1
|
Modulation of lower urinary tract smooth muscle contraction and relaxation by the urothelium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:675-694. [DOI: 10.1007/s00210-018-1510-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
|
2
|
Fernandes VS, Hernández M. The Role of Nitric Oxide and Hydrogen Sulfide in Urinary Tract Function. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:34-41. [PMID: 26866922 DOI: 10.1111/bcpt.12565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
This MiniReview focuses on the role played by nitric oxide (NO) and hydrogen sulfide (H2 S) in physiology of the upper and lower urinary tract. NO and H2 S, together with carbon monoxide, belong to the group of gaseous autocrine/paracrine messengers or gasotransmitters, which are employed for intra- and intercellular communication in almost all organ systems. Because they are lipid-soluble gases, gaseous transmitters are not constrained by cellular membranes, so that their storage in vesicles for later release is not possible. Gasotransmitter signals are terminated by falling concentrations upon reduction in production that are caused by reacting with cellular components (essentially reactive oxygen species and NO), binding to cellular components or diffusing away. NO and, more recently, H2 S have been identified as key mediators in neurotransmission of the urinary tract, involved in the regulation of ureteral smooth muscle activity and urinary flow ureteral resistance, as well as by playing a crucial role in the smooth muscle relaxation of bladder outlet region. Urinary bladder function is also dependent on integration of inhibitory mediators, such as NO, released from the urothelium. In the bladder base and distal ureter, the co-localization of neuronal NO synthase with substance P and calcitonin gene-related peptide in sensory nerves as well as the existence of a high nicotinamide adenine dinucleotide phosphate-diaphorase activity in dorsal root ganglion neurons also suggests the involvement of NO as a sensory neurotransmitter.
Collapse
Affiliation(s)
- Vítor S Fernandes
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Medardo Hernández
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Ribeiro ASF, Fernandes VS, Martínez MP, López-Oliva ME, Barahona MV, Recio P, Martínez AC, Blaha I, Orensanz LM, Bustamante S, García-Sacristán A, Prieto D, Hernández M. Pre- and post-junctional bradykinin B2 receptors regulate smooth muscle tension to the pig intravesical ureter. Neurourol Urodyn 2014; 35:115-21. [PMID: 25327836 DOI: 10.1002/nau.22685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/02/2014] [Indexed: 02/04/2023]
Abstract
AIMS Neuronal and non-neuronal bradykinin (BK) receptors regulate the contractility of the bladder urine outflow region. The current study investigates the role of BK receptors in the regulation of the smooth muscle contractility of the pig intravesical ureter. METHODS Western blot and immunohistochemistry were used to show the expression of BK B1 and B2 receptors and myographs for isometric force recordings. RESULTS B2 receptor expression was consistently detected in the intravesical ureter urothelium and smooth muscle layer, B1 expression was not detected where a strong B2 immunoreactivity was observed within nerve fibers among smooth muscle bundles. On ureteral strips basal tone, BK induced concentration-dependent contractions, were potently reduced by extracellular Ca(2+) removal and by B2 receptor and voltage-gated Ca(2+) (VOC) channel blockade. BK contraction did not change as a consequence of urothelium mechanical removal or cyclooxygenase and Rho-associated protein kinase inhibition. On 9,11-dideoxy-9a,11a-methanoepoxy prostaglandin F2α (U46619)-precontracted samples, under non-adrenergic non-cholinergic (NANC) and nitric oxide (NO)-independent NANC conditions, electrical field stimulation-elicited frequency-dependent relaxations which were reduced by B2 receptor blockade. Kallidin, a B1 receptor agonist, failed to increase preparation basal tension or to induce relaxation on U46619-induced tone. CONCLUSIONS The present results suggest that BK produces contraction of pig intravesical ureter via smooth muscle B2 receptors coupled to extracellular Ca(2+) entry mainly via VOC (L-type) channels. Facilitatory neuronal B2 receptors modulating NO-dependent or independent NANC inhibitory neurotransmission are also demonstrated.
Collapse
Affiliation(s)
- Ana S F Ribeiro
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Vítor S Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - María Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María Victoria Barahona
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Paz Recio
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Cristina Martínez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Igor Blaha
- Departamento de Urología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Luis M Orensanz
- Departamento de Investigación, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Salvador Bustamante
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Sand C, Michel MC. Bradykinin contracts rat urinary bladder largely independently of phospholipase C. J Pharmacol Exp Ther 2014; 348:25-31. [PMID: 24144794 DOI: 10.1124/jpet.113.208025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Several receptor systems in the bladder causing detrusor smooth muscle contraction stimulate phospholipase C (PLC). PLC inhibition abolishes bladder contraction via P2Y6 but not that via M3 muscarinic receptors, indicating a receptor-dependent role of PLC. Therefore, we explored the role of PLC in rat bladder contraction by bradykinin. The PLC inhibitor U 73,122 [1-(6-[([17β]-3-methoxyestra-1,3,5[10]-trien-17-yl)-amino]hexyl)-1H-pyrrole-2,5-dione] did not affect the bradykinin response to a significantly greater degree than its inactive analog U 73,343 [10 μM each; 1-(6-[-([17β]-3-methoxyestra-1,3,5[10]-trien-17-yl)-amino]hexyl)-2,5-pyrrolidinedione], whereas the phospholipase D inhibitor butan-1-ol relative to its inactive control butan-2-ol caused a weak but significant inhibition (0.3% each). The cytosolic phospholipase A2 inhibitor arachidonyltrifluoromethyl ketone (300 μM) and the cyclooxygenase inhibitor indomethacin (10 μM) caused strong inhibition of the bradykinin response. The L-type Ca(2+) channel blocker nifedipine (10-100 nM) concentration-dependently caused strong inhibition, whereas only a small but significant inhibition was seen with SK&F 96,365 [10 μM; 1-[β-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole HCl], an inhibitor of receptor-operated Ca(2+) channels. Several protein kinase C inhibitors yielded an equivocal picture (inhibition by 10 μM bisindolylmaleimide I and 1 μM calphostin but not by 10 μM chelerythrine). The rho kinase inhibitor Y 27,632 [1-10 μM; trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide] caused a strong and concentration-dependent inhibition of the bradykinin response. Our data support that not only M3 but also bradykinin receptors cause bladder contraction by a largely PLC-independent mechanism. Both responses strongly involve L-type Ca(2+) channels and rho kinase, whereas only the bradykinin response additionally involves the phospholipase A2/cyclooxygenase pathway.
Collapse
Affiliation(s)
- Carsten Sand
- Department of Pharmacology, University of Duisburg-Essen, Essen, Germany (C.S.); and Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.)
| | | |
Collapse
|