1
|
Subbiah K, Lee HS, Al-Hadeethi MR, Park T, Lgaz H. Unraveling the anti-corrosion mechanisms of a novel hydrazone derivative on steel in contaminated concrete pore solutions: An integrated study. J Adv Res 2024; 58:211-228. [PMID: 37634628 PMCID: PMC10982867 DOI: 10.1016/j.jare.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Corrosion-induced deterioration of infrastructure is a growing global concern. The development and application of corrosion inhibitors are one of the most effective approaches to protect steel rebar from corrosion. Hence, this study focuses on a novel hydrazone derivative, (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)aceto-hydrazide (HIND), and its potential application to mitigate corrosion in steel rebar exposed to chloride-contaminated concrete pore solutions (ClSCPS). OBJECTIVES The research aims to evaluate the anti-corrosion capabilities of HIND on steel rebar within a simulated corrosive environment, focusing on the mechanisms of its inhibitory effect. METHODS The corrosion of steel rebar exposed to the ClSCPS was studied through weight loss and electrochemical methods. The surface morphology of steel rebar surface was characterized by FE-SEM-EDS, AFM; oxidation states of the steel rebar and crystal structures were examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) methods. Further, experimental findings were complemented by theoretical studies using self-consistent-charge density-functional tight-binding (SCC-DFTB) simulations. The performance of HIND was monitored at an optimal concentration over a period of 30 days. RESULTS The results indicated a significant reduction in steel rebar corrosion upon introducing HIND. The inhibitor molecules adhered to the steel surface, preventing further deterioration and achieving an inhibition efficiency of 88.4% at 0.5 mmol/L concentration. The surface morphology analysis confirmed the positive effect of HIND on the rebar surface, showing a decrease in the surface roughness of the steel rebar from 183.5 in uninhibited to 50 nm in inhibited solutions. Furthermore, SCC-DFTB simulations revealed the presence of coordination between iron atoms and HIND active sites. CONCLUSION The findings demonstrate the potential of HIND as an effective anti-corrosion agent in chloride-contaminated environments. Its primary adsorption mechanism involves charge transfer from the inhibitor molecules to iron atoms. Therefore, applying HIND could be an effective strategy to address corrosion-related challenges in reinforced infrastructure.
Collapse
Affiliation(s)
- Karthick Subbiah
- Department of Architectural Engineering, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Han-Seung Lee
- Department of Architectural Engineering, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea.
| | - Mustafa R Al-Hadeethi
- Department of Chemistry, College of Education, University of Kirkuk, Kirkuk 36001, Iraq
| | - Taejoon Park
- Department of Robotics Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hassane Lgaz
- Innovative Durable Building and Infrastructure Research Center, Center for Creative Convergence Education, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
2
|
Nagarajan P, Cole I, Deng Q, Kuznetsov A, Oz T, Kujawska M. Experimental and theoretical studies of a novel europium decorated carbon nanotube material: investigation of cytotoxicity, electrocatalytic properties, and corrosion inhibition behaviour on Mg AZ31 alloy in 3.5% NaCl environment. NEW J CHEM 2024; 48:18768-18780. [DOI: 10.1039/d4nj03786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Leveraging rare-earth elements as one of the eco-friendly candidates to protect alloy coatings, this study performed the europium functionalization of carbon nanotubes (Eu–CNT) for magnesium alloy protection in the 3.5% NaCl medium.
Collapse
Affiliation(s)
| | - Ivan Cole
- School of Engineering, Royal Melbourne Institute of Technology, RMIT University, Melbourne, VIC 3000, Australia
| | - Qiushi Deng
- School of Engineering, Royal Melbourne Institute of Technology, RMIT University, Melbourne, VIC 3000, Australia
| | - Aleksey Kuznetsov
- Department of Chemistry, Universidad Tecnica Federico Santa Maria, Av. Santa Maria 6400, Santiago, Chile
| | - Tuba Oz
- Department of Toxicology Poznan, University of Medical Sciences, Poznan, Poland
| | - Malgorzata Kujawska
- Department of Toxicology Poznan, University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Assad H, Lone IA, Sihmar A, Kumar A, Kumar A. An overview of contemporary developments and the application of graphene-based materials in anticorrosive coatings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30658-7. [PMID: 37996595 DOI: 10.1007/s11356-023-30658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Although graphene and graphene-based materials (GBMs) offer a wide range of possible applications, interest in their use as barrier layers or as reinforcements in coatings for the mitigation of corrosion has grown during the past decade. Because of its unique two-dimensional nanostructure and exceptional physicochemical characteristics, graphene has gotten a lot of attention as an anti-corrosion material. This enthusiasm is largely driven by the requirement to integrate more features, improve anti-corrosion effectiveness, and eventually prolong the service duration of metallic components. As barriers against metal corrosion, graphene nanosheets can be applied singly or in combination to create thin films, layered frameworks, or composites. Concurrently, over the past few years, significant advancements have been made in the establishment of scalable production methods for graphene and materials based on graphene. Since there is currently a wide variety of graphene material with various morphologies and characteristics, it is even more important that the production approach and the intended application be properly matched. This review gathers the most recent data and aims to give the reader a comprehensive overview of the most recent developments in the use of graphene and GBMs in various anti-corrosion strategies. The structure-property correlation and anticorrosion techniques in these systems are given special consideration. The current article offers a critical examination of this topic as well, stressing the areas that require more research.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Imtiyaz Ahmed Lone
- Department of Chemistry, National Institute of Technology, Srinagar, 190006, Jammu and Kashmir, India
| | - Ashish Sihmar
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Alok Kumar
- Department of Mechanical Engineering, Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department, Government of Bihar, Nalanda, Bihar, 803108, India
| | - Ashish Kumar
- Department of Chemistry, Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department, Government of Bihar, Nalanda, Bihar, 803108, India.
| |
Collapse
|
4
|
AlSalhi MS, Devanesan S, Rajasekar A, Kokilaramani S. Characterization of plants and seaweeds based corrosion inhibitors against microbially influenced corrosion in a cooling tower water environment. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Nazir G, Lee SY, Lee JH, Rehman A, Lee JK, Seok SI, Park SJ. Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204380. [PMID: 36103603 DOI: 10.1002/adma.202204380] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Exceptional power conversion efficiency (PCE) of 25.7% in perovskite solar cells (PSCs) has been achieved, which is comparable with their traditional rivals (Si-based solar cells). However, commercialization-worthy efficiency and long-term stability remain a challenge. In this regard, there are increasing studies focusing on the interface engineering in PSC devices to overcome their poor technical readiness. Herein, the roles of electrode materials and interfaces in PSCs are discussed in terms of their PCEs and perovskite stability. All the current knowledge on the factors responsible for the rapid intrinsic and external degradation of PSCs is presented. Then, the roles of carbonaceous materials as substitutes for noble metals are focused on, along with the recent research progress in carbon-based PSCs. Furthermore, a sub-category of PSCs, that is, flexible PSCs, is considered as a type of exceptional power source due to their high power-to-weight ratios and figures of merit for next-generation wearable electronics. Last, the future perspectives and directions for research in PSCs are discussed, with an emphasis on their commercialization.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
- Department of Mechanical Engineering and Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Adeela Rehman
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Jung-Kun Lee
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sang Il Seok
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| |
Collapse
|
6
|
Verma C, Quraishi M. Carbohydrate Polymers-Modified Carbon Allotropes for Enhanced Anticorrosive Activity: State-of-Arts and Perspective. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Berdimurodov E, Verma C, Berdimuradov K, Quraishi M, Kholikov A, Akbarov K, Umirov N, Borikhonov B. 8–Hydroxyquinoline is key to the development of corrosion inhibitors: An advanced review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Birdeanu M, Fratilescu I, Epuran C, Murariu AC, Socol G, Fagadar-Cosma E. Efficient Decrease in Corrosion of Steel in 0.1 M HCl Medium Realized by a Coating with Thin Layers of MnTa2O6 and Porphyrins Using Suitable Laser-Type Approaches. NANOMATERIALS 2022; 12:nano12071118. [PMID: 35407236 PMCID: PMC9000784 DOI: 10.3390/nano12071118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
The purpose of this research is to meet current technical and ecological challenges by developing novel steel coating systems specifically designed for mechanical equipment used in aggressive acid conditions. Homogeneous sandwich-type layered films on the surface of steel electrodes were realized using a pseudo-binary oxide, MnTa2O6, and two different substituted porphyrin derivatives, namely: 5-(4-carboxy-phenyl)-10,15,20-tris (4-methyl-phenyl)-porphyrin and 5-(4-methyl-benzoate)-10,15,20-tris (4-methyl-phenyl)-porphyrin, which are novel investigated compound pairs. Two suitable laser strategies, pulsed laser deposition (PLD) and matrix-assisted pulsed laser evaporation (MAPLE), were applied in order to prevent porphyrin decomposition and to create smooth layers with low porosity that are extremely adherent to the surface of steel. The electrochemical measurements of corrosion-resistant coating performance revealed that in all cases in which the steel electrodes were protected, a significant value of corrosion inhibition efficiency was found, ranging from 65.6 to 83.7%, depending on the nature of the porphyrin and its position in the sandwich layer. The highest value (83.7%) was obtained for the MAPLE/PLD laser deposition of 5-(4-carboxy-phenyl)-10,15,20-tris (4-methyl-phenyl)-porphyrin/MnTa2O6(h), meaning that the inhibitors adsorbed and blocked the access of the acid to the active sites of the steel electrodes.
Collapse
Affiliation(s)
- Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania;
| | - Ion Fratilescu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania; (I.F.); (C.E.)
| | - Camelia Epuran
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania; (I.F.); (C.E.)
| | - Alin Constantin Murariu
- National Research & Development Institute for Welding and Material Testing—ISIM, Mihai Viteazu Ave. 30, 300222 Timisoara, Romania;
| | - Gabriel Socol
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor Street, 077125 Măgurele, Romania;
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania; (I.F.); (C.E.)
- Correspondence:
| |
Collapse
|