1
|
Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Ziętek P, Chlubek D, Baranowska-Bosiacka I. Choline kinases: Enzymatic activity, involvement in cancer and other diseases, inhibitors. Int J Cancer 2025; 156:1314-1325. [PMID: 39660774 DOI: 10.1002/ijc.35286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
One of the aspects of tumor metabolism that distinguish it from healthy tissue is the phosphorylation of choline by choline kinases, which initiates the synthesis of phosphatidylcholine. Presently, there is a lack of comprehensive reviews discussing the current understanding of the role of choline kinase in cancer processes, as well as studies on the anti-tumor properties of choline kinase inhibitors. To address these gaps, this review delves into the enzymatic and non-enzymatic properties of CHKα and CHKβ and explores their precise involvement in cancer processes, particularly cancer cell proliferation. Additionally, we discuss clinical aspects of choline kinases in various tumor types, including pancreatic ductal adenocarcinoma, ovarian cancer, lung adenocarcinoma, lymphoma, leukemia, hepatocellular carcinoma, colon adenocarcinoma, and breast cancer. We examine the potential of CHKα inhibitors as anti-tumor drugs, although they are not yet in the clinical trial phase. Finally, the paper also touches upon the significance of choline kinases in non-cancerous diseases.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Szczecin, Poland
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
2
|
Jang S, Gwak HS, Lee KY, Lee JH, Kim KH, Kim JH, Park JB, Shin SH, Yoo H, Dho YS, Wang KC, Yoo BC. Exploratory profiling of metabolites in cerebrospinal fluid using a commercially available targeted LC-MS based metabolomics kit to discriminate leptomeningeal metastasis. Cancer Metab 2025; 13:2. [PMID: 39838492 PMCID: PMC11748265 DOI: 10.1186/s40170-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Leptomeningeal metastasis (LM) is a devastating complication of cancer that is difficult to treat. Thus, early diagnosis is essential for LM patients. However, cerebrospinal fluid (CSF) cytology has low sensitivity, and imaging approaches are ineffective. We explored targeted CSF metabolic profiling to discriminate among LM and other conditions affecting the central nervous system (CNS). METHODS We quantitatively measured amino acids, biogenic amines, hexoses, acylcarnitines (AC), cholesteryl esters (CE), glycerides, phosphatidylcholines (PC), lysophosphatidylcholines (LPC), sphingomyelins (SM), and ceramides (Cer) in 117 CSF samples from various groups of healthy controls (HC, n = 10), patients with LM (LM, n = 47), parenchymal brain tumor (PBT, n = 45), and inflammatory disease (ID, n = 13) with internal standards using the Absolute IDQ- p400® targeted mass spectrometry kit. Metabolites detected in > 90% of samples or showing a difference in proportional level between groups ≥ 75% were used in logistic regression models when there was no single metabolite with AUC = 1 for the groups of comparison. RESULTS PC and SM had higher levels in LM than in PBT or HC, whereas LPC had lower level in PBT than the other groups. Glycerides and Cer levels were higher in PBT and LM than in HC. Long-chain AC level in PBT was lower than in LM or HC. A regression model including Ala, PC (42:7), PC (30:3), PC (37:0), and Tyr achieved complete discrimination (AUC = 1.0) between LM and HC. In comparison of PBT and HC, twenty-six individual metabolites allowed complete discrimination between two groups, and between ID and HC fourty-six individual lipid metabolites allowed complete discrimination. Twenty-one individual metabolites (18 ACs and 3 PCs) allowed complete discrimination between LM and PBT. CONCLUSIONS Using a commercial targeted liquid chromatography-mass spectrometry (LC-MS) metabolomics kit, we were able to differentiate LM from HC and PBT. Most of the discriminative metabolites among different diseases were lipid metabolites, for which their CNS distribution and quantification in different cell types are largely unknown, whereas amino acids, biogenic amines, and hexoses failed to show significant differences. Future validation studies with larger, controlled cohorts should be performed, and hopefully, the kit may expand its metabolite coverage for unique cancer cell glucose metabolism.
Collapse
Affiliation(s)
- Soojin Jang
- Department of Neurosurgery, College of Medicine, Seoul National University, Seoul, Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Kyue-Yim Lee
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jun Hwa Lee
- Biomarker Branch, and Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung-Hee Kim
- Biomarker Branch, and Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang Hoon Shin
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Heon Yoo
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yun-Sik Dho
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyu-Chang Wang
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
3
|
Yang Q, Deng S, Preibsch H, Schade T, Koch A, Berezhnoy G, Zizmare L, Fischer A, Gückel B, Staebler A, Hartkopf AD, Pichler BJ, la Fougère C, Hahn M, Bonzheim I, Nikolaou K, Trautwein C. Image-guided metabolomics and transcriptomics reveal tumour heterogeneity in luminal A and B human breast cancer beyond glucose tracer uptake. Clin Transl Med 2024; 14:e1550. [PMID: 38332687 PMCID: PMC10853679 DOI: 10.1002/ctm2.1550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Breast cancer is a metabolically heterogeneous disease, and although the concept of heterogeneous cancer metabolism is known, its precise role in human breast cancer is yet to be fully elucidated. METHODS We investigated in an explorative approach a cohort of 42 primary mamma carcinoma patients with positron emission tomography/magnetic resonance imaging (PET/MR) prior to surgery, followed by histopathology and molecular diagnosis. From a subset of patients, which showed high metabolic heterogeneity based on tracer uptake and pathology classification, tumour centre and periphery specimen tissue samples were further investigated by a targeted breast cancer gene expression panel and quantitative metabolomics by nuclear magnetic resonance (NMR) spectroscopy. All data were analysed in a combinatory approach. RESULTS [18 F]FDG (2-deoxy-2-[fluorine-18]fluoro-d-glucose) tracer uptake confirmed dominance of glucose metabolism in the breast tumour centre, with lower levels in the periphery. Additionally, we observed differences in lipid and proliferation related genes between luminal A and B subtypes in the centre and periphery. Tumour periphery showed elevated acetate levels and enrichment in lipid metabolic pathways genes especially in luminal B. Furthermore, serine was increased in the periphery and higher expression of thymidylate synthase (TYMS) indicated one-carbon metabolism increased in tumour periphery. The overall metabolic activity based on [18 F]FDG uptake of luminal B subtype was higher than that of luminal A and the difference between the periphery and centre increased with tumour grade. CONCLUSION Our analysis indicates variations in metabolism among different breast cancer subtypes and sampling locations which details the heterogeneity of the breast tumours. Correlation analysis of [18 F]FDG tracer uptake, transcriptome and tumour metabolites like acetate and serine facilitate the search for new candidates for metabolic tracers and permit distinguishing luminal A and B. This knowledge may help to differentiate subtypes preclinically or to provide patients guide for neoadjuvant therapy and optimised surgical protocols based on individual tumour metabolism.
Collapse
Affiliation(s)
- Qianlu Yang
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Sisi Deng
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Heike Preibsch
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Tim‐Colin Schade
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - André Koch
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Georgy Berezhnoy
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Anna Fischer
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Brigitte Gückel
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Annette Staebler
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | | | - Bernd J. Pichler
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christian la Fougère
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTuebingenGermany
| | - Markus Hahn
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Irina Bonzheim
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Konstantin Nikolaou
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christoph Trautwein
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| |
Collapse
|
4
|
Penet MF, Sharma RK, Bharti S, Mori N, Artemov D, Bhujwalla ZM. Cancer insights from magnetic resonance spectroscopy of cells and excised tumors. NMR IN BIOMEDICINE 2023; 36:e4724. [PMID: 35262263 PMCID: PMC9458776 DOI: 10.1002/nbm.4724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Multinuclear ex vivo magnetic resonance spectroscopy (MRS) of cancer cells, xenografts, human cancer tissue, and biofluids is a rapidly expanding field that is providing unique insights into cancer. Starting from the 1970s, the field has continued to evolve as a stand-alone technology or as a complement to in vivo MRS to characterize the metabolome of cancer cells, cancer-associated stromal cells, immune cells, tumors, biofluids and, more recently, changes in the metabolome of organs induced by cancers. Here, we review some of the insights into cancer obtained with ex vivo MRS and provide a perspective of future directions. Ex vivo MRS of cells and tumors provides opportunities to understand the role of metabolism in cancer immune surveillance and immunotherapy. With advances in computational capabilities, the integration of artificial intelligence to identify differences in multinuclear spectral patterns, especially in easily accessible biofluids, is providing exciting advances in detection and monitoring response to treatment. Metabolotheranostics to target cancers and to normalize metabolic changes in organs induced by cancers to prevent cancer-induced morbidity are other areas of future development.
Collapse
Affiliation(s)
- Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Raj Kumar Sharma
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Santosh Bharti
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Noriko Mori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Li Z, Tan Y, Li X, Quan J, Bode AM, Cao Y, Luo X. DHRS2 inhibits cell growth and metastasis in ovarian cancer by downregulation of CHKα to disrupt choline metabolism. Cell Death Dis 2022; 13:845. [PMID: 36192391 PMCID: PMC9530226 DOI: 10.1038/s41419-022-05291-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/23/2023]
Abstract
The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.
Collapse
Affiliation(s)
- Zhenzhen Li
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Yue Tan
- grid.412017.10000 0001 0266 8918Hengyang Medical College, University of South China, Hengyang, 421001 Hunan PR China
| | - Xiang Li
- grid.216417.70000 0001 0379 7164Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China
| | - Jing Quan
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Ann M. Bode
- grid.17635.360000000419368657The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Ya Cao
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China
| | - Xiangjian Luo
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078 China
| |
Collapse
|
6
|
Tan S, Chen Z, Mironchik Y, Mori N, Penet MF, Si G, Krishnamachary B, Bhujwalla ZM. VEGF Overexpression Significantly Increases Nanoparticle-Mediated siRNA Delivery and Target-Gene Downregulation. Pharmaceutics 2022; 14:pharmaceutics14061260. [PMID: 35745832 PMCID: PMC9229257 DOI: 10.3390/pharmaceutics14061260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
The availability of nanoparticles (NPs) to deliver small interfering RNA (siRNA) has significantly expanded the specificity and range of ‘druggable’ targets for precision medicine in cancer. This is especially important for cancers such as triple negative breast cancer (TNBC) for which there are no targeted treatments. Our purpose here was to understand the role of tumor vasculature and vascular endothelial growth factor (VEGF) overexpression in a TNBC xenograft in improving the delivery and function of siRNA NPs using in vivo as well as ex vivo imaging. We used triple negative MDA-MB-231 human breast cancer xenografts derived from cells engineered to overexpress VEGF to understand the role of VEGF and vascularization in NP delivery and function. We used polyethylene glycol (PEG) conjugated polyethylenimine (PEI) NPs to deliver siRNA that downregulates choline kinase alpha (Chkα), an enzyme that is associated with malignant transformation and tumor progression. Because Chkα converts choline to phosphocholine, effective delivery of Chkα siRNA NPs resulted in functional changes of a significant decrease in phosphocholine and total choline that was detected with 1H magnetic resonance spectroscopy (MRS). We observed a significant increase in NP delivery and a significant decrease in Chkα and phosphocholine in VEGF overexpressing xenografts. Our results demonstrated the importance of tumor vascularization in achieving effective siRNA delivery and downregulation of the target gene Chkα and its function.
Collapse
Affiliation(s)
- Shanshan Tan
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA; (S.T.); (Z.C.); (Y.M.); (N.M.); (M.-F.P.); (G.S.); (B.K.)
| | - Zhihang Chen
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA; (S.T.); (Z.C.); (Y.M.); (N.M.); (M.-F.P.); (G.S.); (B.K.)
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA; (S.T.); (Z.C.); (Y.M.); (N.M.); (M.-F.P.); (G.S.); (B.K.)
| | - Noriko Mori
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA; (S.T.); (Z.C.); (Y.M.); (N.M.); (M.-F.P.); (G.S.); (B.K.)
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA; (S.T.); (Z.C.); (Y.M.); (N.M.); (M.-F.P.); (G.S.); (B.K.)
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA
| | - Ge Si
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA; (S.T.); (Z.C.); (Y.M.); (N.M.); (M.-F.P.); (G.S.); (B.K.)
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA; (S.T.); (Z.C.); (Y.M.); (N.M.); (M.-F.P.); (G.S.); (B.K.)
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA; (S.T.); (Z.C.); (Y.M.); (N.M.); (M.-F.P.); (G.S.); (B.K.)
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
7
|
ChoK-Full of Potential: Choline Kinase in B Cell and T Cell Malignancies. Pharmaceutics 2021; 13:pharmaceutics13060911. [PMID: 34202989 PMCID: PMC8234087 DOI: 10.3390/pharmaceutics13060911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Aberrant choline metabolism, characterized by an increase in total choline-containing compounds, phosphocholine and phosphatidylcholine (PC), is a metabolic hallmark of carcinogenesis and tumor progression. This aberration arises from alterations in metabolic enzymes that control PC biosynthesis and catabolism. Among these enzymes, choline kinase α (CHKα) exhibits the most frequent alterations and is commonly overexpressed in human cancers. CHKα catalyzes the phosphorylation of choline to generate phosphocholine, the first step in de novo PC biosynthesis. CHKα overexpression is associated with the malignant phenotype, metastatic capability and drug resistance in human cancers, and thus has been recognized as a robust biomarker and therapeutic target of cancer. Of clinical importance, increased choline metabolism and CHKα activity can be detected by non-invasive magnetic resonance spectroscopy (MRS) or positron emission tomography/computed tomography (PET/CT) imaging with radiolabeled choline analogs for diagnosis and treatment monitoring of cancer patients. Both choline-based MRS and PET/CT imaging have also been clinically applied for lymphoid malignancies, including non-Hodgkin lymphoma, multiple myeloma and central nervous system lymphoma. However, information on how choline kinase is dysregulated in lymphoid malignancies is very limited and has just begun to be unraveled. In this review, we provide an overview of the current understanding of choline kinase in B cell and T cell malignancies with the goal of promoting future investigation in this area.
Collapse
|
8
|
Lacal JC, Zimmerman T, Campos JM. Choline Kinase: An Unexpected Journey for a Precision Medicine Strategy in Human Diseases. Pharmaceutics 2021; 13:788. [PMID: 34070409 PMCID: PMC8226952 DOI: 10.3390/pharmaceutics13060788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Choline kinase (ChoK) is a cytosolic enzyme that catalyzes the phosphorylation of choline to form phosphorylcholine (PCho) in the presence of ATP and magnesium. ChoK is required for the synthesis of key membrane phospholipids and is involved in malignant transformation in a large variety of human tumours. Active compounds against ChoK have been identified and proposed as antitumor agents. The ChoK inhibitory and antiproliferative activities of symmetrical bispyridinium and bisquinolinium compounds have been defined using quantitative structure-activity relationships (QSARs) and structural parameters. The design strategy followed in the development of the most active molecules is presented. The selective anticancer activity of these structures is also described. One promising anticancer compound has even entered clinical trials. Recently, ChoKα inhibitors have also been proposed as a novel therapeutic approach against parasites, rheumatoid arthritis, inflammatory processes, and pathogenic bacteria. The evidence for ChoKα as a novel drug target for approaches in precision medicine is discussed.
Collapse
Affiliation(s)
- Juan Carlos Lacal
- Instituto de Investigaciones Biomédicas, CSIC, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz, IDIPAZ, 28046 Madrid, Spain
| | - Tahl Zimmerman
- Food Microbiology and Biotechnology Laboratory, Department of Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina University, 1601 East Market Street, Greensboro, NC 27411, USA;
| | - Joaquín M. Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/Campus de Cartuja, s/n, Universidad de Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), SAS-Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
9
|
Liu K, Xue B, Bai G, Zhang W. Downregulation of Diacylglycerol kinase zeta (DGKZ) suppresses tumorigenesis and progression of cervical cancer by facilitating cell apoptosis and cell cycle arrest. Bioengineered 2021; 12:1517-1529. [PMID: 33926342 PMCID: PMC8806244 DOI: 10.1080/21655979.2021.1918505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Diacylglycerol kinase zeta (DGKZ) participates in cancer progression. Here, the current work aims to identify the functional role of DGKZ in cervical cancer (CC). DGKZ expression in cervical cancer tissues and paired adjacent normal cervical tissues was assessed using Immunohistochemistry assay. SiHa and HeLa cells were transfected with lentivirus plasmids (sh-DGKZ or sh-NC) to evaluate the effects of DGKZ knockdown on cell proliferation, apoptosis and cell cycle distribution in vitro. Furthermore, BALB/c nude mice were injected subcutaneously with Lentivirus-sh-DGKZ-SiHa cells or Lentivirus-sh-NC-SiHa cells to analyze the influence of DGKZ silencing on tumor growth of CC in vivo. Moreover, the potential molecular mechanisms were predicted by GO and KEGG analysis and preliminarily explored through PathScan Analysis. Elevated DGKZ expression in cervical tumor was observed. Downregulation of DGKZ repressed proliferation and boosted apoptosis of SiHa and HeLa cells and induced cell cycle arrest at G0/G1 phase. In addition, Knockdown of DGKZ restrained tumor growth in tumor xenograft mice. Importantly, GO and KEGG analysis displayed that differentially expressed proteins induced by silence of DGKZ were mostly enriched in autophagy or mitophagy, indicating that the functions of DGKZ on cell proliferation and tumor growth may be associated with autophagy or mitophagy. PathScan analysis presented that PI3K-AKT and TAK1-NF-κB signaling pathways were prominently inhibited in SiHa cells transfected with sh-DGKZ. In summary, downregulation of DGKZ impeded cell proliferation, boosted cell apoptosis and induced cell cycle arrest to suppress tumorigenesis and progression of cervical cancer.
Collapse
Affiliation(s)
- Keying Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Department of Gynecology and Obstetrics, Xi'an North Hospital, Xi'an, Shaanxi Province, China
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Guiqin Bai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wentao Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
10
|
Sun Y, Li S, Li J, Xiao X, Hua Z, Wang X, Yan S. A clinical metabolomics-based biomarker signature as an approach for early diagnosis of gastric cardia adenocarcinoma. Oncol Lett 2020; 19:681-690. [PMID: 31897184 PMCID: PMC6924188 DOI: 10.3892/ol.2019.11173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Gastric cardia adenocarcinoma (GCA) has a high mortality rate worldwide; however, current early diagnostic methods lack efficacy. Therefore, the aim of the present study was to identify potential biomarkers for the early diagnosis of GCA. Global metabolic profiles were obtained from plasma samples collected from 21 patients with GCA and 48 healthy controls using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. The orthogonal partial least squares discrimination analysis model was applied to distinguish patients with GCA from healthy controls and to identify potential biomarkers. Metabolic pathway analysis was performed using MetaboAnalyst (version 4.0) and revealed that ‘glycerophospholipid metabolism’, ‘linoleic acid metabolism’, ‘fatty acid biosynthesis’ and ‘primary bile acid biosynthesis’ were significantly associated with GCA. In addition, an early diagnostic model for GCA was established based on the relative levels of four key biomarkers, including phosphorylcholine, glycocholic acid, L-acetylcarnitine and arachidonic acid. The area under the receiver operating characteristic curve revealed that the diagnostic model had a sensitivity and specificity of 0.977 and 0.952, respectively. The present study demonstrated that metabolomics may aid the identification of the mechanisms underlying the pathogenesis of GCA. In addition, the proposed diagnostic method may serve as a promising approach for the early diagnosis of GCA.
Collapse
Affiliation(s)
- Yuanfang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jin Li
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhaolai Hua
- People's Hospital of Yangzhong, Yangzhong, Jiangsu 212200, P.R. China
| | - Xi Wang
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
11
|
Gokhale S, Lu W, Zhu S, Liu Y, Hart RP, Rabinowitz JD, Xie P. Elevated Choline Kinase α-Mediated Choline Metabolism Supports the Prolonged Survival of TRAF3-Deficient B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 204:459-471. [PMID: 31826940 DOI: 10.4049/jimmunol.1900658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Specific deletion of the tumor suppressor TRAF3 from B lymphocytes in mice leads to the prolonged survival of mature B cells and expanded B cell compartments in secondary lymphoid organs. In the current study, we investigated the metabolic basis of TRAF3-mediated regulation of B cell survival by employing metabolomic, lipidomic, and transcriptomic analyses. We compared the polar metabolites, lipids, and metabolic enzymes of resting splenic B cells purified from young adult B cell-specific Traf3 -/- and littermate control mice. We found that multiple metabolites, lipids, and enzymes regulated by TRAF3 in B cells are clustered in the choline metabolic pathway. Using stable isotope labeling, we demonstrated that phosphocholine and phosphatidylcholine biosynthesis was markedly elevated in Traf3 -/- mouse B cells and decreased in TRAF3-reconstituted human multiple myeloma cells. Furthermore, pharmacological inhibition of choline kinase α, an enzyme that catalyzes phosphocholine synthesis and was strikingly increased in Traf3 -/- B cells, substantially reversed the survival phenotype of Traf3 -/- B cells both in vitro and in vivo. Taken together, our results indicate that enhanced phosphocholine and phosphatidylcholine synthesis supports the prolonged survival of Traf3 -/- B lymphocytes. Our findings suggest that TRAF3-regulated choline metabolism has diagnostic and therapeutic value for B cell malignancies with TRAF3 deletions or relevant mutations.
Collapse
Affiliation(s)
- Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Yingying Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and.,W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| |
Collapse
|
12
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Choline kinase inhibitors EB-3D and EB-3P interferes with lipid homeostasis in HepG2 cells. Sci Rep 2019; 9:5109. [PMID: 30911014 PMCID: PMC6433853 DOI: 10.1038/s41598-019-40885-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/12/2019] [Indexed: 01/11/2023] Open
Abstract
A full understanding of the molecular mechanism of action of choline kinase α (ChoKα) inhibitors at the cell level is essential for developing therapeutic and preventive approaches for cancer. The aim of the present study was to evaluate the effects of the ChoKα inhibitors EB-3D and EB-3P on lipid metabolism in HepG2 cells. We used [methyl-14C]choline, [1,2-14C]acetic acid and [2-3H]glycerol as exogenous precursors of the corresponding phospholipids and neutral lipids. [Methyl-14C]choline was also used to determine choline uptake. Protein levels were determined by Western blot. Ultrastructural alterations were investigated by transmission electron microscopy. In this work, we demonstrate that EB-3D and EB-3P interfere with phosphatidylcholine biosynthesis via both CDP-choline pathway and choline uptake by the cell. Moreover, the synthesis of both diacylglycerols and triacylglycerols was affected by cell exposure to both inhibitors. These effects were accompanied by a substantial decrease in cholesterol biosynthesis, as well as alterations in the expression of proteins related to cholesterol homeostasis. We also found that EB-3D and EB-3P lowered ChoKα protein levels. All these effects could be explained by the modulation of the AMP-activated protein kinase signalling pathway. We show that both inhibitors cause mitochondrial alteration and an endoplasmic reticulum stress response. EB-3D and EB-3P exert effects on ChoKα expression, AMPK activation, apoptosis, endoplasmic reticulum stress and lipid metabolism. Taken together, results show that EB-3D and EB-3P have potential anti-cancer activity through the deregulation of lipid metabolism.
Collapse
|
14
|
Choline Kinase Alpha Inhibition by EB-3D Triggers Cellular Senescence, Reduces Tumor Growth and Metastatic Dissemination in Breast Cancer. Cancers (Basel) 2018; 10:cancers10100391. [PMID: 30360374 PMCID: PMC6209942 DOI: 10.3390/cancers10100391] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
Choline kinase (ChoK) is the first enzyme of the Kennedy pathway leading to the biosynthesis of phosphatidylcholine (PtdCho), the most abundant phospholipid in eukaryotic cell membranes. EB-3D is a novel choline kinase α1 (ChoKα1) inhibitor with potent antiproliferative activity against a panel of several cancer cell lines. ChoKα1 is particularly overexpressed and hyperactivated in aggressive breast cancer. By NMR analysis, we demonstrated that EB-3D is able to reduce the synthesis of phosphocholine, and using flow cytometry, immunoblotting, and q-RT-PCR as well as proliferation and invasion assays, we proved that EB-3D strongly impairs breast cancer cell proliferation, migration, and invasion. EB-3D induces senescence in breast cancer cell lines through the activation of the metabolic sensor AMPK and the subsequent dephosphorylation of mTORC1 downstream targets, such as p70S6K, S6 ribosomal protein, and 4E-BP1. Moreover, EB-3D strongly synergizes with drugs commonly used for breast cancer treatment. The antitumorigenic potential of EB-3D was evaluated in vivo in the syngeneic orthotopic E0771 mouse model of breast cancer, where it induces a significant reduction of the tumor mass at low doses. In addition, EB-3D showed an antimetastatic effect in experimental and spontaneous metastasis models. Altogether, our results indicate that EB-3D could be a promising new anticancer agent to improve aggressive breast cancer treatment protocols.
Collapse
|
15
|
Shah T, Krishnamachary B, Wildes F, Wijnen JP, Glunde K, Bhujwalla ZM. Molecular causes of elevated phosphoethanolamine in breast and pancreatic cancer cells. NMR IN BIOMEDICINE 2018; 31:e3936. [PMID: 29928787 PMCID: PMC6118328 DOI: 10.1002/nbm.3936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 05/03/2023]
Abstract
Elevated phosphoethanolamine (PE) is frequently observed in MRS studies of human cancers and xenografts. The role of PE in cell survival and the molecular causes underlying this increase are, however, relatively underexplored. In this study, we investigated the roles of ethanolamine kinases (Etnk-1 and 2) and choline kinases (Chk-α and β) in contributing to increased PE in human breast and pancreatic cancer cells. We investigated the effect of silencing Etnk-1 and Etnk-2 on cell viability as a potential therapeutic strategy. Both breast and pancreatic cancer cells showed higher PE compared with their nonmalignant counterparts. We identified Etnk-1 as a major cause of the elevated PE levels in these cancer cells, with little or no contribution from Chk-α, Chk-β, or Etnk-2. The increase of PE observed in pancreatic cancer cells in culture was replicated in the corresponding tumor xenografts. Downregulation of Etnk-1 with siRNA resulted in cell cytotoxicity that correlated with PE levels in breast and pancreatic cancer cells. Etnk-1 may provide a potential therapeutic target in breast and pancreatic cancers.
Collapse
Affiliation(s)
- Tariq Shah
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jannie P. Wijnen
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Centre of Image Sciences/High field MR Research group, Radiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Correspondence: Zaver M. Bhujwalla, PhD, Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD 21205, USA, Phone: +1 (410) 955 9698 | Fax: +1 (410) 614 1948,
| |
Collapse
|
16
|
Mariotto E, Bortolozzi R, Volpin I, Carta D, Serafin V, Accordi B, Basso G, Navarro PL, López-Cara LC, Viola G. EB-3D a novel choline kinase inhibitor induces deregulation of the AMPK-mTOR pathway and apoptosis in leukemia T-cells. Biochem Pharmacol 2018; 155:213-223. [PMID: 30006194 DOI: 10.1016/j.bcp.2018.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022]
Abstract
Choline kinase alpha 1 (ChoKα1) has recently become an interesting therapeutic target since its overexpression has been associated to tumorigenesis in many cancers. Nevertheless, little is known regarding hematological malignancies. In this manuscript, we investigated the effect of a novel and selective ChoKα inhibitor EB-3D in T acute lymphoblastic leukemia (T-ALL). The effect of EB-3D was evaluated in a panel of T-leukemia cell lines and ex-vivo primary cultures derived from pediatric T-ALL patients. We also evaluated in detail, using Reverse Phase Protein Array (RPPA), protein phosphorylation level changes in T-ALL cells upon treatment. The drug exhibits a potent antiproliferative activity in a panel of T-leukemia cell lines and primary cultures of pediatric patients. Moreover, the drug strongly induces apoptosis and more importantly it enhanced T-leukemia cell sensitivity to chemotherapeutic agents, such as dexamethasone and l-asparaginase. In addition, the compound induces an early activation of AMPK, the main regulator of cellular energy homeostasis, by its phosphorylation at residue T712 of catalytic subunit α, and thus repressing mTORC1 pathway, as shown by mTOR S2448 dephosphorylation. The inhibition of mTOR in turn affects the activity of several known downstream targets, such as 4E-BP1, p70S6K, S6 Ribosomal Protein and GSK3 that ultimately may lead to a reduction of protein synthesis and cell death. Taken together, our findings suggest that targeting ChoKα may be an interesting option for treating T-ALL and that EB-3D could represent a valuable therapeutic tool.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy.
| | - Roberta Bortolozzi
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Ilaria Volpin
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Davide Carta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Serafin
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Benedetta Accordi
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Giuseppe Basso
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Pilar Luque Navarro
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, 18071 Granada, Spain
| | - Luisa Carlota López-Cara
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, 18071 Granada, Spain
| | - Giampietro Viola
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy.
| |
Collapse
|
17
|
Ma W, Wang S, Zhang T, Zhang EY, Zhou L, Hu C, Yu JJ, Xu G. Activation of choline kinase drives aberrant choline metabolism in esophageal squamous cell carcinomas. J Pharm Biomed Anal 2018; 155:148-156. [PMID: 29631075 DOI: 10.1016/j.jpba.2018.03.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major health threat worldwide. Research focused on molecular events associated with ESCC carcinogenesis for diagnosis, treatment and prevention is needed. Our goal is to discover novel biomarkers and investigate the underlying molecular mechanisms of ESCC progression by employing a global metabolomic approach. Sera from 34 ESCC patients and 32 age and sex matched healthy controls were profiled using two-dimensional liquid chromatography-mass spectrometry (2D LC-MS). We identified 120 differential metabolites in ESCC patient serums compared to healthy controls. Several amino acids, serine, arginine, lysine and histidine were significantly changed in ESCC patients. Most importantly, we found dysregulated lipid metabolism as an important characteristic in ESCC patients. Several free fat acids (FFA) and carnitines were found down-regulated in ESCC patients. Choline was significantly increased and phosphatidylcholines (PC) were significantly decreased in ESCC serum. The high expression of choline and low expression of total PC in patient serum were associated with the high expression of choline kinase (Chok) and activated Kennedy pathway in ESCC cells. Chok expression can serve as a significant biomarker for ESCC prognosis. In conclusion, metabolite profiles in the ESCC patient serum were significantly different from those in the healthy controls. Phosphatidylcholines and Chok, the key enzyme in the PC metabolism pathway, may serve as novel biomarkers for ESCC.
Collapse
Affiliation(s)
- Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, One Jianshe East Road, Zhengzhou, 450000, China
| | - Shuangyuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, One Jianshe East Road, Zhengzhou, 450000, China
| | - Erik Y Zhang
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML-0564, Cincinnati, OH 45267, United States
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jane J Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, One Jianshe East Road, Zhengzhou, 450000, China; Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML-0564, Cincinnati, OH 45267, United States.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
18
|
Koch K, Hartmann R, Schröter F, Suwala AK, Maciaczyk D, Krüger AC, Willbold D, Kahlert UD, Maciaczyk J. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells. Oncotarget 2018; 7:73414-73431. [PMID: 27705917 PMCID: PMC5341988 DOI: 10.18632/oncotarget.12337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor with very limited therapeutic options. Standard multimodal treatments, including surgical resection and combined radio-chemotherapy do not target the most aggressive subtype of glioma cells, brain tumor stem cells (BTSCs). BTSCs are thought to be responsible for tumor initiation, progression, and relapse. Furthermore, they have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT) thereby inducing tumor dissemination and chemo resistance. Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) on GBM cell cultures we provide evidence that the expression of well-known EMT activators of the ZEB, TWIST and SNAI families and EMT target genes N-cadherin and VIMENTIN is associated with aberrant choline metabolism. The cholinic phenotype is characterized by high intracellular levels of phosphocholine and total choline derivatives and was associated with malignancy in various cancers. Both genetic and pharmacological inhibition of the cardinal choline metabolism regulator choline kinase alpha (CHKα) significantly reduces the cell viability, invasiveness, clonogenicity, and expression of EMT associated genes in GBM cells. Moreover, in some cell lines synergetic cytotoxic effects were observed when combining the standard of care chemotherapeutic temozolomide with the CHKα inhibitor V-11-0711. Taken together, specific inhibition of the enzymatic activity of CHKα is a powerful strategy to suppress EMT which opens the possibility to target chemo-resistant BTSCs through impairing their mesenchymal transdifferentiation. Moreover, the newly identified EMT-oncometabolic network may be helpful to monitor the invasive properties of glioblastomas and the success of anti-EMT therapy.
Collapse
Affiliation(s)
- Katharina Koch
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Rudolf Hartmann
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Juelich, Juelich, Germany
| | - Friederike Schröter
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Abigail Kora Suwala
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Donata Maciaczyk
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany
| | | | - Dieter Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Juelich, Juelich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ulf Dietrich Kahlert
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany.,Neurosurgery and Pediatric Neurosurgery, Medical University Lublin, Lublin, Poland
| | - Jaroslaw Maciaczyk
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
19
|
Kall SL, Delikatny EJ, Lavie A. Identification of a Unique Inhibitor-Binding Site on Choline Kinase α. Biochemistry 2018; 57:1316-1325. [PMID: 29389115 DOI: 10.1021/acs.biochem.7b01257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Choline kinase α (ChoKα) is an enzyme that is upregulated in many types of cancer and has been shown to be tumorigenic. As such, it makes a promising target for inhibiting tumor growth. Though there have been several inhibitors synthesized for ChoKα, not all of them demonstrate the same efficacy in vivo, though the reasons behind this difference in potency are not clear. One particular inhibitor, designated TCD-717, has recently completed phase I clinical trials. Cell culture and in vitro studies support the powerful inhibitory effect TCD-717 has on ChoKα, but an examination of the inhibitor's interaction with the ChoKα enzyme has been missing prior to this work. Here we detail the 2.35 Å structure of ChoKα in complex with TCD-717. Examination of this structure in conjunction with kinetic assays reveals that TCD-717 does not bind directly in the choline pocket as do previously characterized ChoKα inhibitors, but rather in a proximal but novel location near the surface of the enzyme. The unique binding site identified for TCD-717 lends insight for the future design of more potent in vivo inhibitors for ChoKα.
Collapse
Affiliation(s)
- Stefanie L Kall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Edward J Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19083, United States
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,The Jesse Brown VA Medical Center , Chicago, Illinois 60612, United States
| |
Collapse
|
20
|
Yoo BC, Lee JH, Kim KH, Lin W, Kim JH, Park JB, Park HJ, Shin SH, Yoo H, Kwon JW, Gwak HS. Cerebrospinal fluid metabolomic profiles can discriminate patients with leptomeningeal carcinomatosis from patients at high risk for leptomeningeal metastasis. Oncotarget 2017; 8:101203-101214. [PMID: 29254157 PMCID: PMC5731867 DOI: 10.18632/oncotarget.20983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose Early diagnosis of leptomeningeal carcinomatosis (LMC) is necessary to improve outcomes of this formidable disease. However, cerebrospinal fluid (CSF) cytology is frequently false negative. We examined whether CSF metabolome profiles can be used to differentiate patients with LMC from patients having a risk for development of LMC. Results A total of 10,905 LMIs were evaluated using PCA-DA. The LMIs defined Group 2 with a sensitivity of 85% and a specificity of 91%. After selecting 33 LMIs, including diacetylspermine and fibrinogen fragments, the CSF metabolomics profile had a sensitivity of 100% and a specificity of 93% for discriminating Group 1b from the other groups. After selecting 21 LMIs, including phosphatidylcholine, the CSF metabolomics profile differentiated LMC (Group 2) patients from the high-risk groups of Group 3 and Group 4 with 100% sensitivity and 100% specificity. Materials and Methods We prospectively collected CSF from five groups of patients: Group 1a, systemic cancer; Group 1b, no tumor; Group 2, LMC; Group 3, brain metastasis; Group 4, brain tumor other than brain metastasis. All metabolites in the CSF samples were detected as low-mass ions (LMIs) using mass spectrometry. Principal component analysis-based discriminant analysis (PCA-DA) and two search algorithms were used to select the LMIs that differentiated the patient groups of interest from controls. Conclusions Analysis of CSF metabolite profiles could be used to diagnose LMC and exclude patients at high-risk of LMC with a 100% accuracy. We expect a future validation trial to evaluate CSF metabolic profiles supporting CSF cytology.
Collapse
Affiliation(s)
- Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jun Hwa Lee
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Kyung-Hee Kim
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Weiwei Lin
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Hyun Jin Park
- Center for Pediatric Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Sang Hoon Shin
- Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Heon Yoo
- Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Ji Woong Kwon
- Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Ho-Shin Gwak
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Republic of Korea.,Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
21
|
Arlauckas SP, Kumar M, Popov AV, Poptani H, Delikatny EJ. Near infrared fluorescent imaging of choline kinase alpha expression and inhibition in breast tumors. Oncotarget 2017; 8:16518-16530. [PMID: 28157707 PMCID: PMC5369982 DOI: 10.18632/oncotarget.14965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Choline kinase alpha (ChoKα) overexpression is associated with an aggressive tumor phenotype. ChoKα inhibitors induce apoptosis in tumors, however validation of their specificity is difficult in vivo. We report the use of optical imaging to assess ChoKα status in cells and in vivo using JAS239, a carbocyanine-based ChoKα inhibitor with inherent near infrared fluorescence. JAS239 attenuated choline phosphorylation and viability in a panel of human breast cancer cell lines. Antibody blockade prevented cellular retention of JAS239 indicating direct interaction with ChoKα independent of the choline transporters and catabolic choline pathways. In mice bearing orthotopic MCF7 breast xenografts, optical imaging with JAS239 distinguished tumors overexpressing ChoKα from their empty vector counterparts and delineated tumor margins. Pharmacological inhibition of ChoK by the established inhibitor MN58b led to a growth inhibition in 4175-Luc+ tumors that was accompanied by concomitant reduction in JAS239 uptake and decreased total choline metabolite levels as measured using magnetic resonance spectroscopy. At higher therapeutic doses, JAS239 was as effective as MN58b at arresting tumor growth and inducing apoptosis in MDA-MB-231 tumors, significantly reducing tumor choline below baseline levels without observable systemic toxicity. These data introduce a new method to monitor therapeutically effective inhibitors of choline metabolism in breast cancer using a small molecule companion diagnostic.
Collapse
Affiliation(s)
- Sean P Arlauckas
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Manoj Kumar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anatoliy V Popov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Harish Poptani
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Cellular and Molecular Physiology, Institute of Regenerative Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Edward J Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Investigation of discriminant metabolites in tamoxifen-resistant and choline kinase-alpha-downregulated breast cancer cells using 1H-nuclear magnetic resonance spectroscopy. PLoS One 2017. [PMID: 28644842 PMCID: PMC5482454 DOI: 10.1371/journal.pone.0179773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolites linked to changes in choline kinase-α (CK-α) expression and drug resistance, which contribute to survival and autophagy mechanisms, are attractive targets for breast cancer therapies. We previously reported that autophagy played a causative role in driving tamoxifen (TAM) resistance of breast cancer cells (BCCs) and was also promoted by CK-α knockdown, resulting in the survival of TAM-resistant BCCs. There is no comparative study yet about the metabolites resulting from BCCs with TAM-resistance and CK-α knockdown. Therefore, the aim of this study was to explore the discriminant metabolic biomarkers responsible for TAM resistance as well as CK-α expression, which might be linked with autophagy through a protective role. A total of 33 intracellular metabolites, including a range of amino acids, energy metabolism-related molecules and others from cell extracts of the parental cells (MCF-7), TAM-resistant cells (MCF-7/TAM) and CK-α knockdown cells (MCF-7/shCK-α, MCF-7/TAM/shCK-α) were analyzed by proton nuclear magnetic resonance spectroscopy (1H-NMRS). Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) revealed the existence of differences in the intracellular metabolites to separate the 4 groups: MCF-7 cells, MCF-7/TAM cells, MCF-7-shCK-α cells, and MCF-7/TAM/shCK-α cells. The metabolites with VIP>1 contributed most to the differentiation of the cell groups, and they included fumarate, UA (unknown A), lactate, myo-inositol, glycine, phosphocholine, UE (unknown E), glutamine, formate, and AXP (AMP/ADP/ATP). Our results suggest that these altered metabolites would be promising metabolic biomarkers for a targeted therapeutic strategy in BCCs that exhibit TAM-resistance and aberrant CK-α expression, which triggers a survival and drug resistance mechanism.
Collapse
|
23
|
Schiaffino-Ortega S, Kimatrai-Salvador M, Baglioni E, Gallo MA, Entrena Guadix A, Lopez-Cara LC. 1 H and 13 C NMR spectral assignments of 1,1'-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium and -bisquinolinium bromide derivatives. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:905-911. [PMID: 27402422 DOI: 10.1002/mrc.4468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Santiago Schiaffino-Ortega
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain
| | - María Kimatrai-Salvador
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain
| | - Eleonora Baglioni
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain
| | - Miguel Angel Gallo
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain
| | - Antonio Entrena Guadix
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain.
| | - Luisa Carlota Lopez-Cara
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain.
| |
Collapse
|
24
|
Chen X, Qiu H, Wang C, Yuan Y, Tickner J, Xu J, Zou J. Molecular structure and differential function of choline kinases CHKα and CHKβ in musculoskeletal system and cancer. Cytokine Growth Factor Rev 2016; 33:65-72. [PMID: 27769579 DOI: 10.1016/j.cytogfr.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Choline, a hydrophilic cation, has versatile physiological roles throughout the body, including cholinergic neurotransmission, memory consolidation and membrane biosynthesis and metabolism. Choline kinases possess enzyme activity that catalyses the conversion of choline to phosphocholine, which is further converted to cytidine diphosphate-coline (CDP-choline) in the biosynthesis of phosphatidylcholine (PC). PC is a major constituent of the phospholipid bilayer which constitutes the eukaryotic cell membrane, and regulates cell signal transduction. Choline Kinase consists of three isoforms, CHKα1, CHKα2 and CHKβ, encoded by two separate genes (CHKA(Human)/Chka(Mouse) and CHKB(Human)/Chkb(Mouse)). Both isoforms have similar structures and enzyme activity, but display some distinct molecular structural domains and differential tissue expression patterns. Whilst Choline Kinase was discovered in early 1950, its pivotal role in the development of muscular dystrophy, bone deformities, and cancer has only recently been identified. CHKα has been proposed as a cancer biomarker and its inhibition as an anti-cancer therapy. In contrast, restoration of CHKβ deficiency through CDP-choline supplements like citicoline may be beneficial for the treatment of muscular dystrophy, bone metabolic diseases, and cognitive conditions. The molecular structure and expression pattern of Choline Kinase, the differential roles of Choline Kinase isoforms and their potential as novel therapeutic targets for muscular dystrophy, bone deformities, cognitive conditions and cancer are discussed.
Collapse
Affiliation(s)
- Xi Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Sports Science, Wenzhou Medical University, Wenzhou, 325035, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Heng Qiu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Chao Wang
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jiake Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia.
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
25
|
Iorio E, Caramujo MJ, Cecchetti S, Spadaro F, Carpinelli G, Canese R, Podo F. Key Players in Choline Metabolic Reprograming in Triple-Negative Breast Cancer. Front Oncol 2016; 6:205. [PMID: 27747192 PMCID: PMC5043614 DOI: 10.3389/fonc.2016.00205] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC), defined as lack of estrogen and progesterone receptors in the absence of protein overexpression/gene amplification of human epidermal growth factor receptor 2, is still a clinical challenge despite progress in breast cancer care. 1H magnetic resonance spectroscopy allows identification and non-invasive monitoring of TNBC metabolic aberrations and elucidation of some key mechanisms underlying tumor progression. Thus, it has the potential to improve in vivo diagnosis and follow-up and also to identify new targets for treatment. Several studies have shown an altered phosphatidylcholine (PtdCho) metabolism in TNBCs, both in patients and in experimental models. Upregulation of choline kinase-alpha, an enzyme of the Kennedy pathway that phosphorylates free choline (Cho) to phosphocholine (PCho), is a major contributor to the increased PCho content detected in TNBCs. Phospholipase-mediated PtdCho headgroup hydrolysis also contributes to the build-up of a PCho pool in TNBC cells. The oncogene-driven PtdCho cycle appears to be fine tuned in TNBC cells in at least three ways: by modulating the choline import, by regulating the activity or expression of specific metabolic enzymes, and by contributing to the rewiring of the entire metabolic network. Thus, only by thoroughly dissecting these mechanisms, it will be possible to effectively translate this basic knowledge into further development and implementation of Cho-based imaging techniques and novel classes of therapeutics.
Collapse
Affiliation(s)
- Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Maria José Caramujo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Francesca Spadaro
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità , Rome , Italy
| | - Giulia Carpinelli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Rossella Canese
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
26
|
Trousil S, Kaliszczak M, Schug Z, Nguyen QD, Tomasi G, Favicchio R, Brickute D, Fortt R, Twyman FJ, Carroll L, Kalusa A, Navaratnam N, Adejumo T, Carling D, Gottlieb E, Aboagye EO. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget 2016; 7:37103-37120. [PMID: 27206796 PMCID: PMC5095062 DOI: 10.18632/oncotarget.9466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/25/2016] [Indexed: 12/25/2022] Open
Abstract
The glycerophospholipid phosphatidylcholine is the most abundant phospholipid species of eukaryotic membranes and essential for structural integrity and signaling function of cell membranes required for cancer cell growth. Inhibition of choline kinase alpha (CHKA), the first committed step to phosphatidylcholine synthesis, by the selective small-molecule ICL-CCIC-0019, potently suppressed growth of a panel of 60 cancer cell lines with median GI50 of 1.12 μM and inhibited tumor xenograft growth in mice. ICL-CCIC-0019 decreased phosphocholine levels and the fraction of labeled choline in lipids, and induced G1 arrest, endoplasmic reticulum stress and apoptosis. Changes in phosphocholine cellular levels following treatment could be detected non-invasively in tumor xenografts by [18F]-fluoromethyl-[1,2-2H4]-choline positron emission tomography. Herein, we reveal a previously unappreciated effect of choline metabolism on mitochondria function. Comparative metabolomics demonstrated that phosphatidylcholine pathway inhibition leads to a metabolically stressed phenotype analogous to mitochondria toxin treatment but without reactive oxygen species activation. Drug treatment decreased mitochondria function with associated reduction of citrate synthase expression and AMPK activation. Glucose and acetate uptake were increased in an attempt to overcome the metabolic stress. This study indicates that choline pathway pharmacological inhibition critically affects the metabolic function of the cell beyond reduced synthesis of phospholipids.
Collapse
Affiliation(s)
- Sebastian Trousil
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Maciej Kaliszczak
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Zachary Schug
- Cancer Research UK, Beatson Institute, Garscube Estate, Glasgow, UK
| | - Quang-De Nguyen
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Giampaolo Tomasi
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Rosy Favicchio
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Robin Fortt
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Frazer J. Twyman
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Andrew Kalusa
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Naveenan Navaratnam
- Cellular Stress Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | - Thomas Adejumo
- Cellular Stress Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | - David Carling
- Cellular Stress Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | - Eyal Gottlieb
- Cancer Research UK, Beatson Institute, Garscube Estate, Glasgow, UK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
27
|
Smith TAD, Phyu SM. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells. PLoS One 2016; 11:e0151179. [PMID: 26959405 PMCID: PMC4784930 DOI: 10.1371/journal.pone.0151179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho) metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined. METHODS MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U)]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK), CTP:phosphocholine cytidylyl transferase (CCT) and PtdCho-phospholipase C (PLC) were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography. RESULTS Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U)]glucose. CONCLUSION This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.
Collapse
Affiliation(s)
- Tim A. D. Smith
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Su M. Phyu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
28
|
Smith T, Phyu S. Determination of Rate of [3H-methyl]-choline Incorporation into Cellular Lipids and Non-lipid Metabolites. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|