1
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
3
|
Harris AD, Amiri H, Bento M, Cohen R, Ching CRK, Cudalbu C, Dennis EL, Doose A, Ehrlich S, Kirov II, Mekle R, Oeltzschner G, Porges E, Souza R, Tam FI, Taylor B, Thompson PM, Quidé Y, Wilde EA, Williamson J, Lin AP, Bartnik-Olson B. Harmonization of multi-scanner in vivo magnetic resonance spectroscopy: ENIGMA consortium task group considerations. Front Neurol 2023; 13:1045678. [PMID: 36686533 PMCID: PMC9845632 DOI: 10.3389/fneur.2022.1045678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings. Based on the experience of the ENIGMA MRS work group and a review of the literature, this manuscript provides an overview of the current state of MRS data harmonization. Key factors that need to be taken into consideration when conducting both retrospective and prospective studies are described. These include (1) MRS acquisition issues such as pulse sequence, RF and B0 calibrations, echo time, and SNR; (2) data processing issues such as pre-processing steps, modeling, and quantitation; and (3) biological factors such as voxel location, age, sex, and pathology. Various approaches to MRS data harmonization are then described including meta-analysis, mega-analysis, linear modeling, ComBat and artificial intelligence approaches. The goal is to provide both novice and experienced readers with the necessary knowledge for conducting MRS data harmonization studies.
Collapse
Affiliation(s)
- Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Houshang Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mariana Bento
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Ronald Cohen
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, United States
| | - Christina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ivan I. Kirov
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY, United States
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric Porges
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Roberto Souza
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Friederike I. Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Brian Taylor
- Division of Diagnostic Imaging, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, United States
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Elisabeth A. Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - John Williamson
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Alexander P. Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
4
|
Petr J, Hogeboom L, Nikulin P, Wiegers E, Schroyen G, Kallehauge J, Chmelík M, Clement P, Nechifor RE, Fodor LA, De Witt Hamer PC, Barkhof F, Pernet C, Lequin M, Deprez S, Jančálek R, Mutsaerts HJMM, Pizzini FB, Emblem KE, Keil VC. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. MAGMA (NEW YORK, N.Y.) 2022; 35:163-186. [PMID: 34919195 PMCID: PMC8901489 DOI: 10.1007/s10334-021-00985-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022]
Abstract
Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.
Collapse
Affiliation(s)
- Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Louise Hogeboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Evita Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gwen Schroyen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jesper Kallehauge
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Marek Chmelík
- Department of Technical Disciplines in Medicine, Faculty of Health Care, University of Prešov, Prešov, Slovakia
| | - Patricia Clement
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Ruben E Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Liviu-Andrei Fodor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Evidence Based Psychological Assessment and Interventions Doctoral School, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cyril Pernet
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Maarten Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Radim Jančálek
- St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Francesca B Pizzini
- Radiology, Deptartment of Diagnostic and Public Health, Verona University, Verona, Italy
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Shyu C, Elsaid S, Truong P, Chavez S, Le Foll B. MR Spectroscopy of the Insula: Within- and between-Session Reproducibility of MEGA-PRESS Measurements of GABA+ and Other Metabolites. Brain Sci 2021; 11:brainsci11111538. [PMID: 34827537 PMCID: PMC8615582 DOI: 10.3390/brainsci11111538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
The insula plays a critical role in many neuropsychological disorders. Research investigating its neurochemistry with magnetic resonance spectroscopy (MRS) has been limited compared with cortical regions. Here, we investigate the within-session and between-session reproducibility of metabolite measurements in the insula on a 3T scanner. We measure N-acetylaspartate + N-acetylaspartylglutamate (tNAA), creatine + phosphocreatine (tCr), glycerophosphocholine + phosphocholine (tCho), myo-inositol (Ins), glutamate + glutamine (Glx), and γ-aminobutyric acid (GABA) in one cohort using a j-edited MEGA-PRESS sequence. We measure tNAA, tCr, tCho, Ins, and Glx in another cohort with a standard short-TE PRESS sequence as a reference for the reproducibility metrics. All participants were scanned 4 times identically: 2 back-to-back scans each day, on 2 days. Preprocessing was done using LCModel and Gannet. Reproducibility was determined using Pearson’s r, intraclass-correlation coefficients (ICC), coefficients of variation (CV%), and Bland–Altman plots. A MEGA-PRESS protocol requiring averaged results over two 6:45-min scans yielded reproducible GABA measurements (CV% = 7.15%). This averaging also yielded reproducibility metrics comparable to those from PRESS for the other metabolites. Voxel placement inconsistencies did not affect reproducibility, and no sex differences were found. The data suggest that MEGA-PRESS can reliably measure standard metabolites and GABA in the insula.
Collapse
Affiliation(s)
- Claire Shyu
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M5S 2S1, Canada; (C.S.); (S.E.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (P.T.); (S.C.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sonja Elsaid
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M5S 2S1, Canada; (C.S.); (S.E.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (P.T.); (S.C.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter Truong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (P.T.); (S.C.)
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (P.T.); (S.C.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M5S 2S1, Canada; (C.S.); (S.E.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Concurrent Outpatient Medical & Psychosocial Addiction Support Services, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|