1
|
Sollmann N, Dieckmeyer M, Carballido-Gamio J, Van AT, Karampinos DC, Feuerriegel GC, Foreman SC, Gersing AS, Krug R, Baum T, Kirschke JS. Magnetic Resonance Assessment of Bone Quality in Metabolic Bone Diseases. Semin Musculoskelet Radiol 2024; 28:576-593. [PMID: 39406221 DOI: 10.1055/s-0044-1788693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metabolic bone diseases (MBDs) are a diverse group of diseases, affecting the mass or structure of bones and leading to reduced bone quality. Parameters representing different aspects of bone health can be obtained from various magnetic resonance imaging (MRI) methods such as proton MR spectroscopy, as well as chemical shift encoding-based water-fat imaging, that have been frequently applied to study bone marrow in particular. Furthermore, T2* mapping and high-resolution trabecular bone imaging have been implemented to study bone microstructure. In addition, quantitative susceptibility mapping and ultrashort echo time imaging are used for trabecular and cortical bone assessment. This review offers an overview of technical aspects, as well as major clinical applications and derived main findings, for MRI-based assessment of bone quality in MBDs. It focuses on osteoporosis as the most common MBD.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Julio Carballido-Gamio
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anh Tu Van
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg C Feuerriegel
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Sarah C Foreman
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Lee HW, Lee JY, Lee JY, Yu SM, Lee K, Lee SK. Use of two-point and six-point Dixon MRI for fat fraction analysis in the lumbar vertebral bodies and paraspinal muscles in healthy dogs: comparison with magnetic resonance spectroscopy. Front Vet Sci 2024; 11:1412552. [PMID: 39386243 PMCID: PMC11461479 DOI: 10.3389/fvets.2024.1412552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Fatty degeneration of the vertebral bodies and paravertebral muscles is associated with the presence, severity, and prognosis of spinal disease such as intervertebral disc degeneration. Therefore, the fat fraction (FF) of the vertebral bodies and paraspinal muscles has been considered a potential biomarker for assessing the pathophysiology, progression, and treatment response of spinal disease. Magnetic resonance spectroscopy (MRS) is considered the reference standard for fat quantification; however, it has limitations of a long acquisition time and is technically demanding. Chemical shift-encoding water-fat imaging, called the Dixon method, has recently been applied for rapid fat quantification with high spatial resolution. However, the Dixon method has not been validated in veterinary medicine, and we hypothesized that the Dixon method would provide a comparable assessment of the FF to MRS but would be faster and easier to implement in dogs. Methods In this prospective study, we assessed the FF of the lumbar vertebral bodies and paravertebral muscles from the first to sixth lumbar vertebrae using MRS, the two-point Dixon method (LAVA-FLEX), and the six-point Dixon method (IDEAL-IQ) and compared these techniques. Results and discussion The FFs of vertebral bodies and paravertebral muscles derived from LAVA-FLEX and IDEAL-IQ showed significant correlations and agreement with those obtained with MRS. In particular, the FFs obtained with IDEAL-IQ showed higher correlations and better agreement with those obtained with MRS than those derived by LAVA-FLEX. Both Dixon methods showed excellent intra- and interobserver reproducibility for FF analysis of the vertebral bodies and paraspinal muscles. However, the test-retest repeatability of vertebral body and paraspinal muscle FF analysis was low for all three sequences, especially for the paraspinal muscles. The results of this study showed that LAVA-FLEX and IDEAL-IQ have high reproducibility and that their findings were highly correlated with the FFs of the lumber vertebral bodies and paraspinal muscles determined by MRS in dogs. The FF analysis could be performed much more easily and quickly using LAVA-FLEX and IDEAL-IQ than using MRS. In conclusion, LAVA-FLEX and IDEAL-IQ can be used as routine procedures in spinal magnetic resonance imaging in dogs for FF analysis of the vertebral bodies and paraspinal muscles.
Collapse
Affiliation(s)
- Hye-Won Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Yun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joo-Young Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Man Yu
- Department of Radiological Science, College of Medical Sciences, Jeonju University, Jeonju, Republic of Korea
| | - Kija Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Kwon Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Nunes LLA, Dos Reis LM, Osorio R, Guapyassú HKA, Moysés RMA, Leão Filho H, Elias RM, Rochitte CE, Jorgetti V, Custodio MR. High ferritin is associated with liver and bone marrow iron accumulation: Effects of 1-year deferoxamine treatment in hemodialysis-associated iron overload. PLoS One 2024; 19:e0306255. [PMID: 39121099 PMCID: PMC11315289 DOI: 10.1371/journal.pone.0306255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Iron (Fe) supplementation is a critical component of anemia therapy for patients with chronic kidney disease (CKD). However, serum Fe, ferritin, and transferrin saturation, used to guide Fe replacement, are far from optimal, as they can be influenced by malnutrition and inflammation. Currently, there is a trend of increasing Fe supplementation to target high ferritin levels, although the long-term risk has been overlooked. METHODS We prospectively enrolled 28 patients with CKD on hemodialysis with high serum ferritin (> 1000 ng/ml) and tested the effects of 1-year deferoxamine treatment, accompanied by withdrawal of Fe administration, on laboratory parameters (Fe status, inflammatory and CKD-MBD markers), heart, liver, and iliac crest Fe deposition (quantitative magnetic resonance imaging [MRI]), and bone biopsy (histomorphometry and counting of the number of Fe positive cells in the bone marrow). RESULTS MRI parameters showed that none of the patients had heart iron overload, but they all presented iron overload in the liver and bone marrow, which was confirmed by bone histology. After therapy, ferritin levels decreased, although neither hemoglobin levels nor erythropoietin dose was changed. A significant decrease in hepcidin and FGF-23 levels was observed. Fe accumulation was improved in the liver and bone marrow, reaching normal values only in the bone marrow. No significant changes in turnover, mineralization or volume were observed. CONCLUSIONS Our data suggest that treatment with deferoxamine was safe and could improve Fe accumulation, as measured by MRI and histomorphometry. Whether MRI is considered a standard tool for investigating bone marrow Fe accumulation requires further investigation. Registry and the registration number of clinical trial: ReBEC (Registro Brasileiro de Ensaios Clinicos) under the identification RBR-3rnskcj available at: https://ensaiosclinicos.gov.br/pesquisador.
Collapse
Affiliation(s)
- Lucas L. A. Nunes
- LIM 16 –Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Luciene M. Dos Reis
- LIM 16 –Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Rosse Osorio
- Radiology Department, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hanna K. A. Guapyassú
- LIM 16 –Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Rosa M. A. Moysés
- LIM 16 –Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Rosilene M. Elias
- LIM 16 –Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Radiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carlos E. Rochitte
- Radiology Department, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vanda Jorgetti
- LIM 16 –Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Melani R. Custodio
- LIM 16 –Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Haueise T, Stefan N, Schulz TJ, Schick F, Birkenfeld AL, Machann J. Automated shape-independent assessment of the spatial distribution of proton density fat fraction in vertebral bone marrow. Z Med Phys 2024; 34:436-445. [PMID: 36725478 PMCID: PMC11384090 DOI: 10.1016/j.zemedi.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
This work proposes a method for automatic standardized assessment of bone marrow volume and spatial distribution of the proton density fat fraction (PDFF) in vertebral bodies. Intra- and interindividual variability in size and shape of vertebral bodies is a challenge for comparable interindividual evaluation and monitoring of changes in the composition and distribution of bone marrow due to aging and/or intervention. Based on deep learning image segmentation, bone marrow PDFF of single vertebral bodies is mapped to a cylindrical template and corrected for the inclination with respect to the horizontal plane. The proposed technique was applied and tested in a cohort of 60 healthy (30 males, 30 females) individuals. Obtained bone marrow volumes and mean PDFF values are comparable to former manual and (semi-)automatic approaches. Moreover, the proposed method allows shape-independent characterization of the spatial PDFF distribution inside vertebral bodies.
Collapse
Affiliation(s)
- Tobias Haueise
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Tim J Schulz
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany.
| |
Collapse
|
5
|
Zhang S, Guo Q, Yang Y, Feng H, Zhao Y, Guo P, Li D, Du X, Song Q. Feasibility Study of 3D FACT and IVIM Sequences in the Evaluation of Female Osteoporosis. Bioengineering (Basel) 2023; 10:710. [PMID: 37370641 DOI: 10.3390/bioengineering10060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The aim of this study is to search for the predictive value of 3D fat analysis and calculation technique (FACT) and intravoxel incoherent motion (IVIM) parameters in identifying osteoporosis in women. METHODS We enrolled 48 female subjects who underwent 3.0 T MRI, including 3D FACT and IVIM sequences. Bone mineral density (BMD) values and Fracture Risk Assessment (FRAX) scores were obtained. Proton density fat fraction (PDFF) in the bone marrow and the real diffusion (D) value of intervertebral discs were measured on 3D FACT and IVIM images, respectively. Accuracy and bias were assessed by linear regression analysis and Bland-Altman plots. Intraclass correlation coefficients were used to assess the measurements' reproducibility. Spearman's rank correlation was applied to explore the correlation. MRI-based parameters were tested for significant differences among the three groups using ANOVA analyses. A receiver operating characteristic (ROC) analysis was performed. RESULTS The PDFF of the vertebral body showed a negative correlation with BMD (R = -0.393, p = 0.005) and a positive correlation with the FRAX score (R = 0.706, p < 0.001). The D value of intervertebral discs showed a positive correlation with BMD (R = 0.321, p = 0.024) and a negative correlation with the FRAX score (R = -0.334, p = 0.019). The area under the curve values from the ROC analysis showed that the 3D FACT and IVIM sequences could accurately differentiate between normal and osteoporosis (AUC = 0.88 using the PDFF; AUC = 0.77 using the D value). The PDFF value demonstrated a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 78.6%, 89.5%, 84.6%, and 85.0%, respectively, in its ability to predict osteoporosis. The D value had a sensitivity, specificity, PPV, and NPV of 63.16%, 92.9%, 65.0%, and 77.8%, respectively, for predicting osteoporosis. CONCLUSIONS The 3D FACT- and IVIM-measured PDFF and D values are promising biomarkers in the assessment of bone quality and fracture risk.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qianrui Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China
| | - Hongbo Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Zhao
- Department of Information Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Di Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuemei Du
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
6
|
Gassert FT, Glanz L, Boehm C, Stelter J, Gassert FG, Leonhardt Y, Feuerriegel GC, Graf M, Wurm M, Baum T, Braren RF, Schwaiger BJ, Makowski MR, Karampinos D, Gersing AS. Associations between Bone Mineral Density and Longitudinal Changes of Vertebral Bone Marrow and Paraspinal Muscle Composition Assessed Using MR-Based Proton Density Fat Fraction and T2* Maps in Patients with and without Osteoporosis. Diagnostics (Basel) 2022; 12:diagnostics12102467. [PMID: 36292156 PMCID: PMC9600908 DOI: 10.3390/diagnostics12102467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Proton-density fat fraction (PDFF) and T2* of the vertebrae, as well as the cross-sectional area (CSA) of the paraspinal musculature (PSM), have been suggested as biomarkers for bone fragility. The aim of this study was to longitudinally assess changes in PDFF, T2* and CSA of the PSM over 6 months in patients with and without osteoporosis. Methods: Opportunistic bone mineral density (BMD) measurements (BMD < 120 mg/cm3) were obtained from a CT acquired during the clinical routine work up in osteoporotic/osteopenic patients (n = 29, mean age 72.37 ± 10.12 years, 16 women). These patients were frequency-matched for age and sex to subjects with normal BMD values (n = 29). All study patients underwent 3T MR imaging at baseline and 6-month follow up, including spoiled gradient echo sequences for chemical shift encoding-based water-fat separation, from which T2* and PDFF values of the lumbar spine and the PSM were obtained. Moreover, the CSA of the PSM was assessed longitudinally. Changes in T2*, PDFF and CSA over 6 months were calculated for the vertebrae and PSM and associations with baseline BMD values were assessed. Results: The change in CSA of the PSM over 6 months was significantly lower in the osteoporotic/osteopenic group (−91.5 ± 311.7 mm2), compared to the non-osteoporotic group, in which the CSA increased (29.9 ± 164.0 mm2, p = 0.03). In a further analysis, patients with higher vertebral PDFF at baseline showed a significantly stronger increase in vertebral T2*, compared to those patients with lower vertebral PDFF at baseline (0.9 ± 1.6 ms vs. 0.0 ± 1.8 ms, p = 0.04). Moreover, patients with higher PSM PDFF at baseline showed a significantly stronger increase in vertebral T2*, compared to those patients with lower PSM PDFF at baseline (0.9 ± 2.0 ms vs. 0.0 ± 1.3 ms, p = 0.03). Conclusion: The PSM CSA decreased significantly longitudinally in patients with osteoporosis/osteopenia, compared to those without. Additionally, higher vertebral and PSM PDFF at baseline were associated with stronger changes in vertebral bone marrow T2*. Therefore, longitudinal PDFF and T2* mapping may be useful quantitative radiation-free tools for the assessment and prediction of muscle and bone health in patients with suspected osteoporosis/osteopenia.
Collapse
Affiliation(s)
- Florian Tilman Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Correspondence:
| | - Leander Glanz
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Christof Boehm
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Jonathan Stelter
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Felix Gerhard Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yannik Leonhardt
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Georg C. Feuerriegel
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Markus Graf
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Markus Wurm
- Department of Trauma Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Baum
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Rickmer F. Braren
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, DKFZ Heidelberg, 68120 Heidelberg, Germany
| | - Benedikt J. Schwaiger
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Marcus R. Makowski
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Dimitrios Karampinos
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Alexandra S. Gersing
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Neuroradiology, Ludwig-Maximilians-University, 80333 Munich, Germany
| |
Collapse
|
7
|
Differentiation of bone metastases from benign red marrow depositions of the spine: the role of fat-suppressed T2-weighted imaging compared to fat fraction map. Eur Radiol 2022; 32:6730-6738. [PMID: 35798881 DOI: 10.1007/s00330-022-08965-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/09/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To differentiate bone metastases (BMs) from benign red marrow depositions (BRMs) of the spine using quantitative parameters derived from fat-suppressed T2-weighted imaging (T2 FS) and fat fraction (FF) map METHODS: One hundred eleven lesions, divided into 62 BMs and 49 BRMs according to MR images and either bone scan or PET-CT, were assessed with T2 FS and FF map. Two radiologists independently measured quantitative parameters from the ROIs in the lesions, including fat-suppressed (FS) T2 ratio (ratio of lesion FS T2 signal intensity [SI] to normal marrow FS T2 SI), FF, and FF ratio (ratio of lesion FF to normal marrow FF). The mean values of these parameters were compared between the two groups. To evaluate the diagnostic utilities of individual (FS T2 ratio, FF, and FF ratio) and combined parameters, ROC curves were analyzed. For the ROC curves among the individual parameters and their combinations, AUCs were compared. RESULTS The FS T2 ratio of BMs was significantly higher than that of BRMs (2.638 vs. 1.155 [p < 0.001]). The FF and FF ratio of BMs were significantly lower than those of BRMs (FF, 3.554% vs. 20.038% [p < 0.001]; FF ratio, 0.072 vs. 0.364 [p < 0.001]). The ROC AUCs of individual and combined parameters ranged from 0.941 to 0.980. The AUCs of all individual parameters and their combinations did not demonstrate statistically significant differences. CONCLUSION The FS T2 ratio, FF, and FF ratio can be useful in differentiating BMs from BRMs with or without any combination of the parameters. KEY POINTS • Quantitative parameters derived from fat-suppressed T2-weighted imaging and fat fraction map could be used to differentiate bone metastases from benign red marrow depositions with or without any combination of the parameters. • Quantitative parameters of fat-suppressed T2-weighted imaging provide diagnostic performance similar to those of fat fraction map in differentiating bone metastases from benign red marrow depositions.
Collapse
|
8
|
Kronthaler S, Diefenbach MN, Boehm C, Zamskiy M, Makowski MR, Baum T, Sollmann N, Karampinos DC. On quantification errors of R 2 * $$ {R}_2^{\ast } $$ and proton density fat fraction mapping in trabecularized bone marrow in the static dephasing regime. Magn Reson Med 2022; 88:1126-1139. [PMID: 35481686 DOI: 10.1002/mrm.29279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To study the effect of field inhomogeneity distributions in trabecularized bone regions on the gradient echo (GRE) signal with short TEs and to characterize quantification errors on R 2 * $$ {R}_2^{\ast } $$ and proton density fat fraction (PDFF) maps when using a water-fat model with an exponential R 2 * $$ {R}_2^{\ast } $$ decay model at short TEs. METHODS Field distortions were simulated based on a trabecular bone micro CT dataset. Simulations were performed for different bone volume fractions (BV/TV) and for different bone-fat composition values. A multi-TE UTE acquisition was developed to acquire multiple UTEs with random order to minimize eddy currents. The acquisition was validated in phantoms and applied in vivo in a volunteer's ankle and knee. Chemical shift encoded MRI (CSE-MRI) based on a Cartesian multi-TE GRE scan was acquired in the spine of patients with metastatic bone disease. RESULTS Simulations showed that signal deviations from the exponential signal decay at short TEs were more prominent for a higher BV/TV. UTE multi-TE measurements reproduced in vivo the simulation-based predicted behavior. In regions with high BV/TV, the presence of field inhomogeneities induced an R 2 * $$ {R}_2^{\ast } $$ underestimation in trabecularized bone marrow when using CSE-MRI at 3T with a short TE. CONCLUSION R 2 * $$ {R}_2^{\ast } $$ can be underestimated when using short TEs (<2 ms at 3 T) and a water-fat model with an exponential R 2 * $$ {R}_2^{\ast } $$ decay model in multi-echo GRE acquisitions of trabecularized bone marrow.
Collapse
Affiliation(s)
- Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mark Zamskiy
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Cai Z, Tao Q, Scotti A, Yi P, Feng Y, Cai K. Early detection of increased marrow adiposity with age in rats using Z-spectral MRI at ultra-high field (7 T). NMR IN BIOMEDICINE 2022; 35:e4633. [PMID: 34658086 DOI: 10.1002/nbm.4633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nowadays, the drive towards high-field MRI is fueled by the pursuit of higher signal-to-noise ratio, spatial resolution, and imaging speed. However, high field strength is associated with field inhomogeneity, acceleration of T2 * decay, and increased chemical shift, which may pose challenges to conventional MRI for fat quantification in complex tissues such as bone marrow. With proton MRI spectroscopy (1 H-MRS), on the other hand, it is difficult to produce high resolution. As a novel alternative fat quantification method, high-resolution Z-spectral MRI (ZS-MRI) can achieve fat quantification by acquiring direct saturated images of both fat and water under the same TE , which may be less affected by T2 * decay and field inhomogeneity. PURPOSE To demonstrate ZS-MRI for marrow adipose tissue (MAT) quantification in rat's lumbar spine and the early detection of MAT changes with age. METHODS The accuracy of ZS-MRI for fat quantification at ultra-high-field MRI (7 T) was verified with MRS and conventional Dixon MRI in water-oil mixed phantoms with varying fat fraction (FF). Dixon MRI data were processed with iterative decomposition of water and fat with echo asymmetry and least-squares estimation. ZS-MRI was then used to longitudinally monitor the adiposity in the lumbar spine of young healthy rats at 13, 17, and 21 weeks to detect the early changes of FF with age in MAT. Hematoxylin-eosin staining of lumbar spines from separated rat groups was performed for verification. RESULTS In ex vivo phantom experiments, both Dixon MRI and ZS-MRI were well correlated with 1 H-MRS for the quantification of FF at 7 T (R > 0.99). Compared with Dixon MRI, ZS-MRI showed reduced image artifacts due to field inhomogeneity and presented better agreement with 1 H-MRS for the early detection of increased MAT due to age at 7 T (ZS-MRI R = 0.78 versus Dixon MRI R = 0.34). The increased MAT FF due to age was confirmed by histology. CONCLUSION ZS-MRI proves itself as an alternative fat quantification method for bone marrow in rats at 7 T.
Collapse
Affiliation(s)
- Zimeng Cai
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Tao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Alessandro Scotti
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Kejia Cai
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Wan T, Zhu Y, Han Q, Liu L. Changes in Vertebral Marrow Fat Fraction Using 3D Fat Analysis & Calculation Technique Imaging Sequence in Aromatase Inhibitor-Treated Breast Cancer Women. Front Endocrinol (Lausanne) 2022; 13:931231. [PMID: 35813643 PMCID: PMC9259863 DOI: 10.3389/fendo.2022.931231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Aromatase inhibitor (AI) is a cornerstone drug for postmenopausal women with estrogen receptor-positive early-stage breast cancer. Fat-bone interactions within the bone marrow milieu are growing areas of scientific interest. Although AI treatment could lead to deterioration of the skeleton, the association between AI medication and subsequent marrow adiposity remains elusive. A total of 40 postmenopausal, early-staged, and hormone receptor-positive breast cancer patients who underwent treatment with adjuvant AIs and 40 matched controls were included. Marrow proton density fat fraction (PDFF) at the L1-L4 vertebral bodies using 3D Fat Analysis & Calculation Technique imaging (FACT) sequence at 3.0T, bone mineral density (BMD) by dual-energy X-ray absorptiometry, and serum bone turnover biomarkers were determined at baseline and at 6 and 12 months. We found that, in comparison to baseline, an increase of type I collagen cross-linked telopeptide was detected at 12 months (P <0.05). From baseline to 12 months, the PDFF measured using FACT was greatly increased. At 12 months, the median percent change of PDFF (4.9% vs. 0.9%, P <0.05) was significantly different between the AI treatments and controls. The same trend was observed for the marrow PDFF at 6 months relative to the respective values at baseline. Although BMD values were significantly reduced after 12 months in AI-treated women, changes in BMD vs. baseline condition were not significantly different between the AI-treated and control groups [Δ BMD -1.6% to -1.8% vs. -0.3% to -0.6%, respectively, P > 0.05]. In the AI-treated group, Δ PDFF was associated with Δ BMD at the lumbar spine (r = -0.585, P < 0.001), but not in the controls. Taken together, over a 12-month period, spinal marrow fat content assessed with FACT sequence significantly increased in postmenopausal women with hormone-receptor-positive breast cancer receiving AI treatment.
Collapse
Affiliation(s)
- Taihu Wan
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuhang Zhu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qinghe Han
- Radiology of Department, The Second Hospital of Jilin University, Changchun, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Lin Liu,
| |
Collapse
|
11
|
Greve T, Rayudu NM, Dieckmeyer M, Boehm C, Ruschke S, Burian E, Kloth C, Kirschke JS, Karampinos DC, Baum T, Subburaj K, Sollmann N. Finite Element Analysis of Osteoporotic and Osteoblastic Vertebrae and Its Association With the Proton Density Fat Fraction From Chemical Shift Encoding-Based Water-Fat MRI - A Preliminary Study. Front Endocrinol (Lausanne) 2022; 13:900356. [PMID: 35898459 PMCID: PMC9313539 DOI: 10.3389/fendo.2022.900356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Osteoporosis is prevalent and entails alterations of vertebral bone and marrow. Yet, the spine is also a common site of metastatic spread. Parameters that can be non-invasively measured and could capture these alterations are the volumetric bone mineral density (vBMD), proton density fat fraction (PDFF) as an estimate of relative fat content, and failure displacement and load from finite element analysis (FEA) for assessment of bone strength. This study's purpose was to investigate if osteoporotic and osteoblastic metastatic changes in lumbar vertebrae can be differentiated based on the abovementioned parameters (vBMD, PDFF, and measures from FEA), and how these parameters correlate with each other. MATERIALS AND METHODS Seven patients (3 females, median age: 77.5 years) who received 3-Tesla magnetic resonance imaging (MRI) and multi-detector computed tomography (CT) of the lumbar spine and were diagnosed with either osteoporosis (4 patients) or diffuse osteoblastic metastases (3 patients) were included. Chemical shift encoding-based water-fat MRI (CSE-MRI) was used to extract the PDFF, while vBMD was extracted after automated vertebral body segmentation using CT. Segmentation masks were used for FEA-based failure displacement and failure load calculations. Failure displacement, failure load, and PDFF were compared between patients with osteoporotic vertebrae versus patients with osteoblastic metastases, considering non-fractured vertebrae (L1-L4). Associations between those parameters were assessed using Spearman correlation. RESULTS Median vBMD was 59.3 mg/cm3 in osteoporotic patients. Median PDFF was lower in the metastatic compared to the osteoporotic patients (11.9% vs. 43.8%, p=0.032). Median failure displacement and failure load were significantly higher in metastatic compared to osteoporotic patients (0.874 mm vs. 0.348 mm, 29,589 N vs. 3,095 N, p=0.034 each). A strong correlation was noted between PDFF and failure displacement (rho -0.679, p=0.094). A very strong correlation was noted between PDFF and failure load (rho -0.893, p=0.007). CONCLUSION PDFF as well as failure displacement and load allowed to distinguish osteoporotic from diffuse osteoblastic vertebrae. Our findings further show strong associations between PDFF and failure displacement and load, thus may indicate complimentary pathophysiological associations derived from two non-invasive techniques (CSE-MRI and CT) that inherently measure different properties of vertebral bone and marrow.
Collapse
Affiliation(s)
- Tobias Greve
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Tobias Greve,
| | - Nithin Manohar Rayudu
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore, Singapore
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore, Singapore
- Sobey School of Business, Saint Mary’s University, Halifax, NS, Canada
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Schmeel FC, Lakghomi A, Lehnen NC, Haase R, Banat M, Wach J, Handke N, Vatter H, Radbruch A, Attenberger U, Luetkens JA. Proton Density Fat Fraction Spine MRI for Differentiation of Erosive Vertebral Endplate Degeneration and Infectious Spondylitis. Diagnostics (Basel) 2021; 12:diagnostics12010078. [PMID: 35054245 PMCID: PMC8774963 DOI: 10.3390/diagnostics12010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
Vertebral Modic type 1 (MT1) degeneration may mimic infectious disease on conventional spine magnetic resonance imaging (MRI), potentially leading to additional costly and invasive investigations. This study evaluated the diagnostic performance of the proton density fat fraction (PDFF) for distinguishing MT1 degenerative endplate changes from infectious spondylitis. A total of 31 and 22 patients with equivocal diagnosis of MT1 degeneration and infectious spondylitis, respectively, were retrospectively enrolled in this IRB-approved retrospective study and examined with a chemical-shift encoding (CSE)-based water-fat 3D six-echo modified Dixon sequence in addition to routine clinical spine MRI. Diagnostic reference standard was established according to histopathology or clinical and imaging follow-up. Intravertebral PDFF [%] and PDFFratio (i.e., vertebral endplate PDFF/normal vertebrae PDFF) were calculated voxel-wise within the single most prominent edematous bone marrow lesion per patient and examined for differences between MT1 degeneration and infectious spondylitis. Mean PDFF and PDFFratio of infectious spondylitis were significantly lower compared to MT1 degenerative changes (mean PDFF, 4.28 ± 3.12% vs. 35.29 ± 17.15% [p < 0.001]; PDFFratio, 0.09 ± 0.06 vs. 0.67 ± 0.37 [p < 0.001]). The areas under the curve (AUC) and diagnostic accuracies were 0.977 (p < 0.001) and 98.1% (cut-off at 12.9%) for PDFF and 0.971 (p < 0.001) and 98.1% (cut-off at 0.27) for PDFFratio. Our data suggest that quantitative evaluation of vertebral PDFF can provide a high diagnostic accuracy for differentiating erosive MT1 endplate changes from infectious spondylitis.
Collapse
Affiliation(s)
- Frederic Carsten Schmeel
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (A.L.); (N.C.L.); (R.H.); (A.R.)
- Correspondence: ; Tel.: +49-0228-28716507; Fax: +49-0228-28714321
| | - Asadeh Lakghomi
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (A.L.); (N.C.L.); (R.H.); (A.R.)
| | - Nils Christian Lehnen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (A.L.); (N.C.L.); (R.H.); (A.R.)
| | - Robert Haase
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (A.L.); (N.C.L.); (R.H.); (A.R.)
| | - Mohammed Banat
- Department of Neurosurgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (M.B.); (J.W.); (H.V.)
| | - Johannes Wach
- Department of Neurosurgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (M.B.); (J.W.); (H.V.)
| | - Nikolaus Handke
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (N.H.); (U.A.); (J.A.L.)
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (M.B.); (J.W.); (H.V.)
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (A.L.); (N.C.L.); (R.H.); (A.R.)
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (N.H.); (U.A.); (J.A.L.)
| | - Julian Alexander Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (N.H.); (U.A.); (J.A.L.)
| |
Collapse
|
13
|
Pei XJ, Lian YF, Yan YC, Jiang T, Liu AJ, Shi QL, Pan ZY. Fat fraction quantification of lumbar spine: comparison of T1-weighted two-point Dixon and single-voxel magnetic resonance spectroscopy in diagnosis of multiple myeloma. ACTA ACUST UNITED AC 2021; 26:492-497. [PMID: 32755881 DOI: 10.5152/dir.2020.19401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE We aimed to investigate the value of T1-weighted two-point Dixon technique and single-voxel magnetic resonance spectroscopy (MRS) in diagnosis of multiple myeloma (MM) through quantifying fat content of vertebral marrow. METHODS A total of 30 MM patients and 30 healthy volunteers underwent T1-weighted two-point Dixon and single-voxel MRS imaging. The fat fraction map (FFM) was reconstructed from the Dixon images using the equation FFM = Lip/In, where Lip represents fat maps and In represents in-phase images. The fat fraction (FF) of MRS was calculated by using the integral area of Lip peak divided by the sum of integral area of Lip peak and water peak. RESULTS FF values measured by the Dixon technique and MRS were significantly decreased in MM patients (45.99%±3.39% and 47.63%±4.38%) compared with healthy controls (64.43%±0.96% and 76.22%±1.91%) (P < 0.001 with both methods). FF values measured by Dixon technique were significantly positively correlated to those measured by MRS in MM (r = 0.837, P < 0.001) and healthy control group (r = 0.735, P < 0.001), respectively. There was no significant difference between area under the curve (AUC) obtained by the Dixon technique (0.878±0.047; range, 0.785 to 0.971; optimal cutoff, 56.35 for healthy controls vs. MM) and MRS (0.883±0.047; range, 0.791 to 0.974; optimal cutoff, 61.00 for healthy controls vs. MM). The ability of Dixon technique to differentiate MM group from healthy controls was equivalent to single-voxel MRS. CONCLUSION Regarding detection of fat contents in vertebral bone, T1-weighted two-point Dixon technique exhibited equivalent performance to single-voxel MRS in the diagnosis of multiple myeloma. Moreover, two-point Dixon is a more convenient and stable technique for assessing bone marrow changes in MM patients than single-voxel MRS.
Collapse
Affiliation(s)
- Xiao-Jiao Pei
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu-Fei Lian
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu-Chang Yan
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ai-Jun Liu
- Department of Hematology,Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qing-Lei Shi
- Scientific Clinical Specialist, Siemens Healthcare Ltd., Beijing, China
| | - Zhen-Yu Pan
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Leonhardt Y, Gassert FT, Feuerriegel G, Gassert FG, Kronthaler S, Boehm C, Kufner A, Ruschke S, Baum T, Schwaiger BJ, Makowski MR, Karampinos DC, Gersing AS. Vertebral bone marrow T2* mapping using chemical shift encoding-based water-fat separation in the quantitative analysis of lumbar osteoporosis and osteoporotic fractures. Quant Imaging Med Surg 2021; 11:3715-3725. [PMID: 34341744 PMCID: PMC8245952 DOI: 10.21037/qims-20-1373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/07/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chemical shift encoding-based water-fat separation techniques have been used for fat quantification [proton density fat fraction (PDFF)], but they also enable the assessment of bone marrow T2*, which has previously been reported to be a potential biomarker for osteoporosis and may give insight into the cause of vertebral fractures (i.e., osteoporotic vs. traumatic) and the microstructure of the bone when applied to vertebral bone marrow. METHODS The 32 patients (78.1% with low-energy osteopenic/osteoporotic fractures, mean age 72.3±9.8 years, 76% women; 21.9% with high-energy traumatic fractures, 47.3±12.8 years, no women) were frequency-matched for age and sex to subjects without vertebral fractures (n=20). All study patients underwent 3T-MRI of the lumbar spine including sagittally acquired spoiled gradient echo sequences for chemical shift encoding-based water-fat separation, from which T2* values were obtained. Volumetric trabecular bone mineral density (BMD) and trabecular bone parameters describing the three-dimensional structural integrity of trabecular bone were derived from quantitative CT. Associations between T2* measurements, fracture status and trabecular bone parameters were assessed using multivariable linear regression models. RESULTS Mean T2* values of non fractured vertebrae in all patients showed a significant correlation with BMD (r=-0.65, P<0.001), trabecular number (TbN) (r=-0.56, P<0.001) and trabecular spacing (TbSp) (r=0.61, P<0.001); patients with low-energy osteoporotic vertebral fractures showed significantly higher mean T2* values than those with traumatic fractures (13.6±4.3 vs. 8.4±2.2 ms, P=0.01) as well as a significantly lower TbN (0.69±0.08 vs. 0.93±0.03 mm-1, P<0.01) and a significantly larger trabecular spacing (1.06±0.16 vs. 0.56±0.08 mm, P<0.01). Mean T2* values of osteoporotic patients with and without vertebral fracture showed no significant difference (13.5±3.4 vs. 15.6±3.5 ms, P=0.40). When comparing the mean T2* of the fractured vertebrae, no significant difference could be detected between low-energy osteoporotic fractures and high-energy traumatic fractures (12.6±5.4 vs. 8.1±2.4 ms, P=0.10). CONCLUSIONS T2* mapping of vertebral bone marrow using using chemical shift encoding-based water-fat separation allows for assessing osteoporosis as well as the trabecular microstructure and enables a radiation-free differentiation between patients with low-energy osteoporotic and high-energy traumatic vertebral fractures, suggesting its potential as a biomarker for bone fragility.
Collapse
Affiliation(s)
- Yannik Leonhardt
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian T. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Feuerriegel
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix G. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophia Kronthaler
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Kufner
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benedikt J. Schwaiger
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus R. Makowski
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra S. Gersing
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
15
|
Abstract
Research examining bone marrow adipose tissue (BMAT) has rapidly expanded during the last two decades, leading to advances in knowledge on the role of BMAT in the pathogenesis of bone loss and endocrine disorders. Clinical imaging has played a crucial role for the in vivo assessment of BMAT, allowing non-invasive quantification and evaluation of BMAT composition. In the present work, we review different imaging methods for assessing properties of BMAT. Our aim is to review conventional magnetic resonance imaging (MRI), water-fat imaging, and single-voxel proton magnetic resonance spectroscopy (1H-MRS), as well as computed tomography (CT)-based techniques, including single energy and dual energy CT. We will also discuss the clinical applications of these methods in type 2 diabetes mellitus, obesity and anorexia nervosa.
Collapse
Affiliation(s)
- Mohamed Jarraya
- Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Miriam A Bredella
- Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Li G, Xu Z, Li X, Zuo X, Chang S, Wu D, Dai Y. Adding marrow R2∗ to proton density fat fraction improves the discrimination of osteopenia and osteoporosis in postmenopausal women assessed with 3D FACT sequence. Menopause 2021; 28:800-806. [PMID: 34033604 DOI: 10.1097/gme.0000000000001799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the role of three-dimensional Fat Analysis & Calculation Technique sequence in improving the diagnostic accuracy for the detection of osteopenia and osteoporosis by simultaneous quantification of proton density fat fraction (PDFF) and fat-corrected R2∗. METHODS Fat Analysis & Calculation Technique imaging of lumbar spine was obtained in 99 postmenopausal women including 52 normal bone mass, 29 osteopenia, and 18 osteoporosis. The diagnostic performance of PDFF and R2∗ in the differentiation of different bone-density groups was evaluated with the receiver operating characteristic curve. RESULTS The reproducibility of PDFF and R2∗ measures was satisfactory with the root mean square coefficient of variation, 2.16% and 2.70%, respectively. The intra- and interobserver agreements for the PDFF and R2∗ were excellent with the intraclass correlation coefficient > 0.9 for all. There were significant differences in PDFF and R2∗ among the three groups (P < 0.05). Bone density had a moderate inverse correlation with PDFF (r = -0.659) but a positive association with R2∗ (r = 0.508, P < 0.001). Adjusted for age, years since menopause and body mass index, odds ratios (95% confidence interval) for osteopenia and osteoporosis per standard deviation higher marrow PDFF and R2∗ were 2.9 (1.4-5.8) and 0.4 (0.2-0.8), respectively. The areas under the curve were 0.821 for PDFF, 0.784 for R2∗, and 0.922 for both combined for the detection of osteoporosis (P < 0.05). Similar results were obtained in distinguishing osteopenia from healthy controls. CONCLUSIONS Simultaneous estimation of marrow R2∗ and PDFF improves the discrimination of osteopenia and osteoporosis in comparison with the PDFF or R2∗ alone.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xu
- Changshou Community Health Center, Shanghai, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyong Zuo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai, China
| | - Yongming Dai
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| |
Collapse
|
17
|
Schmeel FC, Enkirch SJ, Luetkens JA, Faron A, Lehnen N, Sprinkart AM, Schmeel LC, Radbruch A, Attenberger U, Kukuk GM, Mürtz P. Diagnostic Accuracy of Quantitative Imaging Biomarkers in the Differentiation of Benign and Malignant Vertebral Lesions : Combination of Diffusion-Weighted and Proton Density Fat Fraction Spine MRI. Clin Neuroradiol 2021; 31:1059-1070. [PMID: 33787957 PMCID: PMC8648653 DOI: 10.1007/s00062-021-01009-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Abstract
Purpose To compare and combine the diagnostic performance of the apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) and proton density fat fraction (PDFF) derived from chemical-shift encoding (CSE)-based water-fat magnetic resonance imaging (MRI) for distinguishing benign and malignant vertebral bone marrow lesions (VBML). Methods A total of 55 consecutive patients with 53 benign (traumatic, inflammatory and primary) and 36 malignant (metastatic and hematologic) previously untreated VBMLs were prospectively enrolled in this IRB-approved study and underwent sagittal DWI (single-shot spin-echo echo-planar with multi-slice short TI inversion recovery fat suppression) and CSE-based MRI (gradient-echo 6‑point modified Dixon) in addition to routine clinical spine MRI at 1.5 T or 3.0 T. Diagnostic reference standard was established according to histopathology or imaging follow-up. The ADC = ADC (0, 800) and PDFF = fat / (water + fat) were calculated voxel-wise and examined for differences between benign and malignant lesions. Results The ADC and PDFF values of malignant lesions were significantly lower compared to benign lesions (mean ADC 861 × 10−6 mm2/s vs. 1323 × 10−6 mm2/s, p < 0.001; mean PDFF 3.1% vs. 28.2%, p < 0.001). The areas under the curve (AUC) and diagnostic accuracies were 0.847 (p < 0.001) and 85.4% (cut-off at 1084.4 × 10−6 mm2/s) for ADC and 0.940 (p < 0.001) and 89.9% for PDFF (cut-off at 7.8%), respectively. The combined use of ADC and PDFF improved the diagnostic accuracy to 96.6% (malignancy if ADC ≤ 1118.2 × 10−6 mm2/s and PDFF ≤ 20.0%, otherwise benign). Conclusion Quantitative evaluation of both ADC and PDFF was useful in differentiating benign VBMLs from malignancy. The combination of ADC and PDFF improved the diagnostic performance and yielded high diagnostic accuracy for the differentiation of benign and malignant VBMLs.
Collapse
Affiliation(s)
- Frederic Carsten Schmeel
- Department of Neuroradiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127, Bonn, Germany. .,Research Group Clinical Neuroimaging, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Simon Jonas Enkirch
- Department of Neuroradiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian Alexander Luetkens
- Department of Radiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Anton Faron
- Department of Radiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Nils Lehnen
- Department of Neuroradiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Research Group Clinical Neuroimaging, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alois Martin Sprinkart
- Department of Radiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Leonard Christopher Schmeel
- Department of Radiotherapy and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Research Group Clinical Neuroimaging, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ulrike Attenberger
- Department of Radiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Guido Matthias Kukuk
- Department of Radiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Department of Radiology, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Petra Mürtz
- Department of Radiology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
18
|
Kuetting D, Luetkens J, Fimmers R, Sprinkart AM, Attenberger U, Pieper CC. MRI Assessment of Chylous and Nonchylous Effusions: Use of Multipoint Dixon Fat Quantification. Radiology 2020; 296:698-705. [PMID: 32662762 DOI: 10.1148/radiol.2020200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Diagnosis of chylous effusions normally requires invasive paracentesis. Purpose To assess whether MRI with multipoint Dixon fat quantification allows for noninvasive differentiation of chylous and nonchylous ascites and pleural effusions. Materials and Methods Phantom, ex vivo, and in vivo MRI examinations were performed by using a commercially available multipoint Dixon pulse sequence with a 1.5-T MRI system. Fat fraction values were measured with a region of interest-based approach on reconstructed maps. For phantom evaluation, eight titrated fatty fluid solutions (nonhuman samples) with varying triglyceride content (145-19 000 mg/dL [1.64-214.7 mmol/L]) were examined. For ex vivo evaluation, 15 chylous and five nonchylous study participant fluid samples were examined. In a prospective study performed from June 2016 to February 2018, 29 study participants with known chylous (n = 17) and nonchylous (n = 12) effusions were evaluated with MRI. All clinical samples underwent laboratory testing for triglyceride level, total protein level, white blood cells, and red blood cells. Laboratory values were correlated with fat fraction values; the optimal fat fraction threshold was determined to differentiate chylous and nonchylous fluids. Results Phantom analysis showed that fat fraction values correlated with triglyceride content (r = 0.99, P < .001). In ex vivo studies, multipoint Dixon-derived fat fraction was higher in chylous versus nonchylous fluids (mean, 2.5% ± 1.2 [standard deviation] vs 0.8% ± 0.2; P = .001). Fat fraction was correlated with triglyceride content (r = 0.96, P < .001). For in vivo studies, fat fraction was greater for chylous versus nonchylous fluids (mean, 6.2% ± 4.3 vs 0.6% ± 0.6; P < .001). In vivo fat fraction was correlated with triglyceride content (r = 0.96, P < .001). Use of a fat fraction cutoff value greater than 1.8% yielded a sensitivity of 14 of 17 (82% [95% confidence interval (CI): 57%, 97%]) and a specificity of 12 of 12 (100% [95% CI: 74%, 100%]) for differentiation of chylous and nonchylous effusions. Conclusion MRI can help identify chylous versus nonchylous ascites and pleural effusions through use of multipoint Dixon fat quantification. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Daniel Kuetting
- From the Department of Radiology (D.K., J.L., A.M.S., U.A., C.C.P.) and Department of Medical Biometry, Informatics, and Epidemiology (R.F.), University of Bonn, Venusberg Campus 1, 53105 Bonn, Germany
| | - Julian Luetkens
- From the Department of Radiology (D.K., J.L., A.M.S., U.A., C.C.P.) and Department of Medical Biometry, Informatics, and Epidemiology (R.F.), University of Bonn, Venusberg Campus 1, 53105 Bonn, Germany
| | - Rolf Fimmers
- From the Department of Radiology (D.K., J.L., A.M.S., U.A., C.C.P.) and Department of Medical Biometry, Informatics, and Epidemiology (R.F.), University of Bonn, Venusberg Campus 1, 53105 Bonn, Germany
| | - Alois M Sprinkart
- From the Department of Radiology (D.K., J.L., A.M.S., U.A., C.C.P.) and Department of Medical Biometry, Informatics, and Epidemiology (R.F.), University of Bonn, Venusberg Campus 1, 53105 Bonn, Germany
| | - Ulrike Attenberger
- From the Department of Radiology (D.K., J.L., A.M.S., U.A., C.C.P.) and Department of Medical Biometry, Informatics, and Epidemiology (R.F.), University of Bonn, Venusberg Campus 1, 53105 Bonn, Germany
| | - Claus C Pieper
- From the Department of Radiology (D.K., J.L., A.M.S., U.A., C.C.P.) and Department of Medical Biometry, Informatics, and Epidemiology (R.F.), University of Bonn, Venusberg Campus 1, 53105 Bonn, Germany
| |
Collapse
|
19
|
Sollmann N, Löffler MT, Kronthaler S, Böhm C, Dieckmeyer M, Ruschke S, Kirschke JS, Carballido-Gamio J, Karampinos DC, Krug R, Baum T. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J Magn Reson Imaging 2020; 54:12-35. [PMID: 32584496 DOI: 10.1002/jmri.27260] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease with a high prevalence worldwide, characterized by low bone mass and microarchitectural deterioration, predisposing an individual to fragility fractures. Dual-energy X-ray absorptiometry (DXA) has been the clinical reference standard for diagnosing osteoporosis and for assessing fracture risk for decades. However, other imaging modalities are of increasing importance to investigate the etiology, treatment, and fracture risk. The purpose of this work is to review the available literature on quantitative magnetic resonance imaging (MRI) methods and related findings in osteoporosis at the spine and proximal femur as the clinically most important fracture sites. Trabecular bone microstructure analysis at the proximal femur based on high-resolution MRI allows for a better prediction of osteoporotic fracture risk than DXA-based bone mineral density (BMD) alone. In the 1990s, T2 * mapping was shown to correlate with the density and orientation of the trabecular bone. Recently, quantitative susceptibility mapping (QSM), which overcomes some of the limitations of T2 * mapping, has been applied for trabecular bone quantifications at the spine, whereas ultrashort echo time (UTE) imaging provides valuable surrogate markers of cortical bone quantity and quality. Magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) enable the quantitative assessment of the nonmineralized bone compartment through extraction of the bone marrow fat fraction (BMFF). Furthermore, CSE-MRI allows for the differentiation of osteoporotic vs. pathologic fractures, which is of high clinical relevance. Lastly, advanced postprocessing and image analysis tools, particularly considering statistical parametric mapping and region-specific BMFF distributions, have high potential to further improve MRI-based fracture risk assessments at the spine and hip. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Böhm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julio Carballido-Gamio
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
20
|
Salt-and-Pepper Noise Sign on Fat-Fraction Maps by Chemical-Shift–Encoded MRI: A Useful Sign to Differentiate Bone Islands From Osteoblastic Metastases—A Preliminary Study. AJR Am J Roentgenol 2020; 214:1139-1145. [DOI: 10.2214/ajr.19.22177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Dieckmeyer M, Junker D, Ruschke S, Mookiah MRK, Subburaj K, Burian E, Sollmann N, Kirschke JS, Karampinos DC, Baum T. Vertebral Bone Marrow Heterogeneity Using Texture Analysis of Chemical Shift Encoding-Based MRI: Variations in Age, Sex, and Anatomical Location. Front Endocrinol (Lausanne) 2020; 11:555931. [PMID: 33178134 PMCID: PMC7593641 DOI: 10.3389/fendo.2020.555931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Objective: Vertebral bone marrow composition has been extensively studied in the past and shown potential as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. However, beyond quantitative assessment of bone marrow fat, little is known about its heterogeneity. Therefore, we investigated bone marrow heterogeneity of the lumbar spine using texture analysis of chemical-shift-encoding (CSE-MRI) based proton density fat fraction (PDFF) maps and its association with age, sex, and anatomical location. Methods: One hundred and fifty-six healthy subjects were scanned (age range: 20-29 years, 12/30 males/females; 30-39, 15/9; 40-49, 5/13; 50-59, 9/27; ≥60: 9/27). A sagittal 8-echo 3D spoiled-gradient-echo sequence at 3T was used for CSE-MRI-based water-fat separation at the lumbar spine. Manual segmentation of vertebral bodies L1-4 was performed. Mean PDFF and texture features (global: variance, skewness, kurtosis; second-order: energy, entropy, contrast, homogeneity, correlation, sum-average, variance, dissimilarity) were extracted at each vertebral level and compared between age groups, sex, and anatomical location. Results: Mean PDFF significantly increased from L1 to L4 (35.89 ± 11.66 to 39.52 ± 11.18%, p = 0.017) and with age (females: 27.19 ± 6.01 to 49.34 ± 7.75%, p < 0.001; males: 31.97 ± 7.96 to 41.83 ± 7.03 %, p = 0.025), but showed no difference between females and males after adjustment for age and BMI (37.13 ± 11.63 vs. 37.17 ± 8.67%; p = 0.199). Bone marrow heterogeneity assessed by texture analysis, in contrast to PDFF, was significantly higher in females compared to males after adjustment for age and BMI (namely contrast and dissimilarity; p < 0.031), demonstrated age-dependent differences, in particular in females (p < 0.05), but showed no statistically significant dependence on vertebral location. Conclusion: Vertebral bone marrow heterogeneity, assessed by texture analysis of PDFF maps, is primarily dependent on sex and age but not on anatomical location. Future studies are needed to investigate bone marrow heterogeneity with regard to aging and disease.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Michael Dieckmeyer
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Muthu Rama Krishnan Mookiah
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Karupppasamy Subburaj
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Differentiation of Schmorl Nodes From Bone Metastases of the Spine: Use of Apparent Diffusion Coefficient Derived From DWI and Fat Fraction Derived From a Dixon Sequence. AJR Am J Roentgenol 2019; 213:W228-W235. [DOI: 10.2214/ajr.18.21003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Fatty infiltration of paraspinal muscles is associated with bone mineral density of the lumbar spine. Arch Osteoporos 2019; 14:99. [PMID: 31617017 DOI: 10.1007/s11657-019-0639-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/31/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED A total of 88 subjects were enrolled to investigate the relationship between paraspinal muscle fatty infiltration and lumbar bone mineral density (BMD) using chemical shift encoding-based water-fat MRI and quantitative computed tomography (QCT), respectively. A moderate inverse correlation between paraspinal muscle proton density fat fraction and lumbar QCT-BMD was found with age, sex, and BMI controlled. PURPOSE To investigate the relationship between paraspinal muscle fatty infiltration and lumbar bone mineral density (BMD). METHODS A total of 88 subjects were enrolled in this study (52 females, 36 males; age, 46.6 ± 14.2 years old; BMI, 23.2 ± 3.49 kg/m2). Proton density fat fractions (PDFF) of paraspinal muscles (erector spinae, multifidus, and psoas) were measured at L2/3, L3/4, and L4/5 levels using chemical shift encoding-based water-fat MRI. Quantitative computed tomography (QCT) was used to assess BMD of L1, L2, and L3. The differences in paraspinal muscle PDFF among subjects with normal bone density, osteopenia, and osteoporosis were tested using one-way ANOVA. The relationship between paraspinal muscle PDFF and QCT-BMD was analyzed using linear regression with age, sex, and BMI variables. RESULTS PDFF of the erector spinae, multifidus, and psoas of subjects with normal bone density were all significantly less than those with osteopenia and those with osteoporosis (all p < 0.001). There was an inverse correlation between paraspinal muscle PDFF and BMD after controlling for age, sex, and BMI (standardized beta coefficient, - 0.21~- 0.29; all p < 0.05). CONCLUSIONS Paraspinal muscle fatty infiltration increased while lumbar BMD decreased after adjusting for age, sex, and BMI. Paraspinal muscles and vertebrae are interacting tissues. Paraspinal muscle fatty infiltration may be a marker of low lumbar BMD. Chemical shift imaging is an efficient and fast quantitative method and can be easily added to the clinical protocol to measure paraspinal muscle PDFF when the patient underwent the routine lumbar MRI with low-back pain.
Collapse
|
24
|
Schmeel FC, Vomweg T, Träber F, Gerhards A, Enkirch SJ, Faron A, Sprinkart AM, Schmeel LC, Luetkens JA, Thomas D, Kukuk GM. Proton density fat fraction MRI of vertebral bone marrow: Accuracy, repeatability, and reproducibility among readers, field strengths, and imaging platforms. J Magn Reson Imaging 2019; 50:1762-1772. [PMID: 30980694 DOI: 10.1002/jmri.26748] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chemical shift-encoding based water-fat MRI is an emerging method to noninvasively assess proton density fat fraction (PDFF), a promising quantitative imaging biomarker for estimating tissue fat concentration. However, in vivo validation of PDFF is still lacking for bone marrow applications. PURPOSE To determine the accuracy and precision of MRI-determined vertebral bone marrow PDFF among different readers and across different field strengths and imager manufacturers. STUDY TYPE Repeatability/reproducibility. SUBJECTS Twenty-four adult volunteers underwent lumbar spine MRI with one 1.5T and two different 3.0T MR scanners from two vendors on the same day. FIELD STRENGTH/SEQUENCE 1.5T and 3.0T/3D spoiled-gradient echo multipoint Dixon sequences. ASSESSMENT Two independent readers measured intravertebral PDFF for the three most central slices of the L1-5 vertebral bodies. Single-voxel MR spectroscopy (MRS)-determined PDFF served as the reference standard for PDFF estimation. STATISTICAL TESTS Accuracy and bias were assessed by Pearson correlation, linear regression analysis, and Bland-Altman plots. Repeatability and reproducibility were evaluated by Wilcoxon signed rank test, Friedman test, and coefficients of variation. Intraclass correlation coefficients were used to validate intra- and interreader as well as intraimager agreements. RESULTS MRI-based PDFF estimates of lumbar bone marrow were highly correlated (r2 = 0.899) and accurate (mean bias, -0.6%) against the MRS-determined PDFF reference standard. PDFF showed high linearity (r2 = 0.972-0.978) and small mean bias (0.6-1.5%) with 95% limits of agreement within ±3.4% across field strengths, imaging platforms, and readers. Repeatability and reproducibility of PDFF were high, with the mean overall coefficient of variation being 0.86% and 2.77%, respectively. The overall intraclass correlation coefficient was 0.986 as a measure for an excellent interreader agreement. DATA CONCLUSION MRI-based quantification of vertebral bone marrow PDFF is highly accurate, repeatable, and reproducible among readers, field strengths, and MRI platforms, indicating its robustness as a quantitative imaging biomarker for multicentric studies. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1762-1772.
Collapse
Affiliation(s)
- Frederic Carsten Schmeel
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| | - Toni Vomweg
- Radiology Institute Dr. von Essen (DVE), Coblenz, Rhineland-Palatinate (RLP), Germany
| | - Frank Träber
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| | - Arnd Gerhards
- Radiology Institute Dr. von Essen (DVE), Coblenz, Rhineland-Palatinate (RLP), Germany
| | - Simon Jonas Enkirch
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| | - Anton Faron
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| | - Alois Martin Sprinkart
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| | - Leonard Christopher Schmeel
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| | - Julian Alexander Luetkens
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| | - Daniel Thomas
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| | - Guido Matthias Kukuk
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, North Rhine-Westphalia (NRW), Germany
| |
Collapse
|
25
|
Zhu L, Xu Z, Li G, Wang Y, Li X, Shi X, Lin H, Chang S. Marrow adiposity as an indicator for insulin resistance in postmenopausal women with newly diagnosed type 2 diabetes - an investigation by chemical shift-encoded water-fat MRI. Eur J Radiol 2019; 113:158-164. [PMID: 30927942 DOI: 10.1016/j.ejrad.2019.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Marrow fat accumulates in diabetic conditions but remains elusive. The published works on the relationships between marrow fat phenotypes and glucose homeostasis are controversial. PURPOSE To detect the association of insulin resistance with marrow adiposity in postmenopausal women with newly diagnosed type 2 diabetes (T2D) using chemical shift-encoded water-fat MRI. METHODS We measured vertebral proton density fat fraction (PDFF) by 3T-MRI in 75 newly diagnosed T2D and 20 nondiabetic postmenopausal women. Bone mineral density (BMD), whole body fat mass and lean mass were determined by dual-energy X-ray absorptiometry. Insulin sensitivity was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS Lumbar spine PDFF was higher in women with T2D (65.9 ± 6.8%) than those without diabetes (59.5 ± 6.1%, P = 0.009). There was a consistent inverse association between the vertebral PDFF and BMD. PDFF had a positive association with glycated hemoglobin and HOMA-IR but not with fasting plasma glucose and insulin. PDFF was significantly increased, and BMD was decreased in a linear trend from the lowest (<1.90) to highest (≥2.77) HOMA-IR quartile. Multivariate linear regression analyses revealed a positive association between log-transformed HOMA-IR and PDFF after adjustment for multiple covariates (ß = 0.382, P < 0.001). The positive association of HOMA-IR with PDFF remained robust when total body lean mass and fat mass, BMD was entered into the multivariate regression model, respectively (ß = 0.293 and ß = 0.251, respectively; all P <0.05). CONCLUSIONS Elevated HOMA-IR was linked to higher marrow fat fraction in postmenopausal women with newly diagnosed T2D independently of body compositions.
Collapse
Affiliation(s)
- Lequn Zhu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zheng Xu
- Xinzhuang Community Health Center, Shanghai 201199, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Ying Wang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Haiyang Lin
- Department of Endocrinology, The Affiliated Wenling Hospital, Wenzhou medical University, Zhejiang 317500, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
26
|
Zhang Y, Zhou Z, Wang C, Cheng X, Wang L, Duanmu Y, Zhang C, Veronese N, Guglielmi G. Reliability of measuring the fat content of the lumbar vertebral marrow and paraspinal muscles using MRI mDIXON-Quant sequence. ACTA ACUST UNITED AC 2019; 24:302-307. [PMID: 30179158 DOI: 10.5152/dir.2018.17323] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE We aimed to assess the reliability of measuring the fat content of the lumbar vertebral marrow and the paraspinal muscles using magnetic resonance imaging (MRI) mDIXON-Quant sequence. METHODS Thirty-one healthy volunteers were included. All participants underwent liver mDIXON-Quant imaging on a 3.0 T Philips MRI scanner by observer A. Within two weeks, observer B repeated the scan. After the examination, each observer independently measured the fat content of the third lumbar vertebra (L3), and the psoas (PS), erector spinae (ES), and multifidus (MF) muscles on central L3 axial images. After two weeks, each observer repeated the same measurements. They were blinded to their previous results. Reliability was estimated by evaluating the repeatability and reproducibility. RESULTS The repeatability of the fat content measurements of L3, PS, ES, and MF was high. The intraclass correlation coefficients of the fat content of L3, PS, ES, and MF were 0.997, 0.984, 0.997, and 0.995 for observer A and 0.948, 0.974, 0.963, and 0.995 for observer B, respectively. The reproducibility of the measurement of the fat content of L3, PS, ES, and MF was high, and the interclass correlation coefficients were 0.984, 0.981, 0.977, and 0.998, respectively. CONCLUSION Using mDIXON-Quant imaging to measure the fat content of the lumbar vertebral marrow and paraspinal muscles shows high reliability and is suitable for use in clinical practice.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Zhuang Zhou
- Department of Orthopedic Oncology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Wang
- Beijing Institute of Traumatology and Orthopedics, Beijing, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Yangyang Duanmu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Chenxin Zhang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Nicola Veronese
- Aging Branch National Research Council, Neuroscience Institute, Padova, Italy
| | - Giuseppe Guglielmi
- Department of Radiology University of Foggia, Foggia, Italy; Department of Radiology Scientific Institute "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
27
|
Abstract
Bone strength is affected not only by bone mineral density (BMD) and bone microarchitecture but also its microenvironment. Recent studies have focused on the role of marrow adipose tissue (MAT) in the pathogenesis of bone loss. Osteoblasts and adipocytes arise from a common mesenchymal stem cell within bone marrow and many osteoporotic states, including aging, medication use, immobility, over - and undernutrition are associated with increased marrow adiposity. Advancements in imaging technology allow the non-invasive quantification of MAT. This article will review magnetic resonance imaging (MRI)- and computed tomography (CT)-based imaging technologies to assess the amount and composition of MAT. The techniques that will be discussed are anatomic T1-weighted MRI, water-fat imaging, proton MR spectroscopy, single energy CT and dual energy CT. Clinical applications of MRI and CT techniques to determine the role of MAT in patients with obesity, anorexia nervosa, and type 2 diabetes will be reviewed.
Collapse
Affiliation(s)
- Vibha Singhal
- Pediatric Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Miriam A Bredella
- Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
28
|
Pino AM, Rodríguez JP. Is fatty acid composition of human bone marrow significant to bone health? Bone 2019; 118:53-61. [PMID: 29258874 DOI: 10.1016/j.bone.2017.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022]
Abstract
The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs.
Collapse
Affiliation(s)
- Ana María Pino
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Chile
| | | |
Collapse
|
29
|
Lee SH, Yoo HJ, Yu SM, Hong SH, Choi JY, Chae HD. Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy. Korean J Radiol 2018; 20:126-133. [PMID: 30627028 PMCID: PMC6315074 DOI: 10.3348/kjr.2018.0174] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/03/2018] [Indexed: 11/15/2022] Open
Abstract
Objective To compare the lumbar vertebral bone marrow fat-signal fractions obtained from six-echo modified Dixon sequence (6-echo m-Dixon) with those from single-voxel magnetic resonance spectroscopy (MRS) in patients with low back pain. Materials and Methods Vertebral bone marrow fat-signal fractions were quantified by 6-echo m-Dixon (repetition time [TR] = 7.2 ms, echo time (TE) = 1.21 ms, echo spacing = 1.1 ms, total imaging time = 50 seconds) and single-voxel MRS measurements in 25 targets (23 normal bone marrows, two focal lesions) from 24 patients. The point-resolved spectroscopy sequence was used for localized single-voxel MRS (TR = 3000 ms, TE = 35 ms, total scan time = 1 minute 42 seconds). A 2 × 2 × 1.5 cm3 voxel was placed within the normal L2 or L3 vertebral body, or other lesions including a compression fracture or metastasis. The bone marrow fat spectrum was characterized on the basis of the magnitude of measurable fat peaks and a priori knowledge of the chemical structure of triglycerides. The imaging-based fat-signal fraction results were then compared to the MRS-based results. Results There was a strong correlation between m-Dixon and MRS-based fat-signal fractions (slope = 0.86, R2 = 0.88, p < 0.001). In Bland-Altman analysis, 92.0% (23/25) of the data points were within the limits of agreement. Bland-Altman plots revealed a slight but systematic error in the m-Dixon based fat-signal fraction, which showed a prevailing overestimation of small fat-signal fractions (< 20%) and underestimation of high fat-signal fractions (> 20%). Conclusion Given its excellent agreement with single-voxel-MRS, 6-echo m-Dixon can be used for visual and quantitative evaluation of vertebral bone marrow fat in daily practice.
Collapse
Affiliation(s)
- Sang Hyup Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Man Yu
- Department of Radiological Science, College of Health Science, Gimcheon University, Gimcheon, Korea
| | - Sung Hwan Hong
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Ja-Young Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Dong Chae
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Zhao Y, Huang M, Ding J, Zhang X, Spuhler K, Hu S, Li M, Fan W, Chen L, Zhang X, Li S, Zhou Q, Huang C. Prediction of Abnormal Bone Density and Osteoporosis From Lumbar Spine MR Using Modified Dixon Quant in 257 Subjects With Quantitative Computed Tomography as Reference. J Magn Reson Imaging 2018; 49:390-399. [PMID: 30390360 DOI: 10.1002/jmri.26233] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Bone marrow fat increases when bone mass decreases, which could be attributed to the fact that adipogenesis competes with osteogenesis. Bone marrow fat has the potential to predict abnormal bone density and osteoporosis. PURPOSE To investigate the predictive value of using vertebral bone marrow fat fraction(BMFF) obtained from modified Dixon(mDixon) Quant in the determination of abnormal bone density and osteoporosis. STUDY TYPE Prospective. POPULATION 257 subjects (age: 20-79 years old; BMI: 16.6-32.9 kg/m2 ;181 females,76 males) without known spinal tumor, history of trauma, dysplasia, spinal surgery or hormone therapy. FIELD STRENGTH/SEQUENCE 3.0T/mDixon. ASSESSMENT BMFF was measured at the L1, L2 and L3 vertebral body on fat fraction maps of the lumbar spine. Bone mineral density (BMD) was obtained using quantitative computed tomography, which served as the reference standard. STATISTICAL TESTS The BMFF between the three groups (normal bone density, osteopenia and osteoporosis) was tested using one-way analysis of variance in SPSS. The correlation and partial correlation of BMFF and BMD were analyzed before and after controlling for age, sex and BMI. Logistic regression analysis using independent training and validation data was conducted to evaluate the performance of predicting abnormal BMD or osteoporosis using BMFF. RESULTS There was a significant difference in vertebral BMFF between the three groups (P < 0.001). Moderate inverse correlation was found between vertebral BMFF and BMD after controlling age, sex and BMI (r = -0.529; P < 0.001). The mean area under the curve, sensitivity, specificity and negative predictive value (NPV) for predicting abnormal bone density were 0.940, 0.877, 0.896, and 0.890, respectively. The corresponding results for predicting subjects with osteoporosis were 0.896, 0.848, 0.853, and 0.969, respectively. DATA CONCLUSION: mDixon Quant is a fast, simple, noninvasive and nonionizing method to access vertebral BMFF and has a high predictive power for identifying abnormal bone density and osteoporosis. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:390-399.
Collapse
Affiliation(s)
- Yinxia Zhao
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China.,Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Mingqian Huang
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Jie Ding
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Xintao Zhang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Karl Spuhler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Shaoyong Hu
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Mianwen Li
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Wei Fan
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Lin Chen
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Xiaodong Zhang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Shaolin Li
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Chuan Huang
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.,Department of Psychiatry, Stony Brook Medicine, Stony Brook, New York, USA
| |
Collapse
|
31
|
Schmeel FC, Luetkens JA, Feißt A, Enkirch SJ, Endler CHJ, Wagenhäuser PJ, Schmeel LC, Träber F, Schild HH, Kukuk GM. Quantitative evaluation of T2* relaxation times for the differentiation of acute benign and malignant vertebral body fractures. Eur J Radiol 2018; 108:59-65. [PMID: 30396672 DOI: 10.1016/j.ejrad.2018.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this prospective study was to evaluate the diagnostic performance of T2*-weighted magnetic resonance imaging (MRI) to differentiate between acute benign and neoplastic vertebral compression fractures (VCFs). MATERIALS AND METHODS Thirty-seven consecutive patients with a total of 52 VCFs were prospectively enrolled in this IRB approved study. All VCFs were categorized as either benign or malignant according to direct bone biopsy and histopathologic confirmation. In addition to routine clinical spine MRI including at least sagittal T1-weighted, T2-weighted and T2 spectral attenuated inversion recovery (SPAIR)-weighted sequences, all patients underwent an additional sagittal six-echo modified Dixon gradient-echo sequence of the spine at 3.0-T. Intravertebral T2* and T2*ratio (fracture T2*/normal vertebrae T2*) for acute benign and malignant VCFs were calculated using region-of-interest analysis and compared between both groups. Additional receiver operating characteristic analyses were performed. Five healthy subjects were scanned three times to determine the short-term reproducibility of vertebral T2* measurements. RESULTS There were 27 acute benign and 25 malignant VCFs. Both T2* and T2*ratio of malignant VCFs were significantly higher compared to acute benign VCFs (T2*, 30 ± 11 vs. 19 ± 11 ms [p = 0.001]; T2*ratio, 2.9 ± 1.6 vs. 1.2 ± 0.7 [p < 0.001]). The areas under the curve were 0.77 for T2* and 0.88 for T2*ratio, yielding an accuracy of 73% and 89% for distinguishing acute benign from malignant VCFs. The root mean square absolute precision error was 0.44 ms as a measure for the T2* short-term reproducibility. CONCLUSION Quantitative assessment of vertebral bone marrow T2* relaxation times provides good diagnostic accuracy for the differentiation of acute benign and malignant VCFs.
Collapse
Affiliation(s)
- Frederic Carsten Schmeel
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Julian Alexander Luetkens
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Andreas Feißt
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Simon Jonas Enkirch
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christoph Hans-Jürgen Endler
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Johannes Wagenhäuser
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Leonard Christopher Schmeel
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Frank Träber
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hans Heinz Schild
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Guido Matthias Kukuk
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
32
|
Schweitzer ME. Now is the time to start routinely using chemical shift imaging in the spine. Eur Radiol 2018; 28:2779-2780. [DOI: 10.1007/s00330-018-5399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 11/30/2022]
|
33
|
Schmeel FC, Luetkens JA, Enkirch SJ, Feißt A, Endler CHJ, Schmeel LC, Wagenhäuser PJ, Träber F, Schild HH, Kukuk GM. Proton density fat fraction (PDFF) MR imaging for differentiation of acute benign and neoplastic compression fractures of the spine. Eur Radiol 2018; 28:5001-5009. [PMID: 29858641 DOI: 10.1007/s00330-018-5513-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To evaluate the diagnostic performance of proton density fat fraction (PDFF) magnetic resonance imaging (MRI) to differentiate between acute benign and neoplastic vertebral compression fractures (VCFs). METHODS Fifty-seven consecutive patients with 46 acute benign and 41 malignant VCFs were prospectively enrolled in this institutional review board approved study and underwent routine clinical MRI with an additional six-echo modified Dixon sequence of the spine at a clinical 3.0-T scanner. All fractures were categorised as benign or malignant according to either direct bone biopsy or 6-month follow-up MRI. Intravertebral PDFF and PDFFratio (fracture PDFF/normal vertebrae PDFF) for benign and malignant VCFs were calculated using region-of-interest analysis and compared between both groups. Additional receiver operating characteristic and binary logistic regression analyses were performed. RESULTS Both PDFF and PDFFratio of malignant VCFs were significantly lower compared to acute benign VCFs [PDFF, 3.48 ± 3.30% vs 23.99 ± 11.86% (p < 0.001); PDFFratio, 0.09 ± 0.09 vs 0.49 ± 0.24 (p < 0.001)]. The areas under the curve were 0.98 for PDFF and 0.97 for PDFFratio, yielding an accuracy of 96% and 95% for differentiating between acute benign and malignant VCFs. PDFF remained as the only imaging-based variable to independently differentiate between acute benign and malignant VCFs on multivariate analysis (odds ratio, 0.454; p = 0.005). CONCLUSIONS Quantitative assessment of PDFF derived from modified Dixon water-fat MRI has high diagnostic accuracy for the differentiation of acute benign and malignant vertebral compression fractures. KEY POINTS • Chemical-shift-encoding based water-fat MRI can reliably assess vertebral bone marrow PDFF • PDFF is significantly higher in acute benign than in malignant VCFs • PDFF provides high accuracy for differentiating acute benign from malignant VCFs.
Collapse
Affiliation(s)
- Frederic Carsten Schmeel
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.
| | - Julian Alexander Luetkens
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Simon Jonas Enkirch
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Andreas Feißt
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Christoph Hans-Jürgen Endler
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Leonard Christopher Schmeel
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Peter Johannes Wagenhäuser
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Frank Träber
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Hans Heinz Schild
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Guido Matthias Kukuk
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| |
Collapse
|
34
|
Proton density fat fraction (PDFF) MRI for differentiation of benign and malignant vertebral lesions. Eur Radiol 2018; 28:2397-2405. [PMID: 29313118 DOI: 10.1007/s00330-017-5241-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To investigate whether proton density fat fraction (PDFF) measurements using a six-echo modified Dixon sequence can help to differentiate between benign and malignant vertebral bone marrow lesions. METHODS Sixty-six patients were prospectively enrolled in our study. In addition to conventional MRI at 3.0-Tesla including at least sagittal T2-weighted/spectral attenuated inversion recovery and T1-weighted sequences, all patients underwent a sagittal six-echo modified Dixon sequence of the spine. The mean PDFF was calculated using regions of interest and compared between vertebral lesions. A cut-off value of 6.40% in PDFF was determined by receiver operating characteristic curves and used to differentiate between malignant (< 6.40%) and benign (≥ 6.40%) vertebral lesions. RESULTS There were 77 benign and 44 malignant lesions. The PDFF of malignant lesions was statistically significant lower in comparison with benign lesions (p < 0.001) and normal vertebral bone marrow (p < 0.001). The areas under the curves (AUC) were 0.97 for differentiating benign from malignant lesions (p < 0.001) and 0.95 for differentiating acute vertebral fractures from malignant lesions (p < 0.001). This yielded a diagnostic accuracy of 96% in the differentiation of both benign lesions and acute vertebral fractures from malignancy. CONCLUSION PDFF derived from six-echo modified Dixon allows for differentiation between benign and malignant vertebral lesions with a high diagnostic accuracy. KEY POINTS • Establishing a diagnosis of indeterminate vertebral lesions is a common clinical problem • Benign bone marrow processes may mimic the signal alterations observed in malignancy • PDFF differentiates between benign and malignant lesions with a high diagnostic accuracy • PDFF of non-neoplastic vertebral lesions is significantly higher than that of malignancy • PDFF from six-echo modified Dixon may help avoid potentially harmful bone biopsy.
Collapse
|
35
|
Baum T, Rohrmeier A, Syväri J, Diefenbach MN, Franz D, Dieckmeyer M, Scharr A, Hauner H, Ruschke S, Kirschke JS, Karampinos DC. Anatomical Variation of Age-Related Changes in Vertebral Bone Marrow Composition Using Chemical Shift Encoding-Based Water-Fat Magnetic Resonance Imaging. Front Endocrinol (Lausanne) 2018; 9:141. [PMID: 29670577 PMCID: PMC5893948 DOI: 10.3389/fendo.2018.00141] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
Assessment of vertebral bone marrow composition has been proposed as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. We investigated the anatomical variation of age-related changes of vertebral proton density fat fraction (PDFF) using chemical shift encoding-based water-fat magnetic resonance imaging (MRI). 156 healthy subjects were recruited (age range 20-29 years: 12/30 males/females; 30-39: 15/9; 40-49: 4/14; 50-59: 9/27; 60-69: 5/19; 70-79: 4/8). An eight-echo 3D spoiled gradient-echo sequence at 3T MRI was used for chemical shift-encoding based water-fat separation at the lumbar spine. Vertebral bodies of L1-L4 were manually segmented to extract PDFF values at each vertebral level. PDFF averaged over L1-L4 was significantly (p < 0.05) higher in males than females in the twenties (32.0 ± 8.0 vs. 27.2 ± 6.0%) and thirties (35.3 ± 6.7 vs. 27.3 ± 6.2%). With increasing age, females showed an accelerated fatty conversion of the bone marrow compared to men with no significant (p > 0.05) mean PDFF differences in the forties (32.4 ± 8.4 vs. 34.5 ± 6.8%) and fifties (42.0 ± 6.1 vs. 40.5 ± 9.7%). The accelerated conversion process continued resulting in greater mean PDFF values in females than males in the sixties (40.2 ± 6.9 vs. 48.8 ± 7.7%; p = 0.033) and seventies (43.9 ± 7.6 vs. 50.5 ± 8.2%; p = 0.208), though the latter did not reach statistical significance. Relative age-related PDFF change from the twenties to the seventies increased from 16.7% (L1) to 51.4% (L4) in males and 76.8% (L1) to 85.7% (L4) in females. An accelerated fatty conversion of bone marrow was observed in females with increasing age particularly evident after menopause. Relative age-related PDFF changes showed an anatomical variation with most pronounced changes at lower lumbar vertebral levels in both sexes.
Collapse
Affiliation(s)
- Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Thomas Baum,
| | - Alexander Rohrmeier
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian N. Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Scharr
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Department of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
36
|
Differentiation of Acute Osteoporotic and Malignant Vertebral Fractures by Quantification of Fat Fraction With a Dixon MRI Sequence. AJR Am J Roentgenol 2017; 209:1331-1339. [DOI: 10.2214/ajr.17.18168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Zhang Y, Udayakumar D, Cai L, Hu Z, Kapur P, Kho EY, Pavía-Jiménez A, Fulkerson M, de Leon AD, Yuan Q, Dimitrov IE, Yokoo T, Ye J, Mitsche MA, Kim H, McDonald JG, Xi Y, Madhuranthakam AJ, Dwivedi DK, Lenkinski RE, Cadeddu JA, Margulis V, Brugarolas J, DeBerardinis RJ, Pedrosa I. Addressing metabolic heterogeneity in clear cell renal cell carcinoma with quantitative Dixon MRI. JCI Insight 2017; 2:94278. [PMID: 28768909 DOI: 10.1172/jci.insight.94278] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dysregulated lipid and glucose metabolism in clear cell renal cell carcinoma (ccRCC) has been implicated in disease progression, and whole tumor tissue-based assessment of these changes is challenged by the tumor heterogeneity. We studied a noninvasive quantitative MRI method that predicts metabolic alterations in the whole tumor. METHODS We applied Dixon-based MRI for in vivo quantification of lipid accumulation (fat fraction [FF]) in targeted regions of interest of 45 primary ccRCCs and correlated these MRI measures to mass spectrometry-based lipidomics and metabolomics of anatomically colocalized tissue samples isolated from the same tumor after surgery. RESULTS In vivo tumor FF showed statistically significant (P < 0.0001) positive correlation with histologic fat content (Spearman correlation coefficient, ρ = 0.79), spectrometric triglycerides (ρ = 0.56) and cholesterol (ρ = 0.47); it showed negative correlation with free fatty acids (ρ = -0.44) and phospholipids (ρ = -0.65). We observed both inter- and intratumoral heterogeneity in lipid accumulation within the same tumor grade, whereas most aggressive tumors (International Society of Urological Pathology [ISUP] grade 4) exhibited reduced lipid accumulation. Cellular metabolites in tumors were altered compared with adjacent renal parenchyma. CONCLUSION Our results support the use of noninvasive quantitative Dixon-based MRI as a biomarker of reprogrammed lipid metabolism in ccRCC, which may serve as a predictor of tumor aggressiveness before surgical intervention. FUNDING NIH R01CA154475 (YZ, MF, PK, IP), NIH P50CA196516 (IP, JB, RJD, JAC, PK), Welch Foundation I-1832 (JY), and NIH P01HL020948 (JGM).
Collapse
Affiliation(s)
| | | | - Ling Cai
- Children's Medical Center Research Institute.,Quantitative Biomedical Research Center
| | - Zeping Hu
- Children's Medical Center Research Institute
| | - Payal Kapur
- Pathology.,Urology.,Kidney Cancer Program - Simmons Comprehensive Cancer Center, and
| | | | - Andrea Pavía-Jiménez
- Kidney Cancer Program - Simmons Comprehensive Cancer Center, and.,Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Ivan E Dimitrov
- Advanced Imaging Research Center.,Philips Medical Systems, Cleveland, Ohio, USA
| | | | - Jin Ye
- Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew A Mitsche
- Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hyeonwoo Kim
- Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | - James Brugarolas
- Kidney Cancer Program - Simmons Comprehensive Cancer Center, and.,Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ivan Pedrosa
- Radiology.,Advanced Imaging Research Center.,Kidney Cancer Program - Simmons Comprehensive Cancer Center, and
| |
Collapse
|
38
|
Karampinos DC, Holwein C, Buchmann S, Baum T, Ruschke S, Gersing AS, Sutter R, Imhoff AB, Rummeny EJ, Jungmann PM. Proton Density Fat-Fraction of Rotator Cuff Muscles Is Associated With Isometric Strength 10 Years After Rotator Cuff Repair: A Quantitative Magnetic Resonance Imaging Study of the Shoulder. Am J Sports Med 2017; 45:1990-1999. [PMID: 28460192 DOI: 10.1177/0363546517703086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quantitative muscle fat-fraction magnetic resonance (MR) imaging techniques correlate with semiquantitative Goutallier scores with failure after rotator cuff (RC) repair. PURPOSE To investigate the relationship of proton density fat fraction (PDFF) of the RC muscles with semiquantitative MR scores, cartilage T2 relaxation times, and clinical isometric strength measurements in patients 10 years after unilateral RC repair. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Bilateral shoulder MR imaging was performed in 13 patients (11 male, 2 female; age, 72 ± 8 years) 10.9 ± 0.4 years after unilateral autologous periosteal flap augmented RC repair (total shoulders assessed, N = 26). Goutallier classification, muscle atrophy, RC tendon integrity, and cartilage defects were determined based on morphological MR sequences. A paracoronal 2D multi-slice multi-echo sequence was used for quantitative cartilage T2 mapping. A chemical shift-encoding-based water-fat separation technique (based on a 6-echo 3D spoiled gradient echo sequence) was used for quantification of the PDFF of RC muscles. Isometric shoulder abduction strength was measured clinically. Mean and SD, Pearson correlation, and partial Spearman correlation were calculated. RESULTS There were 6 RC full-thickness retears in ipsilateral shoulders and 6 RC full-thickness tears in contralateral shoulders. Isometric shoulder abduction strength was not significantly different between ipsilateral and contralateral shoulders (50 ± 24 N vs 54 ± 24 N; P = .159). The mean PDFF of RC muscles was 11.7% ± 10.4% (ipsilateral, 14.2% ± 8.5%; contralateral, 9.2% ± 7.8%; P = .002). High supraspinatus PDFF correlated significantly with higher Goutallier scores ( R = 0.75, P < .001) and with lower isometric muscle strength ( R = -0.49, P = .011). This correlation remained significant after adjustment for muscle area measurements and tendon rupture ( R = -0.41, P = .048). More severe cartilage defects at the humerus were significantly associated with higher supraspinatus PDFF ( R = 0.44; P = .023). Cartilage T2 values did not correlate with muscle PDFF ( P > .05). CONCLUSION MR imaging-derived RC muscle PDFF is associated with isometric strength independent of muscle atrophy and tendon rupture in shoulders with early and advanced degenerative changes. It therefore provides complementary, clinically relevant information in tracking RC muscle composition on a quantitative level.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Christian Holwein
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.,Department of Trauma and Orthopaedic Surgery, BG Unfallklinik Murnau, Murnau, Germany
| | - Stefan Buchmann
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.,Orthopaedisches Fachzentrum (OFZ) Weilheim/Starnberg/Garmisch-Partenkirchen/Penzberg, Weilheim, Germany
| | - Thomas Baum
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Stefan Ruschke
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Alexandra S Gersing
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Reto Sutter
- Department of Radiology, Orthopedic University Hospital Balgrist, Zurich, Switzerland
| | - Andreas B Imhoff
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Ernst J Rummeny
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Pia M Jungmann
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.,Department of Radiology, Orthopedic University Hospital Balgrist, Zurich, Switzerland
| |
Collapse
|
39
|
Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, Krug R, Baum T. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 2017; 47:332-353. [PMID: 28570033 PMCID: PMC5811907 DOI: 10.1002/jmri.25769] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Maximilian Diefenbach
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Section for Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
40
|
Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water-fat MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:449-460. [PMID: 28382554 DOI: 10.1007/s10334-017-0617-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the feasibility of employing a 3D time-interleaved multi-echo gradient-echo (TIMGRE) sequence to measure the proton density fat fraction (PDFF) in the vertebral bone marrow (VBM) of children and to examine cross-sectional changes with age and intra-individual variations from the lumbar to the cervical region in the first two decades of life. MATERIALS AND METHODS Quantitative water-fat imaging of the spine was performed in 93 patients (49 girls; 44 boys; age median 4.5 years; range 0.1-17.6 years). For data acquisition, a six-echo 3D TIMGRE sequence was used with phase correction and complex-based water-fat separation. Additionally, single-voxel MR spectroscopy (MRS) was performed in the L4 vertebrae of 37 patients. VBM was manually segmented in the midsagittal slice of each vertebra. Univariable and multivariable linear regression models were calculated between averaged lumbar, thoracic and cervical bone marrow PDFF and age with adjustments for sex, height, weight, and body mass index percentile. RESULTS Measured VBM PDFF correlated strongly between imaging and MRS (R 2 = 0.92, slope = 0.94, intercept = -0.72%). Lumbar, thoracic and cervical VBM PDFF correlated significantly (all p < 0.001) with the natural logarithm of age. Differences between female and male patients were not significant (p > 0.05). CONCLUSION VBM development in children showed a sex-independent cross-sectional increase of PDFF correlating with the natural logarithm of age and an intra-individual decrease of PDFF from the lumbar to the cervical region in all age groups. The present results demonstrate the feasibility of using a 3D TIMGRE sequence for PDFF assessment in VBM of children.
Collapse
|
41
|
Yoo HJ, Hong SH, Kim DH, Choi J, Chae HD, Jeong BM, Ahn JM, Kang HS. Measurement of fat content in vertebral marrow using a modified dixon sequence to differentiate benign from malignant processes. J Magn Reson Imaging 2016; 45:1534-1544. [DOI: 10.1002/jmri.25496] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hye Jin Yoo
- Department of RadiologySeoul National University HospitalSeoul Korea
- Department of RadiologySeoul National University College of MedicineSeoul Korea
| | - Sung Hwan Hong
- Department of RadiologySeoul National University HospitalSeoul Korea
- Department of RadiologySeoul National University College of MedicineSeoul Korea
- Institute of Radiation MedicineSeoul National University Medical Research CenterSeoul Korea
| | - Dong Hyun Kim
- Department of RadiologySeoul National University HospitalSeoul Korea
| | - Ja‐Young Choi
- Department of RadiologySeoul National University HospitalSeoul Korea
- Department of RadiologySeoul National University College of MedicineSeoul Korea
| | - Hee Dong Chae
- Department of RadiologySeoul National University HospitalSeoul Korea
- Department of RadiologySeoul National University College of MedicineSeoul Korea
| | - Bo Mi Jeong
- Department of RadiologySeoul National University HospitalSeoul Korea
| | - Joong Mo Ahn
- Department of RadiologySeoul National University College of MedicineSeoul Korea
- Department of RadiologySeoul National University Bundang HospitalGyeongi‐Do Korea
| | - Heung Sik Kang
- Department of RadiologySeoul National University College of MedicineSeoul Korea
- Institute of Radiation MedicineSeoul National University Medical Research CenterSeoul Korea
- Department of RadiologySeoul National University Bundang HospitalGyeongi‐Do Korea
| |
Collapse
|
42
|
Horng DE, Hernando D, Reeder SB. Quantification of liver fat in the presence of iron overload. J Magn Reson Imaging 2016; 45:428-439. [PMID: 27405703 DOI: 10.1002/jmri.25382] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/20/2016] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To evaluate the accuracy of R2* models (1/T2 * = R2*) for chemical shift-encoded magnetic resonance imaging (CSE-MRI)-based proton density fat-fraction (PDFF) quantification in patients with fatty liver and iron overload, using MR spectroscopy (MRS) as the reference standard. MATERIALS AND METHODS Two Monte Carlo simulations were implemented to compare the root-mean-squared-error (RMSE) performance of single-R2* and dual-R2* correction in a theoretical liver environment with high iron. Fatty liver was defined as hepatic PDFF >5.6% based on MRS; only subjects with fatty liver were considered for analyses involving fat. From a group of 40 patients with known/suspected iron overload, nine patients were identified at 1.5T, and 13 at 3.0T with fatty liver. MRS linewidth measurements were used to estimate R2* values for water and fat peaks. PDFF was measured from CSE-MRI data using single-R2* and dual-R2* correction with magnitude and complex fitting. RESULTS Spectroscopy-based R2* analysis demonstrated that the R2* of water and fat remain close in value, both increasing as iron overload increases: linear regression between R2*W and R2*F resulted in slope = 0.95 [0.79-1.12] (95% limits of agreement) at 1.5T and slope = 0.76 [0.49-1.03] at 3.0T. MRI-PDFF using dual-R2* correction had severe artifacts. MRI-PDFF using single-R2* correction had good agreement with MRS-PDFF: Bland-Altman analysis resulted in -0.7% (bias) ± 2.9% (95% limits of agreement) for magnitude-fit and -1.3% ± 4.3% for complex-fit at 1.5T, and -1.5% ± 8.4% for magnitude-fit and -2.2% ± 9.6% for complex-fit at 3.0T. CONCLUSION Single-R2* modeling enables accurate PDFF quantification, even in patients with iron overload. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:428-439.
Collapse
Affiliation(s)
- Debra E Horng
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA.,Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Li G, Xu Z, Gu H, Li X, Yuan W, Chang S, Fan J, Calimente H, Hu J. Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females. J Magn Reson Imaging 2016; 45:66-73. [PMID: 27341545 DOI: 10.1002/jmri.25351] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To validate a chemical shift-encoded (CSE) water-fat imaging for quantifying marrow fat fraction (FF), using proton magnetic resonance spectroscopy (MRS) as reference. MATERIALS AND METHODS Multiecho T2 -corrected MRS and CSE imaging with eight-echo gradient-echo acquisitions at 3T were performed to calculate marrow FF in 83 subjects, including 41 with normal bone mineral density (BMD), 26 with osteopenia, and 16 with osteoporosis (based on DXA). Eight participants were scanned three times with repositioning to assess the repeatability of CSE FF map measurements. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin's concordance correlation coefficient were calculated. RESULTS The Pearson correlation coefficient was 0.979 and Lin's concordance correlation coefficient was 0.962 between CSE-based FF and MRS-based FF. All data points, calculated using the Bland-Altman method, were within the limits of agreement. The intra- and interrater agreement for average CSE-based FF was excellent (intrarater, intraclass correlation coefficient [ICC] = 0.993; interrater, ICC = 0.976-0.982 for different BMD groups). In the subgroups of varying BMD, inverse correlations were observed to be very similar between BMD (r = -0.560 to -0.710), T-score (r = -0.526 to -0.747), and CSE-based FF, and between BMD (r = -0.539 to -0.706), T-score (r = -0.501 to -0.742), and MRS-based FF even controlling for age, years since menopause, and body mass index. The repeatability for CSE FF map measurements expressed as absolute precision error was 1.45%. CONCLUSION CSE imaging is equally accurate in characterizing marrow fat content as MRS. Given its excellent correlation and concordance with MRS, the CSE sequence could be used as a potential replacement technique for marrow fat quantification. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:66-73.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Zheng Xu
- Xin-Zhuang Community Health Center, Shanghai, China
| | - Hao Gu
- Xin-Zhuang Community Health Center, Shanghai, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yuan
- Department of Spinal Disease Unit, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzheng Fan
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Horea Calimente
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
44
|
Gregory JS, Barr RJ, Varela V, Ahearn TS, Gardiner JL, Gilbert FJ, Redpath TW, Hutchison JD, Aspden RM. MRI and the distribution of bone marrow fat in hip osteoarthritis. J Magn Reson Imaging 2016; 45:42-50. [DOI: 10.1002/jmri.25318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/05/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jennifer. S. Gregory
- Arthritis and Musculoskeletal Medicine; Institute of Medical Sciences; School of Medicine, Medical Sciences and Nutrition; University of Aberdeen; Foresterhill Aberdeen UK
| | - Rebecca J. Barr
- Arthritis and Musculoskeletal Medicine; Institute of Medical Sciences; School of Medicine, Medical Sciences and Nutrition; University of Aberdeen; Foresterhill Aberdeen UK
| | - Victor Varela
- Aberdeen Biomedical Imaging Centre; Lillian Sutton Building; School of Medicine, Medical Sciences and Nutrition; University of Aberdeen; Foresterhill Aberdeen UK
| | - Trevor S. Ahearn
- Aberdeen Biomedical Imaging Centre; Lillian Sutton Building; School of Medicine, Medical Sciences and Nutrition; University of Aberdeen; Foresterhill Aberdeen UK
| | | | - Fiona J. Gilbert
- Aberdeen Biomedical Imaging Centre; Lillian Sutton Building; School of Medicine, Medical Sciences and Nutrition; University of Aberdeen; Foresterhill Aberdeen UK
| | - Thomas W. Redpath
- Aberdeen Biomedical Imaging Centre; Lillian Sutton Building; School of Medicine, Medical Sciences and Nutrition; University of Aberdeen; Foresterhill Aberdeen UK
| | - James D. Hutchison
- Arthritis and Musculoskeletal Medicine; Institute of Medical Sciences; School of Medicine, Medical Sciences and Nutrition; University of Aberdeen; Foresterhill Aberdeen UK
| | - Richard M. Aspden
- Arthritis and Musculoskeletal Medicine; Institute of Medical Sciences; School of Medicine, Medical Sciences and Nutrition; University of Aberdeen; Foresterhill Aberdeen UK
| |
Collapse
|
45
|
Baum T, Cordes C, Dieckmeyer M, Ruschke S, Franz D, Hauner H, Kirschke JS, Karampinos DC. MR-based assessment of body fat distribution and characteristics. Eur J Radiol 2016; 85:1512-8. [PMID: 26905521 DOI: 10.1016/j.ejrad.2016.02.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
The assessment of body fat distribution and characteristics using magnetic resonance (MR) methods has recently gained significant attention as it further extends our pathophysiological understanding of diseases including obesity, metabolic syndrome, or type 2 diabetes mellitus, and allows more detailed insights into treatment response and effects of lifestyle interventions. Therefore, the purpose of this study was to review the current literature on MR-based assessment of body fat distribution and characteristics. PubMed search was performed to identify relevant studies on the assessment of body fat distribution and characteristics using MR methods. T1-, T2-weighted MR Imaging (MRI), Magnetic Resonance Spectroscopy (MRS), and chemical shift-encoding based water-fat MRI have been successfully used for the assessment of body fat distribution and characteristics. The relationship of insulin resistance and serum lipids with abdominal adipose tissue (i.e. subcutaneous and visceral adipose tissue), liver, muscle, and bone marrow fat content have been extensively investigated and may help to understand the underlying pathophysiological mechanisms and the multifaceted obese phenotype. MR methods have also been used to monitor changes of body fat distribution and characteristics after interventions (e.g. diet or physical activity) and revealed distinct, adipose tissue-specific properties. Lastly, chemical shift-encoding based water-fat MRI can detect brown adipose tissue which is currently the focus of intense research as a potential treatment target for obesity. In conclusion, MR methods reliably allow the assessment of body fat distribution and characteristics. Irrespective of the promising findings based on these MR methods the clinical usefulness remains to be established.
Collapse
Affiliation(s)
- Thomas Baum
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Christian Cordes
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Germany
| | - Jan S Kirschke
- Section of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
46
|
Cordes C, Baum T, Dieckmeyer M, Ruschke S, Diefenbach MN, Hauner H, Kirschke JS, Karampinos DC. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity. Front Endocrinol (Lausanne) 2016; 7:74. [PMID: 27445977 PMCID: PMC4921741 DOI: 10.3389/fendo.2016.00074] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios.
Collapse
Affiliation(s)
- Christian Cordes
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- *Correspondence: Christian Cordes,
| | - Thomas Baum
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian N. Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Section of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|