1
|
de Joode NT, van den Heuvel OA, Koster M, Clarke WT, van Balkom AJLM, Schrantee A, Vriend C. Glutamate dynamics and BOLD response during OCD symptom provocation in the lateral occipital cortex: A 7 Tesla fMRI-fMRS study. J Affect Disord 2024; 367:416-425. [PMID: 39233246 DOI: 10.1016/j.jad.2024.08.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Obsessive-compulsive disorder (OCD) is linked with dysfunction in frontal-striatal, fronto-limbic, and visual brain regions. Research using proton magnetic resonance spectroscopy (1H-MRS) suggests that altered neurometabolite levels, like glutamate, may contribute to this dysfunction. However, static neurometabolite levels in OCD patients have shown inconsistent results, likely due to previous studies' limited focus on neurometabolite dynamics. We employ functional MRS (fMRS) and functional magnetic resonance imaging (fMRI) to explore these dynamics and brain activation during OCD symptom provocation. We utilized a combined 7-tesla fMRI-fMRS setup to examine task-related BOLD response and glutamate changes in the lateral occipital cortex (LOC) of 30 OCD participants and 34 matched controls during an OCD-specific symptom provocation task. The study examined main effects and between-group differences in brain activation and glutamate levels during the task. A whole sample task-effects analysis on data meeting predefined quality criteria showed significant glutamate increases (n = 41 (22 OCD, 19 controls), mean change: 3.2 %, z = 3.75, p < .001) and task activation (n = 54 (26 OCD, 28 controls), p < .001) in the LOC during OCD blocks compared to neutral blocks. However, no differences in task-induced glutamate dynamics or activation between groups were found, nor a correlation between glutamate levels and task activation. We were able to measure task-induced increases in glutamate and BOLD levels, emphasizing its feasibility for OCD research. The absence of group differences highlights the need for further exploration to discern to what extent neurometabolite dynamics differ between OCD patients and controls. Once established, future studies can use pre-post intervention fMRS-fMRI to probe the effects of therapies modulating glutamate pathways in OCD.
Collapse
Affiliation(s)
- Niels T de Joode
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands.
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Psychiatry, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands
| | - Merel Koster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anton J L M van Balkom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Psychiatry, De Boelelaan 1117, Amsterdam, Netherlands; GGZ inGeest Specialised Mental Health Care, Amsterdam, Netherlands
| | - Anouk Schrantee
- Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands; Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, Netherlands
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Psychiatry, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Idumah G, Somersalo E, Calvetti D. A spatially distributed model of brain metabolism highlights the role of diffusion in brain energy metabolism. J Theor Biol 2023; 572:111567. [PMID: 37393987 DOI: 10.1016/j.jtbi.2023.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The different active roles of neurons and astrocytes during neuronal activation are associated with the metabolic processes necessary to supply the energy needed for their respective tasks at rest and during neuronal activation. Metabolism, in turn, relies on the delivery of metabolites and removal of toxic byproducts through diffusion processes and the cerebral blood flow. A comprehensive mathematical model of brain metabolism should account not only for the biochemical processes and the interaction of neurons and astrocytes, but also the diffusion of metabolites. In the present article, we present a computational methodology based on a multidomain model of the brain tissue and a homogenization argument for the diffusion processes. In our spatially distributed compartment model, communication between compartments occur both through local transport fluxes, as is the case within local astrocyte-neuron complexes, and through diffusion of some substances in some of the compartments. The model assumes that diffusion takes place in the extracellular space (ECS) and in the astrocyte compartment. In the astrocyte compartment, the diffusion across the syncytium network is implemented as a function of gap junction strength. The diffusion process is implemented numerically by means of a finite element method (FEM) based spatial discretization, and robust stiff solvers are used to time integrate the resulting large system. Computed experiments show the effects of ECS tortuosity, gap junction strength and spatial anisotropy in the astrocyte network on the brain energy metabolism.
Collapse
Affiliation(s)
- Gideon Idumah
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA
| | - Erkki Somersalo
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA
| | - Daniela Calvetti
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA.
| |
Collapse
|
3
|
Takado Y, Takuwa H, Sampei K, Urushihata T, Takahashi M, Shimojo M, Uchida S, Nitta N, Shibata S, Nagashima K, Ochi Y, Ono M, Maeda J, Tomita Y, Sahara N, Near J, Aoki I, Shibata K, Higuchi M. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice. J Cereb Blood Flow Metab 2022; 42:197-212. [PMID: 34515548 PMCID: PMC8721779 DOI: 10.1177/0271678x211045449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We assessed regional neurochemical statuses by measuring MRS signals, which were overall in accordance with the neural activities, and neuronal activities and neurochemical statuses in a mouse model of Dravet syndrome under resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.
Collapse
Affiliation(s)
- Yuhei Takado
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Yuhei Takado, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Hiroyuki Takuwa, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Kazuaki Sampei
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuya Urushihata
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shoko Uchida
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nobuhiro Nitta
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sayaka Shibata
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Keisuke Nagashima
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| | - Yoshihiro Ochi
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhisa Shibata
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Laboratory for Human Cognition and Learning, Center for Brain Science, RIKEN, Saitama, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Makoto Higuchi, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
4
|
Mohr AA, Garcia-Serrano AM, Vieira JP, Skoug C, Davidsson H, Duarte JM. A glucose-stimulated BOLD fMRI study of hypothalamic dysfunction in mice fed a high-fat and high-sucrose diet. J Cereb Blood Flow Metab 2021; 41:1734-1743. [PMID: 32757742 PMCID: PMC8217889 DOI: 10.1177/0271678x20942397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hypothalamus is the central regulator of energy homeostasis. Hypothalamic neuronal circuits are disrupted upon overfeeding, and play a role in the development of metabolic disorders. While mouse models have been extensively employed for understanding the mechanisms of hypothalamic dysfunction, functional magnetic resonance imaging (fMRI) on hypothalamic nuclei has been challenging. We implemented a robust glucose-induced fMRI paradigm that allows to repeatedly investigate hypothalamic responses to glucose. This approach was used to test the hypothesis that hypothalamic nuclei functioning is impaired in mice exposed to a high-fat and high-sucrose diet (HFHSD) for seven days. The blood oxygen level-dependent (BOLD) fMRI signal was measured from brains of mice under light isoflurane anaesthesia, during which a 2.6 g/kg glucose load was administered. The mouse hypothalamus responded to glucose but not saline administration with a biphasic BOLD fMRI signal reduction. Relative to controls, HFHSD-fed mice showed attenuated or blunted responses in arcuate nucleus, lateral hypothalamus, ventromedial nucleus and dorsomedial nucleus, but not in paraventricular nucleus. In sum, we have developed an fMRI paradigm that is able to determine dysfunction of glucose-sensing neuronal circuits within the mouse hypothalamus in a non-invasive manner.
Collapse
Affiliation(s)
- Adélaïde A Mohr
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alba M Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - João Pp Vieira
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Henrik Davidsson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - João Mn Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Just N. Proton functional magnetic resonance spectroscopy in rodents. NMR IN BIOMEDICINE 2021; 34:e4254. [PMID: 31967711 DOI: 10.1002/nbm.4254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Proton functional magnetic resonance spectroscopy (1 H-fMRS) in the human brain is able to assess and quantify the metabolic response due to localized brain activity. Currently, 1 H-fMRS of the human brain is complementary to functional magnetic resonance imaging (fMRI) and a recommended technique at high field strengths (>7 T) for the investigation of neurometabolic couplings, thereby providing insight into the mechanisms underlying brain activity and brain connectivity. Understanding typical healthy brain metabolism during a task is expected to provide a baseline from which to detect and characterize neurochemical alterations associated with various neurological or psychiatric disorders and diseases. It is of paramount importance to resolve fundamental questions related to the regulation of neurometabolic processes. New techniques such as optogenetics may be coupled to fMRI and fMRS to bring more specificity to investigations of brain cell populations during cerebral activation thus enabling a higher link to molecular changes and therapeutic advances. These rather novel techniques are mainly available for rodent applications and trigger renewed interest in animal fMRS. However, rodent fMRS remains fairly confidential due to its inherent low signal-to-noise ratio and its dependence on anesthesia. For instance, the accurate determination of metabolic concentration changes during stimulation requires robust knowledge of the physiological environment of the measured region of interest linked to anesthesia in most cases. These factors may also have a strong influence on B0 homogeneity. Therefore, a degree of calibration of the stimulus strength and duration may be needed for increased knowledge of the underpinnings of cerebral activity. Here, we propose an early review of the current status of 1 H-fMRS in rodents and summarize current difficulties and future perspectives.
Collapse
Affiliation(s)
- Nathalie Just
- Department of Clinical Radiology, University Hospital Münster, Germany
- INRAE, Centre, Tours Val de Loire, France
| |
Collapse
|
6
|
Shih CT, Chiu SC, Peng SL. Caffeine enhances BOLD responses to electrical whisker pad stimulation in rats during alpha-chloralose anaesthesia. Eur J Neurosci 2020; 53:601-610. [PMID: 32926471 DOI: 10.1111/ejn.14968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
By reducing the cerebral blood flow and thereby increasing the resting deoxyhaemoglobin concentration, many human studies have shown that caffeine has a beneficial effect on enhancing the magnitude of blood-oxygenation-level-dependent (BOLD) responses. However, the effect of caffeine on BOLD responses in animals under anaesthesia has not been demonstrated. In this study, we aimed to determine the effect of systemic caffeine administration on BOLD responses in rats under alpha-chloralose. By applying electric whisker pad stimulation to male Sprague-Dawley rats, we performed fMRI measurements before and after the caffeine injection (40 mg/kg, n = 7) or an equivalent volume of saline (n = 6) at 7T. To understand the potential perturbation of animal physiology during stimulation, arterial blood pressure was measured in a separate group of animals (n = 3) outside the scanner. Caffeine significantly decreased baseline BOLD signals (p = .05) due to the increased deoxyhaemoglobin level. Both BOLD responses and t-values in the primary somatosensory cortex were significantly increased (both p < .05). The blood pressure changed insignificantly (p > .05). No significant differences in BOLD responses and t-values were observed in the control condition of saline injection (both p > .05). These findings suggested that, although the cerebral activity was lower under alpha-chloralose anaesthesia, the higher level of deoxygemoglobin at the baseline under the caffeinated condition can benefit the magnitude of BOLD responses in rats. These findings suggest that animal models might serve as potential platforms for further caffeine-related fMRI research studies.
Collapse
Affiliation(s)
- Cheng-Ting Shih
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Pérez-Cervera L, Caramés JM, Fernández-Mollá LM, Moreno A, Fernández B, Pérez-Montoyo E, Moratal D, Canals S, Pacheco-Torres J. Mapping Functional Connectivity in the Rodent Brain Using Electric-Stimulation fMRI. Methods Mol Biol 2018; 1718:117-134. [PMID: 29341006 DOI: 10.1007/978-1-4939-7531-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since its discovery in the early 90s, BOLD signal-based functional Magnetic Resonance Imaging (fMRI) has become a fundamental technique for the study of brain activity in basic and clinical research. Functional MRI signals provide an indirect but robust and quantitative readout of brain activity through the tight coupling between cerebral blood flow and neuronal activation, the so-called neurovascular coupling. Combined with experimental techniques only available in animal models, such as intracerebral micro-stimulation, optogenetics or pharmacogenetics, provides a powerful framework to investigate the impact of specific circuit manipulations on overall brain dynamics. The purpose of this chapter is to provide a comprehensive protocol to measure brain activity using fMRI with intracerebral electric micro-stimulation in murine models. Preclinical research (especially in rodents) opens the door to very sophisticated and informative experiments, but at the same time imposes important constrains (i.e., anesthetics, translatability), some of which will be addressed here.
Collapse
Affiliation(s)
- Laura Pérez-Cervera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - José María Caramés
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | | | - Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Begoña Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - Elena Pérez-Montoyo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain.
| |
Collapse
|
8
|
Zhou H, Arias-Ramos N, López-Larrubia P, Mason RP, Cerdán S, Pacheco-Torres J. Oxygenation Imaging by Nuclear Magnetic Resonance Methods. Methods Mol Biol 2018; 1718:297-313. [PMID: 29341016 DOI: 10.1007/978-1-4939-7531-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxygen monitoring is a topic of exhaustive research due to its central role in many biological processes, from energy metabolism to gene regulation. The ability to monitor in vivo the physiological distribution and the dynamics of oxygen from subcellular to macroscopic levels is a prerequisite to better understand the mechanisms associated with both normal and disease states (cancer, neurodegeneration, stroke, etc.). This chapter focuses on magnetic resonance imaging (MRI) based techniques to assess oxygenation in vivo. The first methodology uses injected fluorinated agents to provide quantitative pO2 measurements with high precision and suitable spatial and temporal resolution for many applications. The second method exploits changes in endogenous contrasts, i.e., deoxyhemoglobin and oxygen molecules through measurements of T 2* and T 1, in response to an intervention to qualitatively evaluate hypoxia and its potential modulation.
Collapse
Affiliation(s)
- Heling Zhou
- Prognostic Imaging Research Laboratory, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nuria Arias-Ramos
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas 'Alberto Sols' C.S.I.C./U.A.M., Madrid, Spain
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas 'Alberto Sols' C.S.I.C./U.A.M., Madrid, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
9
|
Sonnay S, Poirot J, Just N, Clerc AC, Gruetter R, Rainer G, Duarte JMN. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex. Glia 2017; 66:477-491. [DOI: 10.1002/glia.23259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Jordan Poirot
- Department of Medicine, Visual Cognition Laboratory; University of Fribourg; Fribourg Switzerland
| | | | - Anne-Catherine Clerc
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Radiology; University de Lausanne; Lausanne Switzerland
- Department of Radiology; University de Geneva; Geneva Switzerland
| | - Gregor Rainer
- Department of Medicine, Visual Cognition Laboratory; University of Fribourg; Fribourg Switzerland
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Experimental Medical Science, Faculty of Medicine; Lund University; Lund Sweden
- Wallenberg Centre for Molecular Medicine, Lund University; Lund Sweden
| |
Collapse
|
10
|
Sonnay S, Gruetter R, Duarte JMN. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo. Front Neurosci 2017; 11:288. [PMID: 28603480 PMCID: PMC5445183 DOI: 10.3389/fnins.2017.00288] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here, we review state-of-the-art MR methods to study brain function and metabolism in vivo, and their contribution to the current understanding of how astrocytic energy metabolism supports glutamatergic activity and cerebral function. In this context, recent data suggests that astrocytic metabolism has been underestimated. Namely, the rate of oxidative metabolism in astrocytes is about half of that in neurons, and it can increase as much as the rate of neuronal metabolism in response to sensory stimulation.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland.,Department of Radiology, University of LausanneLausanne, Switzerland.,Department of Radiology, University of GenevaGeneva, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
11
|
Ip IB, Berrington A, Hess AT, Parker AJ, Emir UE, Bridge H. Combined fMRI-MRS acquires simultaneous glutamate and BOLD-fMRI signals in the human brain. Neuroimage 2017; 155:113-119. [PMID: 28433623 PMCID: PMC5519502 DOI: 10.1016/j.neuroimage.2017.04.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/29/2023] Open
Abstract
Combined fMRI-MRS is a novel method to non-invasively investigate functional activation in the human brain using simultaneous acquisition of hemodynamic and neurochemical measures. The aim of the current study was to quantify neural activity using combined fMRI-MRS at 7 T. BOLD-fMRI and semi-LASER localization MRS data were acquired from the visual cortex of 13 participants during short blocks (64 s) of flickering checkerboards. We demonstrate a correlation between glutamate and BOLD-fMRI time courses (R=0.381, p=0.031). In addition, we show increases in BOLD-fMRI (1.43±0.17%) and glutamate concentrations (0.15±0.05 I.U., ~2%) during visual stimulation. In contrast, we observed no change in glutamate concentrations in resting state MRS data during sham stimulation periods. Spectral line width changes generated by the BOLD-response were corrected using line broadening. In summary, our results establish the feasibility of concurrent measurements of BOLD-fMRI and neurochemicals using a novel combined fMRI-MRS sequence. Our findings strengthen the link between glutamate and functional activity in the human brain by demonstrating a significant correlation of BOLD-fMRI and glutamate over time, and by showing ~2% glutamate increases during 64 s of visual stimulation. Our tool may become useful for studies characterizing functional dynamics between neurochemicals and hemodynamics in health and disease. Novel MRI sequence measures hemodynamics and neurochemistry in same TR. Stimulation block duration relevant for functional experiments (64s). BOLD-fMRI and glutamate time courses correlate during functional stimulation. Visual stimulation increases glutamate concentrations. Useful to study fundamental relationship between hemodynamics and neurochemistry.
Collapse
Affiliation(s)
- I Betina Ip
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxfordshire OX1 3PT, UK; Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK.
| | - Adam Berrington
- Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Aaron T Hess
- Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Andrew J Parker
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxfordshire OX1 3PT, UK
| | - Uzay E Emir
- Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| |
Collapse
|
12
|
Just N, Sonnay S. Investigating the Role of Glutamate and GABA in the Modulation of Transthalamic Activity: A Combined fMRI-fMRS Study. Front Physiol 2017; 8:30. [PMID: 28197105 PMCID: PMC5281558 DOI: 10.3389/fphys.2017.00030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
The Excitatory-Inhibitory balance (EIB) between glutamatergic and GABAergic neurons is known to regulate the function of thalamocortical neurocircuits. The thalamus is known as an important relay for glutamatergic and GABAergic signals ascending/descending to/from the somatosensory cortex in rodents. However, new investigations attribute a larger role to thalamic nuclei as modulators of information processing within the cortex. In this study, functional Magnetic Resonance Spectroscopy (fMRS) was used to measure glutamate (Glu) and GABA associations with BOLD responses during activation of the thalamus to barrel cortex (S1BF) pathway at 9.4T. In line with previous studies in humans, resting GABA and Glu correlated negatively and positively respectively with BOLD responses in S1BF. Moreover, a significant negative correlation (R = −0.68, p = 0.0024) between BOLD responses in the thalamus and the barrel cortex was found. Rats with low Glu levels and high resting GABA levels in S1BF demonstrated lower BOLD responses in S1BF and high amplitude BOLD responses in the thalamus themselves linked to the release of high GABA levels during stimulation. In addition, early analysis of resting state functional connectivity suggested EIB controlled thalamocortical neuronal synchrony. We propose that the presented approach may be useful for further characterization of diseases affecting thalamocortical neurotransmission.
Collapse
Affiliation(s)
- Nathalie Just
- CIBM-AIT core, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; University Hospital MünsterMünster, Germany
| | - Sarah Sonnay
- LIFMET, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
13
|
Sonnay S, Duarte JMN, Just N. Lactate and glutamate dynamics during prolonged stimulation of the rat barrel cortex suggest adaptation of cerebral glucose and oxygen metabolism. Neuroscience 2017; 346:337-348. [PMID: 28153690 DOI: 10.1016/j.neuroscience.2017.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022]
Abstract
A better understanding of BOLD responses stems from a better characterization of the brain's ability to metabolize glucose and oxygen. Non-invasive techniques such as functional magnetic resonance spectroscopy (fMRS) have thus been developed allowing for the reproducible assessment of metabolic changes during barrel cortex (S1BF) activations in rats. The present study aimed at further exploring the role of neurotransmitters on local and temporal changes in vascular and metabolic function in S1BF. fMRS and fMRI data were acquired sequentially in α-chloralose anesthetized rats during 32-min rest and trigeminal nerve stimulation periods. During stimulation, concentrations of lactate (Lac) and glutamate (Glu) increased in S1BF by 0.23±0.05 and 0.34±0.05μmol/g respectively in S1BF. Dynamic analysis of metabolite concentrations allowed estimating changes in cerebral metabolic rates of glucose (ΔCMRGlc) and oxygen (ΔCMRO2). Findings confirmed a prevalence of oxidative metabolism during prolonged S1BF activation. Habituation led to a significant BOLD magnitude decline as a function of time while both total ΔCMRGlc and ΔCMRO2 remained constant revealing adaptation of glucose and oxygen metabolisms to support ongoing trigeminal nerve stimulation.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland
| | - Nathalie Just
- CIBM-AIT core, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Sonnay S, Duarte JM, Just N, Gruetter R. Compartmentalised energy metabolism supporting glutamatergic neurotransmission in response to increased activity in the rat cerebral cortex: A 13C MRS study in vivo at 14.1 T. J Cereb Blood Flow Metab 2016; 36:928-40. [PMID: 26823472 PMCID: PMC4853840 DOI: 10.1177/0271678x16629482] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022]
Abstract
Many tissues exhibit metabolic compartmentation. In the brain, while there is no doubt on the importance of functional compartmentation between neurons and glial cells, there is still debate on the specific regulation of pathways of energy metabolism at different activity levels. Using (13)C magnetic resonance spectroscopy (MRS) in vivo, we determined fluxes of energy metabolism in the rat cortex under α-chloralose anaesthesia at rest and during electrical stimulation of the paws. Compared to resting metabolism, the stimulated rat cortex exhibited increased glutamate-glutamine cycle (+67 nmol/g/min, +95%, P < 0.001) and tricarboxylic (TCA) cycle rate in both neurons (+62 nmol/g/min, +12%, P < 0.001) and astrocytes (+68 nmol/g/min, +22%, P = 0.072). A minor, non-significant modification of the flux through pyruvate carboxylase was observed during stimulation (+5 nmol/g/min, +8%). Altogether, this increase in metabolism amounted to a 15% (67 nmol/g/min, P < 0.001) increase in CMRglc(ox), i.e. the oxidative fraction of the cerebral metabolic rate of glucose. In conclusion, stimulation of the glutamate-glutamine cycle under α-chloralose anaesthesia is associated to similar enhancement of neuronal and glial oxidative metabolism.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale, Lausanne, Switzerland
| | - João Mn Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale, Lausanne, Switzerland
| | - Nathalie Just
- Centre d'Imagerie Biomédicale - Animal and Technology Core, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale, Lausanne, Switzerland Department of Radiology, University of Geneva, Switzerland Department of Radiology, University of Lausanne, Switzerland
| |
Collapse
|