1
|
An L, Hong S, Turon T, Pavletic A, Johnson CS, Derbyshire JA, Shen J. In vivo GABA detection by single-pulse editing with one shot. Magn Reson Med 2025; 94:4-14. [PMID: 39789842 PMCID: PMC12021314 DOI: 10.1002/mrm.30423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Two-shot γ-aminobutyric acid (GABA) difference editing techniques have been used widely to detect the GABA H4 resonance at 3.01 ppm. Here, we introduce a single-shot method for detecting the full GABA H2 resonance signal, which avoids contamination from the coedited M3.00 macromolecules. METHODS Density matrix simulation was conducted to optimize the pulse-sequence timing, aiming to reduce the interfering glutamate H4 signal and minimize the correlation between glutamate and GABA arising from spectral overlap. The optimized sequence was used to acquire MR spectroscopy data from a 14-mL voxel in the anterior cingulate cortex of 6 healthy participants. 1H-MRS experiments following the oral administration of [U-13C]glucose were also conducted. RESULTS The GABA H2 peak was consistently observed in all participants. The GABA/creatine ratios in the participants were determined to be 0.07 ± 0.01 with Cramer-Rao lower bounds of 8.0% ± 2.2%. Spectra acquired following [U-13C]glucose intake demonstrated the feasibility of using GABA H2 as a highly sensitive reporter for GABA C2. CONCLUSION The proposed single-shot GABA editing method effectively minimizes interference from the glutamate H4 signal in the detection of the full GABA H2 signal, which resonates at a spectral region with much reduced macromolecule contamination.
Collapse
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungtak Hong
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Tara Turon
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriana Pavletic
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher S Johnson
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Derbyshire
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Zhou J, Sun W, Li H, Song X, Xu D, Xu H. Application of 5T glutamate chemical exchange saturation transfer imaging in brain tumors: preliminary results. J Neurooncol 2024; 169:581-589. [PMID: 38958848 DOI: 10.1007/s11060-024-04759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Glutamate chemical exchange saturation transfer (GluCEST) is a non-invasive CEST imaging technique for detecting glutamate levels in tissues. We aimed to investigate the reproducibility of the 5T GluCEST technique in healthy volunteers and preliminarily explore its potential clinical application in patients with brain tumors. METHODS Ten volunteers (4 males, mean age 29 years) underwent three 5T GluCEST imaging scans. The reproducibility of the three imaging GluCEST measurements was assessed using one-way repeated measures analysis of variance (ANOVA), generalized estimating equations, and linear mixed models. Twenty-eight patients with brain tumors (10 males, mean age 54 years) underwent a single GluCEST scan preoperatively, and t-tests were used to compare the differences in GluCEST values between different brain tumors. In addition, the diagnostic accuracy of GluCEST values in differentiating brain tumors was assessed using the receiver work characteristics (ROC) curve. RESULTS The coefficients of variation of GluCEST values in healthy volunteers were less than 5% for intra-day, inter-day, and within-subjects and less than 10% for between-subjects. High-grade gliomas (HGG) had higher GluCEST values compared to low-grade gliomas (LGG) (P < 0.001). In addition, cerebellopontine angle (CPA) meningiomas had higher GluCEST values than acoustic neuromas (P < 0.001). The area under the curve (AUC) of the GluCEST value for differentiating CPA meningioma from acoustic neuroma was 0.93. CONCLUSION 5T GluCEST images are highly reproducible in healthy brains. In addition, the 5T GluCEST technique has potential clinical applications in differentiating LGG from HGG and CPA meningiomas from acoustic neuromas.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaopeng Song
- Central Research Institute, United Imaging Healthcare, 2258 Chengbei Rd., Jiading District, Shanghai, 201807, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
An L, Shen J. In vivo magnetic resonance spectroscopy by transverse relaxation encoding with narrowband decoupling. Sci Rep 2023; 13:12211. [PMID: 37500714 PMCID: PMC10374641 DOI: 10.1038/s41598-023-39375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Cell pathology in neuropsychiatric disorders has mainly been accessible by analyzing postmortem tissue samples. Although molecular transverse relaxation informs local cellular microenvironment via molecule-environment interactions, precise determination of the transverse relaxation times of molecules with scalar couplings (J), such as glutamate and glutamine, has been difficult using in vivo magnetic resonance spectroscopy (MRS) technologies, whose approach to measuring transverse relaxation has not changed for decades. We introduce an in vivo MRS technique that utilizes frequency-selective editing pulses to achieve homonuclear decoupled chemical shift encoding in each column of the acquired two-dimensional dataset, freeing up the entire row dimension for transverse relaxation encoding with J-refocusing. This results in increased spectral resolution, minimized background signals, and markedly broadened dynamic range for transverse relaxation encoding. The in vivo within-subject coefficients of variation for the transverse relaxation times of glutamate and glutamine, measured using the proposed method in the human brain at 7 T, were found to be approximately 4%. Since glutamate predominantly resides in glutamatergic neurons and glutamine in glia in the brain, this noninvasive technique provides a way to probe cellular pathophysiology in neuropsychiatric disorders for characterizing disease progression and monitoring treatment response in a cell type-specific manner in vivo.
Collapse
Affiliation(s)
- Li An
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room 3D46, 10 Center Drive, MSC 1216, Bethesda, MD, 20892-1216, USA.
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Najac C, Boer VO, Kan HE, Webb AG, Ronen I. Improved detection limits of J-coupled neurometabolites in the human brain at 7 T with a J-refocused sLASER sequence. NMR IN BIOMEDICINE 2022; 35:e4801. [PMID: 35833462 PMCID: PMC9788253 DOI: 10.1002/nbm.4801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In a standard spin echo, the time evolution due to homonuclear couplings is not reversed, leading to echo time (TE)-dependent modulation of the signal amplitude and signal loss in the case of overlapping multiplet resonances. This has an adverse effect on quantification of several important metabolites such as glutamate and glutamine. Here, we propose a J-refocused variant of the sLASER sequence (J-sLASER) to improve quantification of J-coupled metabolites at ultrahigh field (UHF). The use of the sLASER sequence is particularly advantageous at UHF as it minimizes chemical shift displacement error and results in relatively homogenous refocusing. We simulated the MRS signal from brain metabolites over a broad range of TE values with sLASER and J-sLASER, and showed that the signal of J-coupled metabolites was increased with J-sLASER with TE values up to ~80 ms. We further simulated "brain-like" spectra with both sequences at the shortest TE available on our scanner. We showed that, despite the slightly longer TE, the J-sLASER sequence results in significantly lower Cramer-Rao lower bounds (CRLBs) for J-coupled metabolites compared with those obtained with sLASER. Following phantom validation, we acquired spectra from two brain regions in 10 healthy volunteers (age 38 ± 15 years) using both sequences. We showed that using J-sLASER results in a decrease of CRLBs for J-coupled metabolites. In particular, we measured a robust ~38% decrease in the mean CRLB (glutamine) in parietal white matter and posterior cingulate cortex (PCC). We further showed, in 10 additional healthy volunteers (age 34 ± 15 years), that metabolite quantification following two separate acquisitions with J-sLASER in the PCC was repeatable. The improvement in quantification of glutamine may in turn improve the independent quantification of glutamate, the main excitatory neurotransmitter in the brain, and will simultaneously help to track possible modulations of glutamine, which is a key player in the glutamatergic cycle in astrocytes.
Collapse
Affiliation(s)
- Chloé Najac
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Vincent O. Boer
- Danish Research Centre for Magnetic ResonanceCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Andrew G. Webb
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Itamar Ronen
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
5
|
Lim S, Xin L. γ-aminobutyric acid measurement in the human brain at 7 T: Short echo-time or Mescher-Garwood editing. NMR IN BIOMEDICINE 2022; 35:e4706. [PMID: 35102618 PMCID: PMC9285498 DOI: 10.1002/nbm.4706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The purposes of the current study were to introduce a Mescher-Garwood (MEGA) semi-adiabatic spin-echo full-intensity localization (MEGA-sSPECIAL) sequence with macromolecule (MM) subtraction and to compare the test-retest reproducibility of γ-aminobutyric acid (GABA) measurements at 7 T using the sSPECIAL and MEGA-sSPECIAL sequences. The MEGA-sSPECIAL editing scheme using asymmetric adiabatic and highly selective Gaussian pulses was used to compare its GABA measurement reproducibility with that of short echo-time (TE) sSPECIAL. Proton magnetic resonance spectra were acquired in the motor cortex (M1) and medial prefrontal cortex (mPFC) using the sSPECIAL (TR/TE = 4000/16 ms) and MEGA-sSPECIAL sequences (TR/TE = 4000/80 ms). The metabolites were quantified using LCModel with unsuppressed water spectra. The concentrations are reported in institutional units. The test-retest reproducibility was evaluated by scanning each subject twice. Between-session reproducibility was assessed using coefficients of variation (CVs), Pearson's r correlation coefficients, and intraclass correlation coefficients (ICCs). Intersequence agreement was evaluated using Pearson's r correlation coefficients and Bland-Altman plots. Regarding GABA measurements by sSPECIAL, the GABA concentrations were 0.92 ± 0.31 (IU) in the M1 and 1.56 ± 0.49 (IU) in the mPFC. This demonstrated strong between-session correlation across both regions (r = 0.81, p < 0.01; ICC = 0.82). The CVs between the two scans were 21.8% in the M1 and 10.2% in the mPFC. On the other hand, the GABA measurements by MEGA-sSPECIAL were 0.52 ± 0.04 (IU) in the M1 and 1.04 ± 0.24 (IU) in the mPFC. MEGA-sSPECIAL demonstrated strong between-session correlation across the two regions (r = 0.98, p < 0.001; ICC = 0.98) and lower CVs than sSPECIAL, providing 4.1% in the M1 and 5.8% in the mPFC. The MEGA-editing method showed better reproducibility of GABA measurements in both brain regions compared with the short-TE sSPECIAL method. Thus it is a more sensitive method with which to detect small changes in areas with low GABA concentrations. In GABA-rich brain regions, GABA measurements can be achieved reproducibly using both methods.
Collapse
Affiliation(s)
- Song‐I Lim
- Laboratory of Functional and Metabolic ImagingÉcole polytechnique fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Lijing Xin
- CIBM Center for Biomedical ImagingSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
6
|
Detection of 13C labeling of glutamate and glutamine in human brain by proton magnetic resonance spectroscopy. Sci Rep 2022; 12:8729. [PMID: 35610241 PMCID: PMC9130156 DOI: 10.1038/s41598-022-12654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
A proton magnetic resonance spectroscopy (MRS) technique was used to measure 13C enrichments of glutamate and glutamine in a 3.5 × 1.8 × 2 cm3 voxel placed in the dorsal anterior cingulate cortex of five healthy participants after oral administration of [U-13C]glucose. Strong pseudo singlets of glutamate and glutamine were induced to enhance the signal strength of glutamate and glutamine. This study demonstrated that 13C labeling of glutamate and glutamine can be measured with the high sensitivity and spatial resolution of 1H MRS using a proton-only MRS technique with standard commercial hardware. Furthermore, it is feasible to measure 13C labeling of glutamate and glutamine in limbic structures, which play major roles in behavioral and emotional responses and whose abnormalities are involved in many neuropsychiatric disorders.
Collapse
|
7
|
Bissonnette JN, Francis AM, MacNeil S, Crocker CE, Tibbo PG, Fisher DJ. Glutamate and N-Acetylaspartate Alterations Observed in Early Phase Psychosis: A Systematic Review of Proton Magnetic Resonance Spectroscopy Studies. Psychiatry Res Neuroimaging 2022; 321:111459. [PMID: 35183897 DOI: 10.1016/j.pscychresns.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Glutamate and N-acetylaspartate have been investigated in the neuropathology of chronic schizophrenia, with fewer studies focusing on early phase psychosis. Additionally, there has been little review and synthesis of the literature focused on multiple brain regions. This systematic review aims to provide a clear report of the current state of research on glutamate and n-acetylaspartate concentrations in early phase psychosis (defined as the first five years following psychosis onset) in multiple brain regions. Existing literature was searched systematically to compile reports of glutamate/glutamate+glutamine (Glx) and n-acetylaspartate absolute levels and ratios in both male and female individuals with early phase psychosis. Reports on glutamate/Glx concentrations in the medial prefrontal region and thalamus were varied, but the majority of reports suggested no alterations in EPP. No studies reported glutamate alterations in the hippocampus or cerebellum. There was no evidence for n-acetylaspartate alterations in the caudate, basal ganglia, and medial prefrontal cortex, and minimal evidence for NAA reductions in the thalamus, anterior cingulate cortex, and hippocampus. Future research should focus on the regions that are less commonly reported, and should aim to explore possible confounds, such as medication status and substance use.
Collapse
Affiliation(s)
- J N Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS.
| | - A M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS.
| | - S MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| | - C E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS; Department of Diagnostic Imaging, Dalhousie University, Halifax, NS.
| | - P G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS.
| | - D J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, NS; Department of Psychology, Saint Mary's University, Halifax, NS; Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| |
Collapse
|
8
|
Bottino F, Lucignani M, Napolitano A, Dellepiane F, Visconti E, Rossi Espagnet MC, Pasquini L. In Vivo Brain GSH: MRS Methods and Clinical Applications. Antioxidants (Basel) 2021; 10:antiox10091407. [PMID: 34573039 PMCID: PMC8468877 DOI: 10.3390/antiox10091407] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023] Open
Abstract
Glutathione (GSH) is an important antioxidant implicated in several physiological functions, including the oxidation−reduction reaction balance and brain antioxidant defense against endogenous and exogenous toxic agents. Altered brain GSH levels may reflect inflammatory processes associated with several neurologic disorders. An accurate and reliable estimation of cerebral GSH concentrations could give a clear and thorough understanding of its metabolism within the brain, thus providing a valuable benchmark for clinical applications. In this context, we aimed to provide an overview of the different magnetic resonance spectroscopy (MRS) technologies introduced for in vivo human brain GSH quantification both in healthy control (HC) volunteers and in subjects affected by different neurological disorders (e.g., brain tumors, and psychiatric and degenerative disorders). Additionally, we aimed to provide an exhaustive list of normal GSH concentrations within different brain areas. The definition of standard reference values for different brain areas could lead to a better interpretation of the altered GSH levels recorded in subjects with neurological disorders, with insights into the possible role of GSH as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Francesca Bottino
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
- Correspondence: ; Tel.: +39-333-3214614
| | - Francesco Dellepiane
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
| | - Emiliano Visconti
- Neuroradiology Unit, Surgery and Trauma Department, Maurizio Bufalini Hospital, 47521 Cesena, Italy;
| | - Maria Camilla Rossi Espagnet
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
- Neuroradiology Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Wronikowska O, Zykubek M, Michalak A, Pankowska A, Kozioł P, Boguszewska-Czubara A, Kurach Ł, Łazorczyk A, Kochalska K, Talarek S, Słowik T, Pietura R, Kurzepa J, Budzyńska B. Insight into Glutamatergic Involvement in Rewarding Effects of Mephedrone in Rats: In Vivo and Ex Vivo Study. Mol Neurobiol 2021; 58:4413-4424. [PMID: 34021482 PMCID: PMC8487417 DOI: 10.1007/s12035-021-02404-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
Mephedrone is a widely used drug of abuse, exerting its effects by interacting with monoamine transporters. Although this mechanism has been widely studied heretofore, little is known about the involvement of glutamatergic transmission in mephedrone effects. In this study, we comprehensively evaluated glutamatergic involvement in rewarding effects of mephedrone using an interdisciplinary approach including (1) behavioural study on effects of memantine (non-selective NMDA antagonist) on expression of mephedrone-induced conditioned place preference (CPP) in rats; (2) evaluation of glutamate concentrations in the hippocampus of rats following 6 days of mephedrone administration, using in vivo magnetic resonance spectroscopy (MRS); and (3) determination of glutamate levels in the hippocampus of rats treated with mephedrone and subjected to MRS, using ion-exchange chromatography. In the presented research, we confirmed priorly reported mephedrone-induced rewarding effects in the CPP paradigm and showed that memantine (5 mg/kg) was able to reverse the expression of this effect. MRS study showed that subchronic mephedrone administration increased glutamate level in the hippocampus when measured in vivo 24 h (5 mg/kg, 10 mg/kg and 20 mg/kg) and 2 weeks (5 mg/kg and 20 mg/kg) after last injection. Ex vivo chromatographic analysis did not show significant changes in hippocampal glutamate concentrations; however, it showed similar results as obtained in the MRS study proving its validity. Taken together, the presented study provides new insight into glutamatergic involvement in rewarding properties of mephedrone.
Collapse
Affiliation(s)
- Olga Wronikowska
- Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland.,Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Maria Zykubek
- Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Artur Łazorczyk
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Katarzyna Kochalska
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Tymoteusz Słowik
- Centre of Experimental Medicine, Medical University of Lublin, Jaczewskiego 8 Street, 20-090, Lublin, Poland
| | - Radosław Pietura
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Joanna Kurzepa
- I Department of Medical Radiology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090, Lublin, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland.
| |
Collapse
|
10
|
Biria M, Cantonas LM, Banca P. Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder. Curr Top Behav Neurosci 2021; 49:231-268. [PMID: 33751502 DOI: 10.1007/7854_2020_201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterised by structural and functional deficits in the cortico-striato-thalamic-cortical (CSTC) circuitry and abnormal neurochemical changes are thought to modulate these deficits. The hypothesis that an imbalanced concentration of the brain neurotransmitters, in particular glutamate (Glu) and gamma-amino-butyric acid (GABA), could impair the normal functioning of the CSTC, thus leading to OCD symptoms, has been tested in humans using magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). This chapter summarises these neurochemical findings and represents an attempt to condense such scattered literature. We also discuss potential challenges in the field that may explain the inconsistent findings and suggest ways to overcome them. There is some convergent research from MRS pointing towards abnormalities in the brain concentration of neurometabolite markers of neuronal integrity, such as N-acetylaspartate (NAA) and choline (Cho). Lower NAA levels have been found in dorsal and rostral ACC of OCD patients (as compared to healthy volunteers), which increase after CBT and SSRI treatment, and higher Cho concentration has been reported in the thalamus of the OCD brain. However, findings for other neurometabolites are very inconsistent. Studies have reported abnormalities in the concentrations of creatine (Cr), GABA, glutamate (Glu), glutamine (Gln), Ins (myo-inositol), and serotonin (5-HT), but most of the results were not replicated. The question remains whether the NAA and Cho findings are genuinely the only neurochemical abnormalities in OCD or whether the lack of consistent findings for the other neurometabolites is caused by the lower magnetic field (1-3 Tesla (T)) used by the studies conducted so far, their small sample sizes or a lack of proper control for medication effects. To answer these questions and to further inform the biological underpinning of the symptoms and the cognitive problems at the basis of OCD we need better controlled studies using clear medicated vs unmedicated groups, larger sample sizes, stronger magnetic fields (e.g. at 7 T), and more consistency in the definition of the regions of interest.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Sydnor VJ, Roalf DR. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: Implications for studies of psychosis risk. Schizophr Res 2020; 226:61-69. [PMID: 32723493 PMCID: PMC7750272 DOI: 10.1016/j.schres.2020.06.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ultra-high field proton magnetic resonance spectroscopy (1HMRS) offers a unique opportunity to measure the concentration of neurometabolites implicated in psychosis (PSY). The extant 7 T 1HMRS literature measuring glutamate-associated neurometabolites in the brain in PSY in vivo is small, but a comprehensive, quantitative summary of these data can offer insight and guidance to this emerging field. This meta-analysis examines proton spectroscopy (1HMRS) measures of glutamate (Glu), glutamine (Gln), glutamate+glutamine (Glx), gamma aminobutyric acid (GABA), and glutathione (GSH) across 255 individuals with PSY (121 first episode) and 293 healthy comparison participants (HC). While all five neurometabolites were lower in PSY as compared to HC, only Glu (Cohen's d = -0.18) and GSH (Cohen's d = -0.21) concentrations were significantly lower in PSY, whereas concentrations of Gln, Glx, and GABA did not significantly differ between groups. Notably, 1HMRS methodological choices and sample demographic characteristics did not impact study-specific effect sizes for PSY-related Glu or GSH differences. This review thus provides further evidence of neurometabolite dysfunction in first episode and chronic PSY, and thereby suggests that Glu and GSH abnormalities may additionally play a role in more incipient stages of the disorder: in clinical high risk stages. Additional 7 T neurochemical imaging studies in larger, longitudinal, and unmedicated samples and in youth at risk for developing psychosis are needed. Such studies will be critical for elucidating the neurodevelopmental and clinical time course of PSY-related neurometabolite alterations, and for assessing the potential for implicated metabolites to serve as druggable targets for decreasing PSY risk.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Lifespan Brain Institute at the Children's Hospital of Philadelphia & the University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
12
|
Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7 T MR-spectroscopy study. Sci Rep 2020; 10:20111. [PMID: 33208867 PMCID: PMC7674467 DOI: 10.1038/s41598-020-77111-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is one of the most prominent non-invasive electrical brain stimulation method to alter neuronal activity as well as behavioral processes in cognitive and perceptual domains. However, the exact mode of action of tDCS-related cortical alterations is still unclear as the results of tDCS studies often do not comply with the somatic doctrine assuming that anodal tDCS enhances while cathodal tDCS decreases neuronal excitability. Changes in the regional cortical neurotransmitter balance within the stimulated cortex, measured by excitatory and inhibitory neurotransmitter levels, have the potential to provide direct neurochemical underpinnings of tDCS effects. Here we assessed tDCS-induced modulations of the neurotransmitter concentrations in the human auditory cortex (AC) by using magnetic resonance spectroscopy (MRS) at ultra-high-field (7 T). We quantified inhibitory gamma-amino butyric (GABA) concentration and excitatory glutamate (Glu) and compared changes in the relative concentration of GABA to Glu before and after tDCS application. We found that both, anodal and cathodal tDCS significantly increased the relative concentration of GABA to Glu with individual temporal specificity. Our results offer novel insights for a potential neurochemical mechanism that underlies tDCS-induced alterations of AC processing.
Collapse
|
13
|
An L, Araneta MF, Victorino M, Shen J. Determination of Brain Metabolite
T
1
Without Interference From Macromolecule Relaxation. J Magn Reson Imaging 2020; 52:1352-1359. [PMID: 32618104 PMCID: PMC10108383 DOI: 10.1002/jmri.27259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND J-coupled metabolites are often measured at a predetermined echo time in the presence of macromolecule signals, which complicates the measurement of metabolite T1 . PURPOSE To evaluate the feasibility and benefits of measuring metabolite T1 relaxation times without changing the overlapping macromolecule baseline signals. STUDY TYPE Prospective. SUBJECTS Five healthy volunteers (three females and two males; age = 27 ± 7 years). FIELD STRENGTH/SEQUENCE 7T scanner using a point resolved spectroscopy (PRESS)-based spectral editing MR spectroscopy (MRS) sequence with inversion recovery (IR). ASSESSMENT F-tests were performed to evaluate if the new approach, which fitted all the spectra together and used the same baselines for the three different IR settings, significantly reduced the variances of the metabolite T1 values compared to a conventional fitting approach. STATISTICAL TESTS Cramer-Rao lower bound (CRLB), within-subject coefficient of variation, and F-test. RESULTS The T1 relaxation times of N-acetylaspartate (NAA), total creatine (tCr), total choline (tCho), myo-inositol (mI), and glutamate (Glu) were determined with CRLB values below 6%. Glutamine (Gln) T1 was determined with a 17% CRLB, and the T1 of γ-aminobutyric acid (GABA) was determined with a 34% CRLB. The new approach significantly reduced the variances (F-test P < 0.05) of NAA, Glu, Gln, tCr, tCho, and mI T1 s compared to the conventional approach. DATA CONCLUSION Keeping macromolecule signals intact by using only long IR times allowed the use of a single macromolecule spectral model for different IR settings and significantly reduced the variances of NAA, Glu, Gln, tCr, tCho, and mI T1 s. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Li An
- Section on Magnetic Resonance Spectroscopy National Institute of Mental Health, National Institutes of Health Bethesda Maryland USA
| | - Maria Ferraris Araneta
- Section on Magnetic Resonance Spectroscopy National Institute of Mental Health, National Institutes of Health Bethesda Maryland USA
| | - Milalynn Victorino
- Section on Magnetic Resonance Spectroscopy National Institute of Mental Health, National Institutes of Health Bethesda Maryland USA
| | - Jun Shen
- Section on Magnetic Resonance Spectroscopy National Institute of Mental Health, National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
14
|
An L, Araneta MF, Victorino M, Shen J. Signal enhancement of glutamine and glutathione by single-step spectral editing. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 316:106756. [PMID: 32521478 PMCID: PMC7385909 DOI: 10.1016/j.jmr.2020.106756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
A single-step spectral editing approach using an always-on editing pulse was proposed to enhance the signals of strongly coupled spins. Specifically, a single-step spectral editing sequence with an always-on editing pulse applied at 2.12 ppm was used to enhance glutamine (Gln) and glutathione (GSH) signals at TE = 56 ms on a 7 T scanner. Density matrix simulations demonstrated that the current method (TE = 56 ms) led to large signal enhancement of at least 61% for Gln and 51% for GSH compared to a previous single-step method (TE = 106 ms). Monte Carlo simulations showed that the current method reduced noise-originated variations by 31% for Gln and 26% for GSH compared to a previous three-step spectral editing method from which the present method was derived.
Collapse
Affiliation(s)
- Li An
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Maria Ferraris Araneta
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Milalynn Victorino
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Zhang Y, Shen J. Effects of noise and linewidth on in vivo analysis of glutamate at 3 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 314:106732. [PMID: 32361510 PMCID: PMC8485252 DOI: 10.1016/j.jmr.2020.106732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/24/2020] [Accepted: 04/11/2020] [Indexed: 05/17/2023]
Abstract
Magnetic resonance spectroscopy (MRS) can noninvasively detect metabolites in vivo, including glutamate (Glu). However, quantification is known to be affected by the overlaps among metabolite resonance lines and background macromolecule signals. We found that adding a moderate amount of noise or line broadening (2 Hz) caused large variations in concentration of Glu and other metabolites, when determined by LCModel analysis of in vivo short-echo time (TE) spectra. Theses variations were largely attributed to strong spectral baselines in short TE spectra, especially near 2.35 ppm, as well as overlapping metabolite resonance lines. To address this issue, we acquired in vivo data at 3 T using both short-TE and the multiple echo time J-resolved point-resolved spectroscopy (JPRESS) MRS techniques. We found that one-dimensional (1D) JPRESS, by simultaneously fitting the two cross-sections of JPRESS at J = 0 and J = 7.5 Hz, was highly resistant to variations in noise levels and spectral linewidths. Our results demonstrate that LCModel analysis of short-TE data is highly sensitive to variations in noise levels and spectral linewidths and this sensitivity is greatly reduced by 1D JPRESS given its substantially reduced baselines and enhanced spectral resolution.
Collapse
Affiliation(s)
- Yan Zhang
- MR Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jun Shen
- MR Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Fisher E, Gillam J, Upthegrove R, Aldred S, Wood SJ. Role of magnetic resonance spectroscopy in cerebral glutathione quantification for youth mental health: A systematic review. Early Interv Psychiatry 2020; 14:147-162. [PMID: 31148383 PMCID: PMC7065077 DOI: 10.1111/eip.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/27/2019] [Accepted: 04/14/2019] [Indexed: 01/01/2023]
Abstract
AIM Oxidative stress is strongly implicated in many psychiatric disorders, which has resulted in the development of new interventions to attempt to perturb this pathology. A great deal of attention has been paid to glutathione, which is the brain's dominant antioxidant and plays a fundamental role in removing free radicals and other reactive oxygen species. Measurement of glutathione concentration in the brain in vivo can provide information on redox status and potential for oxidative stress to develop. Glutathione might also represent a marker to assess treatment response. METHODS This paper systematically reviews studies that assess glutathione concentration (measured using magnetic resonance spectroscopy) in various mental health conditions. RESULTS There is limited evidence showing altered brain glutathione concentration in mental disorders; the best evidence suggests glutathione is decreased in depression, but is not altered in bipolar disorder. The review then outlines the various methodological options for acquiring glutathione data using spectroscopy. CONCLUSIONS Analysis of the minimum effect size measurable in existing studies indicates that increased number of participants is required to measure subtle but possibly important differences and move the field forward.
Collapse
Affiliation(s)
- Emily Fisher
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - John Gillam
- Orygenthe National Centre of Excellence in Youth Mental HealthMelbourneVictoriaAustralia
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Rachel Upthegrove
- Institute for Mental HealthUniversity of BirminghamEdgbastonUK
- Department of PsychiatryUniversity of BirminghamBirminghamUK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - Stephen J. Wood
- Orygenthe National Centre of Excellence in Youth Mental HealthMelbourneVictoriaAustralia
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Institute for Mental HealthUniversity of BirminghamEdgbastonUK
| |
Collapse
|
17
|
Wenneberg C, Nordentoft M, Rostrup E, Glenthøj LB, Bojesen KB, Fagerlund B, Hjorthøj C, Krakauer K, Kristensen TD, Schwartz C, Edden RAE, Broberg BV, Glenthøj BY. Cerebral Glutamate and Gamma-Aminobutyric Acid Levels in Individuals at Ultra-high Risk for Psychosis and the Association With Clinical Symptoms and Cognition. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:569-579. [PMID: 32008981 DOI: 10.1016/j.bpsc.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies examining glutamate or gamma-aminobutyric acid (GABA) in ultra-high risk for psychosis (UHR) and the association with pathophysiology and cognition have shown conflicting results. We aimed to determine whether perturbed glutamate and GABA levels in the anterior cingulate cortex and glutamate levels in the left thalamus were present in UHR individuals and to investigate associations between metabolite levels and clinical symptoms and cognition. METHODS We included 122 UHR individuals and 60 healthy control subjects. Participants underwent proton magnetic resonance spectroscopy to estimate glutamate and GABA levels and undertook clinical and cognitive assessments. RESULTS We found no differences in metabolite levels between UHR individuals and healthy control subjects. In UHR individuals, we found negative correlations in the anterior cingulate cortex between the composite of glutamate and glutamine (Glx) and the Comprehensive Assessment of At-Risk Mental States composite score (p = .04) and between GABA and alogia (p = .01); positive associations in the anterior cingulate cortex between glutamate (p = .01) and Glx (p = .01) and spatial working memory and between glutamate (p = .04), Glx (p = .04), and GABA (p = .02) and set-shifting; and a positive association in the thalamus between glutamate and attention (p = .04). No associations between metabolites and clinical or cognitive scores were found in the healthy control subjects. CONCLUSIONS An association between glutamate and GABA levels and clinical symptoms and cognition found only in UHR individuals suggests a loss of the normal relationship between metabolite levels and cognitive function. Longitudinal studies with investigation of clinical and cognitive outcome and the association with baseline levels of glutamate and GABA could illuminate whether glutamatergic and GABAergic dysfunction predicts clinical outcome.
Collapse
Affiliation(s)
- Christina Wenneberg
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Krakauer
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Tina Dam Kristensen
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Camilla Schwartz
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
18
|
Shen J, Shenkar D, An L, Tomar JS. Local and Interregional Neurochemical Associations Measured by Magnetic Resonance Spectroscopy for Studying Brain Functions and Psychiatric Disorders. Front Psychiatry 2020; 11:802. [PMID: 32848957 PMCID: PMC7432119 DOI: 10.3389/fpsyt.2020.00802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) studies have found significant correlations among neurometabolites (e.g., between glutamate and GABA) across individual subjects and altered correlations in neuropsychiatric disorders. In this article, we discuss neurochemical associations among several major neurometabolites which underpin these observations by MRS. We also illustrate the role of spectral editing in eliminating unwanted correlations caused by spectral overlapping. Finally, we describe the prospects of mapping macroscopic neurochemical associations across the brain and characterizing excitation-inhibition balance of neural networks using glutamate- and GABA-editing MRS imaging.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Dina Shenkar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Li An
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Jyoti Singh Tomar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Dobberthien BJ, Tessier AG, Stanislaus AE, Sawyer MB, Fallone BG, Yahya A. PRESS timings for resolving 13 C 4 -glutamate 1 H signal at 9.4 T: Demonstration in rat with uniformly labelled 13 C-glucose. NMR IN BIOMEDICINE 2019; 32:e4180. [PMID: 31518031 DOI: 10.1002/nbm.4180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/30/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
MRS of 13 C4 -labelled glutamate (13 C4 -Glu) during an infusion of a carbon-13 (13 C)-labelled substrate, such as uniformly labelled glucose ([U-13 C6 ]-Glc), provides a measure of Glc metabolism. The presented work provides a single-shot indirect 13 C detection technique to quantify the approximately 2.51 ppm 13 C4 -Glu satellite proton (1 H) peak at 9.4 T. The methodology is an optimized point-resolved spectroscopy (PRESS) sequence that minimizes signal contamination from the strongly coupled protons of N-acetylaspartate (NAA), which resonate at approximately 2.49 ppm. J-coupling evolution of protons was characterized numerically and verified experimentally. A (TE1 , TE2 ) combination of (20 ms, 106 ms) was found to be suitable for minimizing NAA signal in the 2.51 ppm 1 H 13 C4 -Glu spectral region, while retaining the 13 C4 -Glu 1 H satellite peak. The efficacy of the technique was verified on phantom solutions and on two rat brains in vivo during an infusion of [U-13 C6 ]-Glc. LCModel was employed for analysis of the in vivo spectra to quantify the 2.51 ppm 1 H 13 C4 -Glu signal to obtain Glu C4 fractional enrichment time courses during the infusions. Cramér-Rao lower bounds of about 8% were obtained for the 2.51 ppm 13 C4 -Glu 1 H satellite peak with the optimal TE combination.
Collapse
Affiliation(s)
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | - Michael B Sawyer
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - B Gino Fallone
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Atiyah Yahya
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Thalamic GABA may modulate cognitive control in restless legs syndrome. Neurosci Lett 2019; 712:134494. [DOI: 10.1016/j.neulet.2019.134494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022]
|
21
|
Neal A, Moffat BA, Stein JM, Nanga RPR, Desmond P, Shinohara RT, Hariharan H, Glarin R, Drummond K, Morokoff A, Kwan P, Reddy R, O'Brien TJ, Davis KA. Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NEUROIMAGE-CLINICAL 2019; 22:101694. [PMID: 30822716 PMCID: PMC6396013 DOI: 10.1016/j.nicl.2019.101694] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/10/2019] [Accepted: 01/27/2019] [Indexed: 01/04/2023]
Abstract
Introduction Diffuse gliomas are incurable malignancies, which undergo inevitable progression and are associated with seizure in 50–90% of cases. Glutamate has the potential to be an important glioma biomarker of survival and local epileptogenicity if it can be accurately quantified noninvasively. Methods We applied the glutamate-weighted imaging method GluCEST (glutamate chemical exchange saturation transfer) and single voxel MRS (magnetic resonance spectroscopy) at 7 Telsa (7 T) to patients with gliomas. GluCEST contrast and MRS metabolite concentrations were quantified within the tumour region and peritumoural rim. Clinical variables of tumour aggressiveness (prior adjuvant therapy and previous radiological progression) and epilepsy (any prior seizures, seizure in last month and drug refractory epilepsy) were correlated with respective glutamate concentrations. Images were separated into post-hoc determined patterns and clinical variables were compared across patterns. Results Ten adult patients with a histo-molecular (n = 9) or radiological (n = 1) diagnosis of grade II-III diffuse glioma were recruited, 40.3 +/− 12.3 years. Increased tumour GluCEST contrast was associated with prior adjuvant therapy (p = .001), and increased peritumoural GluCEST contrast was associated with both recent seizures (p = .038) and drug refractory epilepsy (p = .029). We distinguished two unique GluCEST contrast patterns with distinct clinical and radiological features. MRS glutamate correlated with GluCEST contrast within the peritumoural voxel (R = 0.89, p = .003) and a positive trend existed in the tumour voxel (R = 0.65, p = .113). Conclusion This study supports the role of glutamate in diffuse glioma biology. It further implicates elevated peritumoural glutamate in epileptogenesis and altered tumour glutamate homeostasis in glioma aggressiveness. Given the ability to non-invasively visualise and quantify glutamate, our findings raise the prospect of 7 T GluCEST selecting patients for individualised therapies directed at the glutamate pathway. Larger studies with prospective follow-up are required. 7 T GluCEST glioma imaging is feasible, producing high quality quantifiable images. Increased peritumoural GluCEST contrast correlates with drug resistant epilepsy. Increased tumour GluCEST contrast is associated with prior adjuvant therapy. Two GluCEST patterns were identified with distinct clinico-radiological features. GluCEST contrast correlates with MRS glutamate in peritumoural regions.
Collapse
Affiliation(s)
- Andrew Neal
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia.
| | - Bradford A Moffat
- Melbourne Node of the National Imaging Facility, Department of Radiology, University of Melbourne, Australia
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Prakash Reddy Nanga
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Patricia Desmond
- Department of Radiology, Royal Melbourne Hospital, Australia; Department of Radiology and Medicine, University of Melbourne, Australia
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Hari Hariharan
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Glarin
- Department of Radiology, Royal Melbourne Hospital, Australia; Department of Radiology and Medicine, University of Melbourne, Australia
| | - Katharine Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Australia; Department of Surgery, University of Melbourne, Australia; Melbourne Brain Centre, The Royal Melbourne Hospital, Australia
| | - Andrew Morokoff
- Department of Neurosurgery, Royal Melbourne Hospital, Australia; Department of Surgery, University of Melbourne, Australia
| | - Patrick Kwan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia; Department of Neurology, The Alfred Hospital Monash University, Australia
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia; Department of Neurology, The Alfred Hospital Monash University, Australia
| | - Kathryn A Davis
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Oeltzschner G, Wijtenburg SA, Mikkelsen M, Edden RAE, Barker PB, Joo JH, Leoutsakos JMS, Rowland LM, Workman CI, Smith GS. Neurometabolites and associations with cognitive deficits in mild cognitive impairment: a magnetic resonance spectroscopy study at 7 Tesla. Neurobiol Aging 2019; 73:211-218. [PMID: 30390554 PMCID: PMC6294473 DOI: 10.1016/j.neurobiolaging.2018.09.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
The levels of several brain metabolites were investigated in the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) in 13 healthy controls (HC) and 13 patients with mild cognitive impairment (MCI) using single-voxel magnetic resonance spectroscopy at 7T. Levels of γ-aminobutyric acid (GABA), glutamate (Glu), glutathione (GSH), N-acetylaspartylglutamate (NAAG), N-acetylaspartate (NAA), and myo-inositol (mI) were quantified relative to total creatine (tCr). The effect of diagnosis on metabolite levels, and relationships between metabolite levels and memory and executive function, correcting for age, were investigated. MCI patients showed significantly decreased GABA/tCr (ACC, PCC), Glu/tCr (PCC), and NAA/tCr (PCC), and significantly increased mI/tCr (ACC). In the combined group, worse episodic verbal memory performance was correlated with lower Glu/tCr (PCC), lower NAA/tCr (PCC), and higher mI/tCr (ACC, PCC). Worse verbal fluency performance was correlated with lower GSH/tCr (PCC). In summary, MCI is associated with decreased GABA and Glu, most consistently in the PCC. Further studies in larger patient samples should be undertaken to determine the utility of 7T magnetic resonance spectroscopy in detecting MCI-related neurochemical changes.
Collapse
Affiliation(s)
- Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - S Andrea Wijtenburg
- Department of Psychiatry, Neuroimaging Research Program, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jin Hui Joo
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeannie-Marie S Leoutsakos
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laura M Rowland
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Psychiatry, Neuroimaging Research Program, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Clifford I Workman
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gwenn S Smith
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
23
|
Effects of carrier frequency mismatch on frequency-selective spectral editing. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:237-246. [PMID: 30467687 DOI: 10.1007/s10334-018-0717-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study sought to investigate the effects of carrier frequency mismatch on spectral editing and its correction by frequency matching of basis functions. MATERIALS AND METHODS Full density matrix computations and Monte-Carlo simulations based on magnetic resonance spectroscopy (MRS) data collected from five healthy volunteers at 7 T were used to analyze the effects of carrier frequency mismatch on spectral editing. Relative errors in metabolite quantification were calculated with and without frequency matching of basis functions. The algorithm for numerical computation of basis functions was also improved for higher computational efficiency. RESULTS We found significant errors without frequency matching of basis functions when carrier frequency mismatch was generally considered negligible. By matching basis functions with the history of frequency deviation, the mean errors in glutamate, glutamine, γ-aminobutyric acid, and glutathione concentrations were reduced from 3.90%, 1.85%, 11.53%, and 3.43% to 0.18%, 0.34%, 0.40%, and 0.51%, respectively. CONCLUSION Matching basis functions to frequency deviation history was necessary even when frequency deviations during frequency-selective spectral editing were fairly small. Basis set frequency matching significantly improved accuracy in the quantification of glutamate, glutamine, γ-aminobutyric acid, and glutathione concentrations.
Collapse
|
24
|
Wong D, Schranz AL, Bartha R. Optimized in vivo brain glutamate measurement using long-echo-time semi-LASER at 7 T. NMR IN BIOMEDICINE 2018; 31:e4002. [PMID: 30144183 DOI: 10.1002/nbm.4002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
A short echo time (TE ) is commonly used for brain glutamate measurement by 1 H MRS to minimize drawbacks of long TE such as signal modulation due to J evolution and T2 relaxation. However, J coupling causes the spectral patterns of glutamate to change with TE , and the shortest achievable TE may not produce the optimal glutamate measurement. The purpose of this study was to determine the optimal TE for glutamate measurement at 7 T using semi-LASER (localization by adiabatic selective refocusing). Time-domain simulations were performed to model the TE dependence of glutamate signal energy, a measure of glutamate signal strength, and were verified against measurements made in the human sensorimotor cortex (five subjects, 2 × 2 × 2 cm3 voxel, 16 averages) on a 7 T MRI scanner. Simulations showed a local maximum of glutamate signal energy at TE = 107 ms. In vivo, TE = 105 ms produced a low Cramér-Rao lower bound of 6.5 ± 2.0% across subjects, indicating high-quality fits of the prior knowledge model to in vivo data. TE = 105 ms also produced the greatest glutamate signal energy with the smallest inter-subject glutamate-to-creatine ratio (Glu/Cr) coefficient of variation (CV), 4.6%. Using these CVs, we performed sample size calculations to estimate the number of participants per group required to detect a 10% change in Glu/Cr between two groups with 95% confidence. 13 were required at TE = 45 ms, the shortest achievable echo time on our 7 T MRI scanner, while only 5 were required at TE = 105 ms, indicating greater statistical power. These results indicate that TE = 105 ms is optimum for in vivo glutamate measurement at 7 T with semi-LASER. Using long TE decreases power deposition by allowing lower maximum RF pulse amplitudes in conjunction with longer RF pulses. Importantly, long TE minimizes macromolecule contributions, eliminating the requirement for acquisition of separate macromolecule spectra or macromolecule fitting techniques, which add additional scan time or bias the estimated glutamate fit.
Collapse
Affiliation(s)
- Dickson Wong
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Amy L Schranz
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
25
|
An L, Araneta MF, Johnson C, Shen J. Simultaneous measurement of glutamate, glutamine, GABA, and glutathione by spectral editing without subtraction. Magn Reson Med 2018; 80:1776-1786. [PMID: 29575059 PMCID: PMC6107387 DOI: 10.1002/mrm.27172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE To simultaneously measure glutamate, glutamine, γ-aminobutyric acid (GABA), and glutathione using spectral editing without subtraction at 7T. METHODS A novel spectral editing approach was proposed to simultaneously measure glutamate, glutamine, GABA, and glutathione using a TE of 56 ms at 7T. By numerical optimization of sequence timing in the presence of an editing pulse, the 4 metabolites all form relatively intense pseudo singlets with maximized peak amplitudes and minimized peak linewidths in 1 of the 3 interleaved spectra. For measuring glutamate, glutamine, and glutathione, the editing pulse targets the H3 protons of these metabolites near 2.12 parts per million. Both GABA H2 and H4 resonances are fully utilized in spectral fitting. RESULTS Concentration levels (/[total creatine]) of glutamate, glutamine, GABA, and glutathione from an 8 mL voxel in the pregenual anterior cingulate cortex of 5 healthy volunteers were found to be 1.26 ± 0.13, 0.33 ± 0.06, 0.13 ± 0.03, and 0.27 ± 0.03, respectively, with within-subject coefficient of variation at 3.2%, 8.2%, 7.1%, and 10.2%, respectively. The total scan time was less than 4.5 min. CONCLUSIONS The proposed new technique does not require data subtraction. The 3 major metabolites of the glutamatergic and GABAergic systems and the oxidative stress marker glutathione were all measured in 1 short scan with high precision.
Collapse
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | | | - Christopher Johnson
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Emoto MC, Sato-Akaba H, Matsuoka Y, Yamada KI, Fujii HG. Non-invasive mapping of glutathione levels in mouse brains by in vivo electron paramagnetic resonance (EPR) imaging: Applied to a kindling mouse model. Neurosci Lett 2018; 690:6-10. [PMID: 30290249 DOI: 10.1016/j.neulet.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
Abstract
Glutathione (GSH) is an important antioxidant that can protect cells under oxidative stress. Thus, a non-invasive method to measure and map the distribution of GSH in live animals is needed. To image the distribution of GSH levels in specific brain regions, a new method using electron paramagnetic resonance (EPR) imaging with a nitroxide imaging probe was developed. Pixel-based mapping of brain GSH levels was successfully obtained by using the linear relationship between reduction rates for nitroxides in brains, measured by an in vivo EPR imager, and brain GSH levels, measured by an in vitro biochemical assay. The newly developed method was applied to a kindling mouse model induced with pentylenetetrazole (PTZ) to visualize changes in GSH levels in specific brain regions after seizure. The obtained map of brain GSH levels clearly indicated decreased GSH levels around the hippocampal region compared to control mice.
Collapse
Affiliation(s)
- Miho C Emoto
- Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan; Health Sciences University of Hokkaido, Sapporo, Hokkaido, 002-8072, Japan
| | - Hideo Sato-Akaba
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Yuta Matsuoka
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hirotada G Fujii
- Cancer Preventive Institute, Health Sciences University of Hokkaido, Ishikari, Hokkaido, 061-0293, Japan.
| |
Collapse
|
27
|
Talsma LJ, Broekhuizen JA, Huisman J, Slagter HA. No Evidence That Baseline Prefrontal Cortical Excitability (3T-MRS) Predicts the Effects of Prefrontal tDCS on WM Performance. Front Neurosci 2018; 12:481. [PMID: 30065625 PMCID: PMC6057111 DOI: 10.3389/fnins.2018.00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) is a promising tool to enhance working memory (WM) in clinical as well as healthy populations. Yet, tDCS does not affect everyone similarly: whereas tDCS improves WM in most individuals, some individuals do not, or actually show detriments in WM performance after stimulation. One hypothesis that has been put forward to account for individual differences in tDCS response is that baseline cortical excitability levels in the stimulated cortex may determine the strength and the direction of the effects of tDCS. Specifically, by locally affecting neuronal excitability, tDCS may interact with baseline cortical excitability levels, thereby pushing or pulling individuals toward or away from an optimal level of cortical functioning. In the current study, we put this hypothesis to the test with regard to prefrontal cortex stimulation and WM. In 20 healthy male participants, using magnetic resonance spectroscopy (MRS) at 3T, we measured concentrations of Glutamate and GABA in the lDLPFC and calculated individual Glutamate/GABA ratios as a measure for cortical excitability. Subsequently, in two stimulation sessions, we once applied anodal and once cathodal tDCS over the lDLPFC (20 min, 1 mA). Stimulation was always applied in the second block of three blocks of a WM updating task. Surprisingly, at the group-level, we found no effects of anodal or cathodal stimulation on WM performance. Yet, in line with previous studies, large individual variability was observed in the strength and direction of tDCS effects; whereas about half of the participants improved, the other half showed lower accuracy after stimulation. This was true for both anodal and cathodal tDCS. Nevertheless, contrary to our expectations, individual baseline prefrontal cortical excitability did not predict these individual differences in the effect of anodal or cathodal stimulation on WM accuracy. Future studies with larger sample sizes, which use higher magnetic field strengths (e.g., 7T) to measure cortical excitability and/or apply individualized stimulation protocols, are necessary to shed more light on the influence of baseline cortical excitability on effects of anodal and cathodal tDCS over lDLPFC on WM performance.
Collapse
Affiliation(s)
- Lotte J Talsma
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julia A Broekhuizen
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, Netherlands
| | - Job Huisman
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, Netherlands
| | - Heleen A Slagter
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Posporelis S, Coughlin JM, Marsman A, Pradhan S, Tanaka T, Wang H, Varvaris M, Ward R, Higgs C, Edwards JA, Ford CN, Kim PK, Lloyd AM, Edden RAE, Schretlen DJ, Cascella NG, Barker PB, Sawa A. Decoupling of Brain Temperature and Glutamate in Recent Onset of Schizophrenia: A 7T Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:248-254. [PMID: 29486866 PMCID: PMC5836506 DOI: 10.1016/j.bpsc.2017.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/23/2017] [Accepted: 04/10/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Converging evidence suggests that cerebral metabolic and cellular homeostasis is altered in patients with recent onset of schizophrenia. As a possible marker of metabolic changes that might link to altered neurotransmission, we used proton magnetic resonance spectroscopy to estimate brain temperature, and we evaluated its relationship to a relevant metabolite, glutamate, within this study population. METHODS Using proton magnetic resonance spectroscopy at 7T, 20 patients with recent onset (≤24 months after first psychotic symptoms) of schizophrenia and 20 healthy control subjects were studied. We measured levels of N-acetylaspartate and glutamate and estimated brain temperature in a noninvasive manner. RESULTS Healthy control subjects showed a significant negative correlation between glutamate and brain temperature in the anterior cingulate cortex. In contrast, the physiological correlation between glutamate and brain temperature was lost in patients with recent onset of schizophrenia. CONCLUSIONS This study supports the hypothesized disrupted relationship between brain metabolism and neurotransmission in patients with recent onset of schizophrenia. The findings include mechanistic implications that are to be followed up in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Sotirios Posporelis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland; South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Anouk Marsman
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Subechhya Pradhan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Teppei Tanaka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Hongxing Wang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mark Varvaris
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Rebecca Ward
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Cecilia Higgs
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jamie A Edwards
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Candice N Ford
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Pearl K Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ashley M Lloyd
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - David J Schretlen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| |
Collapse
|
29
|
Caravaggio F, Iwata Y, Plitman E, Chavez S, Borlido C, Chung JK, Kim J, Agarwal SM, Gerretsen P, Remington G, Hahn M, Graff-Guerrero A. Reduced insulin sensitivity may be related to less striatal glutamate: An 1H-MRS study in healthy non-obese humans. Eur Neuropsychopharmacol 2018; 28:285-296. [PMID: 29269206 DOI: 10.1016/j.euroneuro.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Levels of striatal dopamine (DA) may be positively correlated with levels of striatal glutamate (Glu). While reduced insulin sensitivity (%S) has been associated with reduced striatal DA levels in healthy non-obese persons, whether reduced %S is also associated with reduced striatal Glu levels has not yet been established. Using 1H-MRS, we measured levels of several neurometabolites in the striatum and dorsolateral prefrontal cortex (DLPFC) of seventeen healthy non-obese persons (9 female, mean age: 28.35 ± 9.53). Insulin sensitivity was estimated for each subject from fasting plasma glucose and insulin using the Homeostasis Model Assessment II. We hypothesized that %S would be positively related with levels of Glu and Glu + glutamine (Glx) in the striatum. Exploratory analyses were also conducted between other fasting markers of metabolic health and neurometabolites measured with 1H-MRS. In the right striatum, %S was positively correlated with levels of Glu (r(15) = .49, p = .04) and Glx (r(15) = .50, p = .04). In the left striatum, there was a trend positive correlation between %S and Glu (r(15) = .46, p = .06), but not Glx levels (r(15) = .20, p = .44). The relationships between %S and striatal Glu levels remained after controlling for age, sex, and BMI (right: r(12) = .73, β = .52, t = 2.55, p = .03; left: (r(12) = .63, β = .53, t = 2.25, p = .04) These preliminary findings suggest that %S may be related to markers of glutamatergic functioning in the striatum of healthy non-obese persons. These findings warrant replication in larger samples and extension into neuropsychiatric populations where altered striatal DA, Glu, and %S are implicated.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Carol Borlido
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Sri Mahavir Agarwal
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Margaret Hahn
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
30
|
Dobberthien BJ, Tessier AG, Yahya A. Improved resolution of glutamate, glutamine and γ-aminobutyric acid with optimized point-resolved spectroscopy sequence timings for their simultaneous quantification at 9.4 T. NMR IN BIOMEDICINE 2018; 31:e3851. [PMID: 29105187 DOI: 10.1002/nbm.3851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Glutamine (Gln), glutamate (Glu) and γ-aminobutyric acid (GABA) are relevant brain metabolites that can be measured with magnetic resonance spectroscopy (MRS). This work optimizes the point-resolved spectroscopy (PRESS) sequence echo times, TE1 and TE2 , for improved simultaneous quantification of the three metabolites at 9.4 T. Quantification was based on the proton resonances of Gln, Glu and GABA at ≈2.45, ≈2.35 and ≈2.28 ppm, respectively. Glu exhibits overlap with both Gln and GABA; in addition, the Gln peak is contaminated by signal from the strongly coupled protons of N-acetylaspartate (NAA), which resonate at about 2.49 ppm. J-coupling evolution of the protons was characterized numerically and verified experimentally. A {TE1 , TE2 } combination of {106 ms, 16 ms} minimized the NAA signal in the Gln spectral region, whilst retaining Gln, Glu and GABA peaks. The efficacy of the technique was verified on phantom solutions and on rat brain in vivo. LCModel was employed to analyze the in vivo spectra. The average T2 -corrected Gln, Glu and GABA concentrations were found to be 3.39, 11.43 and 2.20 mM, respectively, assuming a total creatine concentration of 8.5 mM. LCModel Cramér-Rao lower bounds (CRLBs) for Gln, Glu and GABA were in the ranges 14-17%, 4-6% and 16-19%, respectively. The optimal TE resulted in concentrations for Gln and GABA that agreed more closely with literature concentrations compared with concentrations obtained from short-TE spectra acquired with a {TE1 , TE2 } combination of {12 ms, 9 ms}. LCModel estimations were also evaluated with short-TE PRESS and with the optimized long TE of {106 ms, 16 ms}, using phantom solutions of known metabolite concentrations. It was shown that concentrations estimated with LCModel can be inaccurate when combined with short-TE PRESS, where there is peak overlap, even when low (<20%) CRLBs are reported.
Collapse
Affiliation(s)
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, AB, Canada
| | - Atiyah Yahya
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
31
|
van der Veen JW, Marenco S, Berman K, Shen J. Retrospective correction of frequency drift in spectral editing: The GABA editing example. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3725. [PMID: 28370463 PMCID: PMC5511084 DOI: 10.1002/nbm.3725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 05/22/2023]
Abstract
GABA levels can be measured using proton MRS with a two-step editing sequence. However due to the low concentration of GABA, long acquisition time is usually needed to achieve sufficient SNR to detect small differences in many psychiatric disorders. During this long scan time the frequency offset of the measured voxel can change because of magnetic field drift and patient movement. This drift will change the frequency of the editing pulse relative to that of metabolites, leading to errors in quantification. In this article we describe a retrospective method to correct for frequency drift in spectral editing. A series of reference signals for each metabolite was generated for a range of frequency offsets and then averaged together based on the history of frequency changes over the scan. These customized basis sets were used to fit the in vivo data. Our results demonstrate the effectiveness of the correction method and the remarkable robustness of a GABA editing technique with a top hat editing profile in the presence of frequency drift.
Collapse
Affiliation(s)
- Jan Willem van der Veen
- Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, National institutes of Health, Bethesda, MD, USA
- Corresponding author: Jan Willem van der Veen, PhD, Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, Bldg. 10, Rm. 2D50, 9000 Rockville Pike, Bethesda, MD 20892-1527, Tel.: (301) 435-7262, Fax: (301) 480-2397,
| | - Stefano Marenco
- Clinical and Translational Neuroscience Branch, NIMH–Intramural Research Program (IRP), National Institute of Mental Health, National institutes of Health, Bethesda, MD, USA
| | - Karen Berman
- Clinical and Translational Neuroscience Branch, NIMH–Intramural Research Program (IRP), National Institute of Mental Health, National institutes of Health, Bethesda, MD, USA
| | - Jun Shen
- Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, National institutes of Health, Bethesda, MD, USA
- Molecular Imaging Branch, National Institute of Mental Health, National institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 2017; 168:181-198. [PMID: 28712992 DOI: 10.1016/j.neuroimage.2017.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei (1H, 31P, 13C).
Collapse
Affiliation(s)
- Anke Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany; Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
33
|
Gambarota G. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy. Anal Biochem 2017; 529:65-78. [DOI: 10.1016/j.ab.2016.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
34
|
Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. Neuroimage 2017; 152:360-370. [PMID: 28284797 PMCID: PMC5440178 DOI: 10.1016/j.neuroimage.2017.03.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
Imbalances in glutamatergic (excitatory) and GABA (inhibitory) signalling within key brain networks are thought to underlie many brain and mental health disorders, and for this reason there is considerable interest in investigating how individual variability in localised concentrations of these molecules relate to brain disorders. Magnetic resonance spectroscopy (MRS) provides a reliable means of measuring, in vivo, concentrations of neurometabolites such as GABA, glutamate and glutamine that can be correlated with brain function and dysfunction. However, an issue of much debate is whether the GABA observed and measured using MRS represents the entire pool of GABA available for measurement (i.e., metabolic, intracellular, and extracellular) or is instead limited to only some portion of it. GABA function can also be investigated indirectly in humans through the use of non-invasive transcranial magnetic stimulation (TMS) techniques that can be used to measure cortical excitability and GABA-mediated physiological inhibition. To investigate this issue further we collected in a single session both types of measurement, i.e., TMS measures of cortical excitability and physiological inhibition and ultra-high-field (7 T) MRS measures of GABA, glutamate and glutamine, from the left sensorimotor cortex of the same group of right-handed individuals. We found that TMS and MRS measures were largely uncorrelated with one another, save for the plateau of the TMS IO curve that was negatively correlated with MRS-Glutamate (Glu) and intra-cortical facilitation (10ms ISI) that was positively associated with MRS-Glutamate concentration. These findings are consistent with the view that the GABA concentrations measured using the MRS largely represent pools of GABA that are linked to tonic rather than phasic inhibition and thus contribute to the inhibitory tone of a brain area rather than GABAergic synaptic transmission.
Collapse
|
35
|
An L, Li S, Shen J. Simultaneous determination of metabolite concentrations, T 1 and T 2 relaxation times. Magn Reson Med 2017; 78:2072-2081. [PMID: 28164364 DOI: 10.1002/mrm.26612] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To simultaneously measure concentration and T1 and T2 values of metabolites in the human brain in a single scan session. METHODS A new pulse sequence with multiple variable acquisition parameters was proposed to encode metabolite T1 and T2 information into the acquired data. A linear combination-fitting algorithm was developed in-house to simultaneously determine metabolite concentrations and relaxation times. RESULTS Concentration, T1 , and T2 values of N-acetyl-aspartate, total creatine, total choline, and glutamate were reliably measured in the frontal gray matter and white matter regions of nine healthy volunteers at 7 tesla in less than 10 minutes of scan time per voxel. T1 and T2 values of glutamine, as well as T1 of glutathione, were also measured in the frontal gray matter region with reasonable precision. CONCLUSION The proposed technique allows multiparametric characterization of brain metabolites in a single scan session, making it possible to measure both levels and intracellular microenvironments of brain chemicals in clinical MR spectroscopy studies. Magn Reson Med 78:2072-2081, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Shizhe Li
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Houtepen LC, Schür RR, Wijnen JP, Boer VO, Boks MPM, Kahn RS, Joëls M, Klomp DW, Vinkers CH. Acute stress effects on GABA and glutamate levels in the prefrontal cortex: A 7T 1H magnetic resonance spectroscopy study. NEUROIMAGE-CLINICAL 2017; 14:195-200. [PMID: 28180078 PMCID: PMC5280001 DOI: 10.1016/j.nicl.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 12/17/2022]
Abstract
There is ample evidence that the inhibitory GABA and the excitatory glutamate system are essential for an adequate response to stress. Both GABAergic and glutamatergic brain circuits modulate hypothalamus-pituitary-adrenal (HPA)-axis activity, and stress in turn affects glutamate and GABA levels in the rodent brain. However, studies examining stress-induced GABA and glutamate levels in the human brain are scarce. Therefore, we investigated the influence of acute psychosocial stress (using the Trier Social Stress Test) on glutamate and GABA levels in the medial prefrontal cortex of 29 healthy male individuals using 7 Tesla proton magnetic resonance spectroscopy. In vivo GABA and glutamate levels were measured before and 30 min after exposure to either the stress or the control condition. We found no associations between psychosocial stress or cortisol stress reactivity and changes over time in medial prefrontal glutamate and GABA levels. GABA and glutamate levels over time were significantly correlated in the control condition but not in the stress condition, suggesting that very subtle differential effects of stress on GABA and glutamate across individuals may occur. However, overall, acute psychosocial stress does not appear to affect in vivo medial prefrontal GABA and glutamate levels, at least this is not detectable with current practice 1H-MRS. Psychosocial stress did not alter glutamate and GABA levels in the medial prefrontal cortex in healthy male individuals. Moreover, cortisol stress reactivity was not associated with medial prefrontal glutamate and GABA level change over time. Together, acute stress does not seem to affect in vivo medial prefrontal 7T MRI GABA and glutamate levels in humans.
Collapse
Affiliation(s)
- L C Houtepen
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - R R Schür
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - J P Wijnen
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - V O Boer
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - M P M Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - D W Klomp
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - C H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| |
Collapse
|
37
|
Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem 2016; 529:127-143. [PMID: 28034792 DOI: 10.1016/j.ab.2016.12.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease.
Collapse
|
38
|
Ganji SK, An Z, Tiwari V, McNeil S, Pinho MC, Pan E, Mickey BE, Maher EA, Choi C. In vivo detection of 2-hydroxyglutarate in brain tumors by optimized point-resolved spectroscopy (PRESS) at 7T. Magn Reson Med 2016; 77:936-944. [PMID: 26991680 DOI: 10.1002/mrm.26190] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022]
Abstract
PURPOSE To test the efficacy of 7T MRS for in vivo detection of 2-hydroxyglutarate (2HG) in brain tumors. METHODS The subecho times of point-resolved spectroscopy (PRESS) were optimized at 7T with density-matrix simulations and phantom validation to improve the 2HG signal selectivity with respect to the neighboring resonances of γ-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln). MRS data were acquired from 12 subjects with gliomas in vivo and analyzed with LCModel using calculated basis spectra. Metabolite levels were quantified using unsuppressed short echo time (TE) water as a reference. RESULTS The PRESS TE was optimized as TE = 78 ms (TE1 = 58 ms and TE2 = 20 ms), at which the 2HG 2.25 ppm resonance appeared as a temporally maximum inverted narrow peak and the GABA, Glu, and Gln resonances between 2.2 and 2.5 ppm were all positive peaks. The PRESS TE = 78 ms method offered improved discrimination of 2HG from Glu, Gln, and GABA when compared with short-TE MRS. 2HG was detected in all patients enrolled in the study, the estimated 2HG concentrations ranging from 1.0 to 6.2 mM, with percentage standard deviation of 2%-7%. CONCLUSION Data indicate that the optimized MRS provides good selectivity of 2HG from other metabolite signals and may confer reliable in vivo detection of 2HG at relatively low concentrations. Magn Reson Med 77:936-944, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sandeep K Ganji
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhongxu An
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vivek Tiwari
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah McNeil
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Annette Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marco C Pinho
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edward Pan
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce E Mickey
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Annette Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elizabeth A Maher
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Annette Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Changho Choi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Li N, An L, Shen J. Spectral fitting using basis set modified by measured B0 field distribution. NMR IN BIOMEDICINE 2015; 28:1707-1715. [PMID: 26503305 PMCID: PMC4715526 DOI: 10.1002/nbm.3430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 09/11/2015] [Indexed: 05/30/2023]
Abstract
This study sought to demonstrate and evaluate a novel spectral fitting method to improve quantification accuracy in the presence of large magnetic field distortion, especially with high fields. MRS experiments were performed using a point-resolved spectroscopy (PRESS)-type sequence at 7 T. A double-echo gradient echo (GRE) sequence was used to acquire B0 maps following MRS experiments. The basis set was modified based on the measured B0 distribution within the MRS voxel. Quantification results were obtained after fitting the measured MRS data using the modified basis set. The proposed method was validated using numerical Monte Carlo simulations, phantom measurements, and comparison of occipital lobe MRS measurements under homogeneous and inhomogeneous magnetic field conditions. In vivo results acquired from voxels placed in thalamus and prefrontal cortex regions close to the frontal sinus agreed well with published values. Instead of noise-amplifying complex division, the proposed method treats field variations as part of the signal model, thereby avoiding inherent statistical bias associated with regularization. Simulations and experiments showed that the proposed approach reliably quantified results in the presence of relatively large magnetic field distortion. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Ningzhi Li
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Li An
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Carrera I, Richter H, Meier D, Kircher PR, Dennler M. Regional metabolite concentrations in the brain of healthy dogs measured by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am J Vet Res 2015; 76:129-41. [PMID: 25629910 DOI: 10.2460/ajvr.76.2.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate regional differences of relative metabolite concentrations in the brain of healthy dogs with short echo time, single voxel proton magnetic resonance spectroscopy ((1)H MRS) at 3.0 T. ANIMALS 10 Beagles. PROCEDURES Short echo time, single voxel (1)H MRS was performed at the level of the right and left basal ganglia, right and left thalamus, right and left parietal lobes, occipital lobe, and cerebellum. Data were analyzed with an automated fitting method (linear combination model). Metabolite concentrations relative to water content were obtained, including N-acetyl aspartate, total choline, creatine, myoinositol, the sum of glutamine and glutamate (glutamine-glutamate complex), and glutathione. Metabolite ratios with creatine as the reference metabolite were calculated. Concentration differences between right and left hemispheres and sexes were evaluated with a Wilcoxon signed rank test and among various regions of the brain with an independent t test and 1-way ANOVA. RESULTS No significant differences were detected between sexes and right and left hemispheres. All metabolites, except the glutamine-glutamate complex and glutathione, had regional concentrations that differed significantly. The creatine concentration was highest in the basal ganglia and cerebellum and lowest in the parietal lobes. The N-acetyl aspartate concentration was highest in the parietal lobes and lowest in the cerebellum. Total choline concentration was highest in the basal ganglia and lowest in the occipital lobe. CONCLUSIONS AND CLINICAL RELEVANCE Metabolite concentrations differed among brain parenchymal regions in healthy dogs. This study may provide reference values for clinical and research studies involving (1)H MRS performed at 3.0 T.
Collapse
Affiliation(s)
- Inés Carrera
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland., Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Toncelli A, Noeske R, Cosottini M, Costagli M, Domenici V, Tiberi G, Tosetti M. STEAM-MiTiS: An MR spectroscopy method for the detection of scalar-coupled metabolites and its application to glutamate at 7 T. Magn Reson Med 2014; 74:1515-22. [DOI: 10.1002/mrm.25556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/28/2014] [Accepted: 11/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ralph Noeske
- MR Applications and Workflow Development; GE Healthcare; Berlin Germany
| | - Mirco Cosottini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia; University of Pisa; Pisa Italy
- Fondazione IMAGO7; Pisa Italy
| | - Mauro Costagli
- Fondazione IMAGO7; Pisa Italy
- Laboratorio di Fisica Medica e Biotecnologie per la Risonanza Magnetica IRCCS Fondazione Stella Maris; Pisa Italy
| | - Valentina Domenici
- Dipartimento di Chimica e Chimica Industriale; University of Pisa; Pisa Italy
| | - Gianluigi Tiberi
- Fondazione IMAGO7; Pisa Italy
- Laboratorio di Fisica Medica e Biotecnologie per la Risonanza Magnetica IRCCS Fondazione Stella Maris; Pisa Italy
| | - Michela Tosetti
- Fondazione IMAGO7; Pisa Italy
- Laboratorio di Fisica Medica e Biotecnologie per la Risonanza Magnetica IRCCS Fondazione Stella Maris; Pisa Italy
| |
Collapse
|
42
|
An L, Li S, Wood ET, Reich DS, Shen J. N-acetyl-aspartyl-glutamate detection in the human brain at 7 Tesla by echo time optimization and improved Wiener filtering. Magn Reson Med 2014; 72:903-12. [PMID: 24243344 PMCID: PMC4020995 DOI: 10.1002/mrm.25007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 11/09/2022]
Abstract
PURPOSE To report enhanced signal detection for measuring N-acetyl-aspartyl-glutamate (NAAG) in the human brain at 7 Tesla by echo time (TE) -optimized point-resolved spectroscopy (PRESS) and improved Wiener filtering. METHODS Using a highly efficient in-house developed numerical simulation program, a PRESS sequence with (TE1 , TE2 ) = (26, 72) ms was found to maximize the NAAG signals relative to the overlapping Glu signals. A new Wiener filtering water reference deconvolution method was developed to reduce broadening and distortions of metabolite peaks caused by B0 inhomogeneity and eddy currents. RESULTS Monte Carlo simulation results demonstrated that the new Wiener filtering method offered higher spectral resolution, reduced spectral artifacts, and higher accuracy in NAAG quantification compared with the original Wiener filtering method. In vivo spectra and point spread functions of signal distortion confirmed that the new Wiener filtering method lead to improved spectral resolution and reduced spectral artifacts. CONCLUSION TE-optimized PRESS in combination with a new Wiener filtering method made it possible to fully use both the NAAG singlet signal at 2.05 ppm and the NAAG multiplet signal at 2.18 ppm in the quantification of NAAG. A more accurate characterization of lineshape distortion for Wiener filtering needs B0 field maps and segmented anatomical images to exclude contribution from cerebral spinal fluid.
Collapse
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Shizhe Li
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Emily T Wood
- NeuroImmunology Branch (NINDS), National Institutes of Health, Bethesda, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel S Reich
- NeuroImmunology Branch (NINDS), National Institutes of Health, Bethesda, MD
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Ganji SK, An Z, Banerjee A, Madan A, Hulsey KM, Choi C. Measurement of regional variation of GABA in the human brain by optimized point-resolved spectroscopy at 7 T in vivo. NMR IN BIOMEDICINE 2014; 27:1167-75. [PMID: 25088346 PMCID: PMC4182098 DOI: 10.1002/nbm.3170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/12/2014] [Accepted: 07/01/2014] [Indexed: 05/15/2023]
Abstract
The (1)H resonances of γ-aminobutyric acid (GABA) in the human brain in vivo are extensively overlapped with the neighboring abundant resonances of other metabolites and remain indiscernible in short-TE MRS at 7 T. Here we report that the GABA resonance at 2.28 ppm can be fully resolved by means of echo time optimization of a point-resolved spectroscopy (PRESS) scheme. Following numerical simulations and phantom validation, the subecho times of PRESS were optimized at (TE, TE2) = (31, 61) ms for detection of GABA, glutamate (Glu), glutamine (Gln), and glutathione (GSH). The in vivo feasibility of the method was tested in several brain regions in nine healthy subjects. Spectra were acquired from the medial prefrontal, left frontal, medial occipital, and left occipital brain and analyzed with LCModel. Following the gray and white matter (GM and WM) segmentation of T1 -weighted images, linear regression of metabolite estimates was performed against the fractional GM contents. The GABA concentration was estimated to be about seven times higher in GM than in WM. GABA was overall higher in frontal than in occipital brain. Glu was about twice as high in GM as in WM in both frontal and occipital brain. Gln was significantly different between frontal GM and WM while being similar between occipital GM and WM. GSH did not show significant dependence on tissue content. The signals from N-acetylaspartylglutamate were clearly resolved, giving the concentration more than 10 times higher in WM than in GM. Our data indicate that the PRESS TE = 92 ms method provides an effective means for measuring GABA and several challenging J-coupled spin metabolites in human brain at 7 T.
Collapse
Affiliation(s)
- Sandeep K. Ganji
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhongxu An
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Abhishek Banerjee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Akshay Madan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Keith M. Hulsey
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Changho Choi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Correspondence to: Changho Choi, PhD, Advanced Imaging Research Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390,
| |
Collapse
|
44
|
Zielman R, Teeuwisse WM, Bakels F, Van der Grond J, Webb A, van Buchem MA, Ferrari MD, Kruit MC, Terwindt GM. Biochemical changes in the brain of hemiplegic migraine patients measured with 7 tesla 1H-MRS. Cephalalgia 2014; 34:959-67. [PMID: 24651393 DOI: 10.1177/0333102414527016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM The aim of this study was to assess biochemical changes in the brain of patients with hemiplegic migraine in between attacks. METHODS Eighteen patients with hemiplegic migraine (M:F, 7:11; age 38 ± 14 years) of whom eight had a known familial hemiplegic migraine (FHM) mutation (five in the CACNA1A gene (FHM1), three in the ATP1A2 gene (FHM2)) and 19 age- and sex-matched healthy controls (M:F, 7:12; mean age 38 ± 12 years) were studied. We used single-voxel 7 tesla (1)H-MRS (STEAM, TR/TM/TE = 2000/19/21 ms) to investigate four brain regions in between attacks: cerebellum, hypothalamus, occipital lobe, and pons. RESULTS Patients with hemiplegic migraine showed a significantly lower total N-acetylaspartate/total creatine ratio (tNAA/tCre) in the cerebellum (median 0.73, range 0.59-1.03) than healthy controls (median 0.79, range (0.67-0.95); p = 0.02). In FHM1 patients with a CACNA1A mutation, the tNAA/tCre was lowest. DISCUSSION We found a decreased cerebellar tNAA/tCre ratio that might serve as an early biomarker for neuronal dysfunction and/or loss. This is the first high-spectral resolution 7 tesla (1)H-MRS study of interictal biochemical brain changes in hemiplegic migraine patients.
Collapse
Affiliation(s)
- R Zielman
- Department of Neurology, Leiden University Medical Centre, the Netherlands
| | - W M Teeuwisse
- Department of Radiology, Leiden University Medical Centre, the Netherlands
| | - F Bakels
- Department of Neurology, Leiden University Medical Centre, the Netherlands
| | - J Van der Grond
- Department of Radiology, Leiden University Medical Centre, the Netherlands
| | - A Webb
- Department of Radiology, Leiden University Medical Centre, the Netherlands
| | - M A van Buchem
- Department of Radiology, Leiden University Medical Centre, the Netherlands
| | - M D Ferrari
- Department of Neurology, Leiden University Medical Centre, the Netherlands
| | - M C Kruit
- Department of Radiology, Leiden University Medical Centre, the Netherlands
| | - G M Terwindt
- Department of Neurology, Leiden University Medical Centre, the Netherlands
| |
Collapse
|
45
|
An L, Li S, Murdoch JB, Araneta MF, Johnson C, Shen J. Detection of glutamate, glutamine, and glutathione by radiofrequency suppression and echo time optimization at 7 tesla. Magn Reson Med 2014; 73:451-8. [DOI: 10.1002/mrm.25150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Shizhe Li
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - James B. Murdoch
- Toshiba Medical Research Institute USA; Mayfield Village Ohio USA
| | - Maria Ferraris Araneta
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Christopher Johnson
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| |
Collapse
|
46
|
Xiong Y, Zhu WZ, Zhang Q, Wang W. Observation of post-MCAO cortical inflammatory edema in rats by 7.0 Tesla MRI. ACTA ACUST UNITED AC 2014; 34:120-124. [PMID: 24496690 DOI: 10.1007/s11596-014-1242-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 01/10/2014] [Indexed: 12/01/2022]
Abstract
This study aimed to investigate inflammatory edema after cerebral ischemia through 7.0T MRI and proton magnetic resonance spectroscopy (MRS). All SD rats were randomly divided into sham operated group and middle cerebral artery occlusion (MCAO)-1 day, -3 day and -7 day groups. MRI scan of the brain was performed on a 7.0 Tesla MRI scanner. The volume of positive signals in the ischemic side was detected by using a T2 weighted spinecho multislice sequence; the changes in the height of water-peak were measured with point resolved spectroscopy (PRESS) sequences; cortical edema was detected by using wet-dry weight method; the degrees of nerve injury were evaluated by Bederson neurological score system; double-labeling immunofluorescence technique was used to explore the molecular mechanisms of post-ischemia cerebral edema. The results showed that high T2WI signals were observed in MCAO-1 day, -3 day and -7 day groups, and the water-peak height and water-peak area of MCAO groups were higher than those of sham operated group (P<0.05). Neurological score results were consistent with the degree of brain edema, and a large number of microglia accumulated in the ischemic cortex. Our results suggested that non-invasive MRI technology with the advantage of high spatial resolution and tissue resolution can comprehensively and dynamically observe inflammatory edema after cerebral ischemia from a three-dimensional space, and contribute to evaluation and treatments in clinic.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong Universitiy of Science and Technology, Wuhan, 430030, China
| | - Wen-Zhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong Universitiy of Science and Technology, Wuhan, 430030, China
| | - Qiang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong Universitiy of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong Universitiy of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
47
|
On the use of Cramér–Rao minimum variance bounds for the design of magnetic resonance spectroscopy experiments. Neuroimage 2013; 83:1031-40. [DOI: 10.1016/j.neuroimage.2013.07.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/03/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022] Open
|
48
|
Choi C, Ganji SK, Madan A, Hulsey KM, An Z, Zhang S, Pinho MC, DeBerardinis RJ, Bachoo RM, Maher EA. In vivo detection of citrate in brain tumors by 1H magnetic resonance spectroscopy at 3T. Magn Reson Med 2013; 72:316-23. [PMID: 24123337 DOI: 10.1002/mrm.24946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/06/2022]
Abstract
PURPOSE To test whether citrate is elevated in adult patients with gliomas using (1)H magnetic resonance spectroscopy (MRS) at 3T in vivo. METHODS Thirty-four adult patients were enrolled in the study, including six subjects with glioblastomas, eight subjects with astrocytomas (World Health Organization grade 3, n = 5; grade 2, n = 3), and 20 subjects with oligodendrogliomas (grade 3, n = 5; grade 2, n = 15). Five healthy volunteers were studied for baseline citrate data. Single-voxel localized spectra were collected with point-resolved spectroscopy (PRESS) echo times of 35 and 97 ms and were analyzed with LCModel software using numerically calculated basis spectra that included the effects of the PRESS radiofrequency and gradient pulses. RESULTS Citrate was not measurable by MRS in healthy brain but was detected in tumor patients at both echo times. The citrate concentration was estimated to be as high as 1.8 mM with reference to water at 42 M, with Cramér-Rao lower bounds (CRLB) as low as 5%. The mean citrate level was 0.7 ± 0.4 mM (mean ± SD, n = 32) with a median CRLB of ∼12%. No correlation was identified between citrate concentration and tumor grade or histological type. CONCLUSION Citrate was increased in the majority of gliomas in adult patients. The elevated citrate in our data indicates an altered metabolic state of tumor relative to healthy brain.
Collapse
Affiliation(s)
- Changho Choi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cai K, Singh A, Roalf DR, Nanga RPR, Haris M, Hariharan H, Gur R, Reddy R. Mapping glutamate in subcortical brain structures using high-resolution GluCEST MRI. NMR IN BIOMEDICINE 2013; 26:1278-84. [PMID: 23553932 PMCID: PMC3999922 DOI: 10.1002/nbm.2949] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 05/19/2023]
Abstract
In vivo measurement of glutamate (Glu) in brain subcortex can elucidate the role these structures play in cognition and neuropsychiatric disorders. However, accurate quantification of Glu in subcortical regions is challenging. Recently, a novel MRI method based on the Glu chemical exchange saturation transfer (GluCEST) effect has been developed for detecting brain Glu in millimolar concentrations. Here, we use GluCEST to map Glu distributions in subcortical structures of the human brain (e.g. amygdala, hippocampus). Overall, GluCEST was ~40% higher in gray matter than in white matter. Within the subcortical gray matters, amygdala showed the highest GluCEST contrast. Utilizing MR spectroscopic data, in vivo GluCEST detection sensitivity (~0.8% mM(-1) ) in subcortical gray matter was evaluated and was consistent with the previously reported values. In general, the GluCEST map approximates the Glu receptor distribution reported in previous positron emission tomography (PET) studies. These findings suggest that high-resolution GluCEST MRI of subcortical brain structures may prove to be a useful tool in diagnosis of brain disorders or treatment responses.
Collapse
Affiliation(s)
- Kejia Cai
- University of Pennsylvania, Radiology, Philadelphia, Pennsylvania, United States
| | - Anup Singh
- University of Pennsylvania, Radiology, Philadelphia, Pennsylvania, United States,
| | - David R Roalf
- University of Pennsylvania, Psychiatry, Philadelphia, Pennsylvania, United States,
| | | | - Mohammad Haris
- University of Pennsylvania, Radiology, Philadelphia, Pennsylvania, United States,
| | - Hari Hariharan
- University of Pennsylvania, Radiology, Philadelphia, Pennsylvania, United State,
| | - Ruben Gur
- University of Pennsylvania, Psychiatry, Philadelphia, Pennsylvania, United States,
| | - Ravinder Reddy
- University of Pennsylvania, Radiology, Philadelphia, Pennsylvania, United States,
| |
Collapse
|
50
|
Dai H, Hong B, Xu Z, Ma L, Chen Y, Xiao Y, Wu R. Nuclear magnetic resonance spectroscopy is highly sensitive for lipid-soluble metabolites. Neural Regen Res 2013; 8:2103-10. [PMID: 25206519 PMCID: PMC4146060 DOI: 10.3969/j.issn.1673-5374.2013.22.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/25/2013] [Indexed: 02/05/2023] Open
Abstract
Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract pid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Furthermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were assigned in the acquired spectra according to the chemical shift, and the extraction efficiency of ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain relatively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase extraction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.
Collapse
Affiliation(s)
- Haiyang Dai
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041; Department of Medical Imaging, Huizhou Municipal Central Hospital, Huizhou 516001, Guangdong Province, China
- Department of Radiology, the First People's Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Bikai Hong
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041; Department of Medical Imaging, Huizhou Municipal Central Hospital, Huizhou 516001, Guangdong Province, China
| | - Zhifeng Xu
- Department of Pediatrics, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Lian Ma
- Central Laboratory, Shantou University, Shantou 515041, Guangdong Province, China
| | - Yaowen Chen
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yeyu Xiao
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041; Department of Medical Imaging, Huizhou Municipal Central Hospital, Huizhou 516001, Guangdong Province, China
- Corresponding author: Yeyu Xiao, Master, Professor, Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China, . Renhua Wu, M.D., Professor, Doctoral supervisor, Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China, (N20120517004)
| | - Renhua Wu
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041; Department of Medical Imaging, Huizhou Municipal Central Hospital, Huizhou 516001, Guangdong Province, China
- Corresponding author: Yeyu Xiao, Master, Professor, Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China, . Renhua Wu, M.D., Professor, Doctoral supervisor, Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China, (N20120517004)
| |
Collapse
|