1
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Gard A, Kornaropoulos EN, Portonova Wernersson M, Rorsman I, Blennow K, Zetterberg H, Tegner Y, De Maio A, Markenroth Bloch K, Björkman-Burtscher I, Pessah-Rasmussen H, Nilsson M, Marklund N. Widespread White Matter Abnormalities in Concussed Athletes Detected by 7T Diffusion Magnetic Resonance Imaging. J Neurotrauma 2024; 41:1533-1549. [PMID: 38481124 PMCID: PMC11564857 DOI: 10.1089/neu.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Sports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling. Twenty-two athletes with PPCS and 22 controls were included. Concussed athletes performed below norms and significantly lower than controls on all but one of the psychometric neuropsychology tests. Supratentorial white and gray matter, as well as hippocampal volumes did not differ between concussed athletes and controls. However, of the 72 examined white matter tracts, 16% of DTI and 35% of DKI metrics (in total 28%) were significantly different between concussed athletes and controls. DKI fractional anisotropy and axial kurtosis were increased, and DKI radial diffusivity and radial kurtosis decreased in concussed athletes when compared with controls. CSF neurofilament light (NfL; an axonal injury marker), although not glial fibrillary acidic protein, correlated with several diffusion metrics. In this first 7T DTI and DKI study investigating PPCS, widespread microstructural alterations were observed in the white matter, correlating with CSF markers of axonal injury. More white matter changes were observed using DKI than using DTI. These white matter alterations may indicate persistent pathophysiological processes following concussion in sport.
Collapse
Affiliation(s)
- Anna Gard
- Department of Clinical Sciences Lund, Neurosurgery, Neurology, Lund University, Lund, Sweden
| | - Evgenios N. Kornaropoulos
- Department of Clinical Sciences Lund, Diagnostic Radiology, Neurology, Lund University, Lund, Sweden
| | - Maria Portonova Wernersson
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Neurology, Lund University, Lund, Sweden
| | - Ia Rorsman
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Yelverton Tegner
- Department of Health, Education and Technology, Division of Health and Rehabilitation, Luleå University of Technology, Luleå, Sweden
| | - Alessandro De Maio
- Department of Radiological, Oncological and Pathological Sciences. Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Karin Markenroth Bloch
- Department of Clinical Sciences Lund, Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Isabella Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hélène Pessah-Rasmussen
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Neurology, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences Lund, Diagnostic Radiology, Neurology, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Mehdizadeh N, Wilman AH. Myelin water fraction mapping from multiple echo spin echoes and an independent B 1 + map. Magn Reson Med 2022; 88:1380-1390. [PMID: 35576121 PMCID: PMC9321077 DOI: 10.1002/mrm.29286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Purpose Myelin water fraction (MWF) is often obtained from a multiple echo spin echo (MESE) sequence using multi‐component T2 fitting with non‐negative least squares. This process fits many unknowns including B1+ to produce a T2 spectrum for each voxel. Presented is an alternative using a rapid B1+ mapping sequence to supply B1+ for the MWF fitting procedure. Methods Effects of B1+ errors on MWF calculations were modeled for 2D and 3D MESE using Bloch and extended phase graph simulations, respectively. Variations in SNR and relative refocusing widths were tested. Human brain experiments at 3 T used 2D MESE and an independent B1+ map. MWF maps were produced with the standard approach and with the use of the independent B1+ map. Differences in B1+ and mean MWF in specific brain regions were compared. Results For 2D MESE, MWF with the standard method was strongly affected by B1+ misestimations arising from limited SNR and response asymmetry around 180°, which decreased with increasing relative refocusing width. Using an independent B1+ map increased mean MWF and decreased coefficient of variation. Notable differences in vivo in 2D MESE were in areas of high B1+ such as thalamus and splenium where mean MWF increased by 88% and 31%, respectively (P < 0.001). Simulations also demonstrated the advantages of this approach for 3D MESE when SNR is <500. Conclusion For 2D MESE, because of increased complexity of decay curves and limited SNR, supplying B1+ improves MWF results in peripheral and central brain regions where flip angles differ substantially from 180°.
Collapse
Affiliation(s)
- Nima Mehdizadeh
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Olsson H, Andersen M, Wirestam R, Helms G. Mapping magnetization transfer saturation (MT sat ) in human brain at 7T: Protocol optimization under specific absorption rate constraints. Magn Reson Med 2021; 86:2562-2576. [PMID: 34196043 DOI: 10.1002/mrm.28899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/19/2021] [Accepted: 06/02/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To optimize a whole-brain magnetization transfer saturation (MTsat ) protocol at 7T, focusing on maximizing obtainable MTsat under the constraints of specific absorption rate (SAR) and transmit field inhomogeneity, while avoiding bias and keeping scan time short. THEORY AND METHODS MTsat is a semi-quantitative metric, obtained by spoiled gradient-echo MRI in the imaging steady-state. Optimization was based on an established 7T dual flip angle protocol, and focused on MT pulse, readout flip angle, repetition time (TR), offset frequency (Δ), and correction of residual effects from transmit field inhomogeneities by separate flip angle mapping. RESULTS A 100% SAR level was reached at a 180° MT pulse flip angle, using a compact sinc main lobe (4 ms duration) and minimum TR = 26.5 ms. The use of Δ = +2.0 kHz caused no discernible direct saturation, while Δ = -2.0 kHz resulted in 45% higher MTsat in white matter (WM) compared to Δ = +2.0 kHz. A 4° readout flip angle eliminated bias while yielding a good signal-to-noise ratio. Increased TR yielded only a little increase in MTsat , and TR = 26.5 ms (scan time 04:58 min) was thus selected. Post hoc transmit field correction clearly improved homogeneity, especially in WM. CONCLUSIONS The range of MTsat is limited at 7T, and this can partly be overcome by the exploitation of the asymmetry of the macromolecular lineshape through the sign of Δ. To reduce scan time, a compact MT pulse with a sufficiently narrow frequency response should be used. TR and readout flip angle should be kept short/small. Transmit field correction through separate flip angle mapping is required.
Collapse
Affiliation(s)
- Hampus Olsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mads Andersen
- Philips Healthcare, Copenhagen, Denmark.,Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gunther Helms
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|