscles: a combined method and reference values. Clin Neurophysiol 2007; 118:513-24. [PMID: 17223381 DOI: 10.1016/j.clinph.2006.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 11/04/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In contrast with their important functional and clinical role, motor pathways to proximal muscles of lower limbs are rarely investigated in clinical neurophysiology. We describe a method to evaluate central and peripheral pathways to these muscles and report reference values. METHODS Recording of both quadriceps was performed in 100 subjects. We analyzed the maximal M response after electrical stimulation of the femoral nerve, the patellar T reflex and the motor evoked potential (MEP) after transcranial magnetic stimulation. We defined the central motor conduction time as the difference between the MEP latency and the peripheral motor conduction time, estimated as the half of the T latency minus 0.5ms. RESULTS The mean MEP latency is 20.6ms (SD 1.99ms), central motor conduction time 10.1ms (SD 1.29ms), MEP/M amplitude ratio 60.0% (SD 15.75%). Normal limits according to height and age are provided for each parameter and for interside asymmetry. CONCLUSIONS This method to investigate the central and peripheral motor pathways supplying the L2-L4 myotomes is simple, painless and rapidly performed. The T reflex provides additional information on the proximal sensory pathways. SIGNIFICANCE This method will be useful in many clinical conditions.
Collapse
|
49
|
Stewart HG, Andersen PM, Eisen A, Weber M. Corticomotoneuronal dysfunction in ALS patients with different SOD1 mutations. Clin Neurophysiol 2006; 117:1850-61. [PMID: 16793335 DOI: 10.1016/j.clinph.2006.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 04/03/2006] [Accepted: 04/07/2006] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To examine corticomotoneuronal function in amyotrophic lateral sclerosis (ALS) patients carrying superoxide dismutase 1 (SOD1) mutations using peristimulus time histograms (PSTH). METHODS Six I113T, 3 A4V, one G41D and one G114A patient were studied along with 21 healthy control subjects. Analyses included comparison with previously reported data from 8 D90A homozygous and 12 sporadic ALS (SALS) patients examined by the authors using identical methodology. RESULTS Cortical threshold was significantly reduced in A4V patients (41.3%) compared to I113T (58%), SALS (57%) and D90A (71%) patients, as well as healthy controls (49.7%). Estimated excitatory postsynaptic potentials (EPSPs) were significantly larger in A4V patients (4.39 mV) compared to healthy controls (2.95 mV), I113T (2.71 mV) and SALS (2.39 mV) patients. Clinical features and PSTH parameters in I113T were similar to SALS, however, PSTH primary peaks (PP) were significantly more dispersed, 9.5 ms compared to 4ms in SALS. PSTHs from single G41D and G114A patients were unremarkable, apart from large EPSP amplitudes in the G114A patient. CONCLUSIONS ALS patients with A4V and I113T SOD1 mutations have distinctive corticomotoneuronal changes that are different from those in D90A homozygous and SALS patients. SIGNIFICANCE PSTH studies should be considered for future in vivo studies of SOD1 pathophysiology in ALS.
Collapse
Affiliation(s)
- Heather G Stewart
- Institute of Clinical Neurosciences, Umeå University Hospital, Umeå, Sweden
| | | | | | | |
Collapse
|
50
|
Richardson MP, Grosse P, Allen PJ, Turner R, Brown P. BOLD correlates of EMG spectral density in cortical myoclonus: description of method and case report. Neuroimage 2006; 32:558-65. [PMID: 16730460 DOI: 10.1016/j.neuroimage.2006.04.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/23/2006] [Accepted: 04/05/2006] [Indexed: 11/26/2022] Open
Abstract
The recording of electrophysiological data during BOLD fMRI is highly challenging but provides the opportunity to develop a more thorough account of brain function than either modality alone. To develop new techniques in this area has often required the study of pathological electrophysiological measures because such measures can be unusually strong (e.g., epileptic EEG spikes) and hence more easily detectable during fMRI than weaker normal phenomena. In this paper, we have studied pathologically strong EMG signals in a patient with cortical myoclonus. First, we studied the patient outside of scanning: The pathological corticospinal drive to muscle was concentrated over 6-30 Hz so that EMG components at higher frequency could be used to control for non-corticospinal contributions to the EMG during scanning. Additionally, there was very strong EMG-EMG and EMG-EEG coherence in this frequency band. Furthermore, analysis of spectral phase showed that this exaggerated coherence was produced by efferent drive from brain to muscle. Hence, the exaggerated peak in distal muscle EMG power spectrum reflected brain activity producing the efferent drive. Subsequently, we modified equipment and data analysis techniques previously developed for simultaneous EEG-fMRI to record polychannel EMG from distal upper limbs during simultaneous BOLD fMRI. After artefact reduction, the EMG recorded during fMRI retained the essential frequency and phase characteristics of EMG recorded outside of scanning. The BOLD signal was significantly correlated with time-varying 6- to 30-Hz power in a frontoparietal network compatible with the neurophysiological characteristics of our patient and compatible with prior hypotheses explaining the origin of cortical myoclonus.
Collapse
Affiliation(s)
- Mark P Richardson
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| | | | | | | | | |
Collapse
|