1
|
Liu C, Ye Y, Guo Y, Zhou Y, Zhu Y, Liu X, Xu J, Zheng H, Liang D, Wang H. Wave-CAIPI Multiparameter MR Imaging in Neurology. NMR IN BIOMEDICINE 2025; 38:e5322. [PMID: 39873209 DOI: 10.1002/nbm.5322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow. This method facilitates the synthesis of multiple qualitative contrast-weighted images and relaxometric parametric maps. A single WAMP scan generates multiple contrast-weighted images and relaxometric parametric maps, including PD-weighted (PDW), T1-weighted (T1W), T2*-weighted (T2W), adjusted T1-weighted (aT1W), susceptibility-weighted imaging (SWI), B1t map, T1 map, T2/R2* map, PD map, and quantitative susceptibility mapping (QSM). Both phantom and in vivo experiments have demonstrated that the proposed method can achieve high image quality and quantification accuracy even at high acceleration factors of 4 and 9. The experiments have confirmed that the rapid single scan method can be effectively applied in clinical neurology, serving as a valuable diagnostic tool for conditions such as pediatric tuberous sclerosis complex (TSC)-related epilepsy, adult Parkinson's disease, and suspected stroke patient. The WAMP method holds substantial potential for advancing multiparametric MR imaging in clinical neurology, promising significant improvements in both diagnostic speed and accuracy.
Collapse
Affiliation(s)
- Congcong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yongquan Ye
- United Imaging Healthcare, Houston, Texas, USA
| | - Yifan Guo
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yihang Zhou
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- United Imaging Healthcare, Houston, Texas, USA
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haifeng Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Ye Y, Xu J, Zhang Z, Zhang Y, Zhao Q, Xu J, Yuan H. Complex multi-dimensional integration for T 2* and R 2* mapping. Magn Reson Imaging 2024; 108:29-39. [PMID: 38301862 DOI: 10.1016/j.mri.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
A dual Multi-Dimensional Integration (dMDI) method was proposed and demonstrated for T2* and R2* mapping. By constructing and jointly using both the original MDI term and an inversed MDI term, T2* and R2* mapping can be performed independently with intrinsic background noise suppression and spike elimination, allowing for high quantitative accuracy and robustness over a wide range of T2*. dMDI was compared to original MDI and curve fitting methods in terms of quantitative specificity, accuracy, reliability and computational efficiency. All methods were tested and compared via simulation and in vivo data. With high signal-to-noise-ratio (SNR), the proposed dMDI method yielded T2*and R2* values similar to curve fitting methods. For low SNR and background noise signals, the dMDI yielded low T2* and R2* values, thus effectively suppressing all background noise. Virtually zero spikes were observed in dMDI T2* and R2* maps in all simulation and imaging results. The dMDI method has the potential to provide improved and reliable T2* and R2* mapping results in routine and SNR-challenging scenarios.
Collapse
Affiliation(s)
- Yongquan Ye
- United Imaging Healthcare, Houston, TX, USA.
| | - Jian Xu
- United Imaging Healthcare, Houston, TX, USA
| | | | - Yan Zhang
- Beijing United Imaging Intelligent Imaging Technology Research Institute, Beijing, China
| | - Qiang Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jiajia Xu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Duan M, Pan R, Gao Q, Wu X, Lin H, Yuan J, Zhang Y, Liu L, Tian Y, Fu T. A rapid multi-parametric quantitative MR imaging method to assess Parkinson's disease: a feasibility study. BMC Med Imaging 2024; 24:58. [PMID: 38443786 PMCID: PMC10916029 DOI: 10.1186/s12880-024-01229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND MULTIPLEX is a single-scan three-dimensional multi-parametric MRI technique that provides 1 mm isotropic T1-, T2*-, proton density- and susceptibility-weighted images and the corresponding quantitative maps. This study aimed to investigate its feasibility of clinical application in Parkinson's disease (PD). METHODS 27 PD patients and 23 healthy control (HC) were recruited and underwent a MULTIPLEX scanning. All image reconstruction and processing were automatically performed with in-house C + + programs on the Automatic Differentiation using Expression Template platform. According to the HybraPD atlas consisting of 12 human brain subcortical nuclei, the region-of-interest (ROI) based analysis was conducted to extract quantitative parameters, then identify PD-related abnormalities from the T1, T2* and proton density maps and quantitative susceptibility mapping (QSM), by comparing patients and HCs. RESULTS The ROI-based analysis revealed significantly decreased mean T1 values in substantia nigra pars compacta and habenular nuclei, mean T2* value in subthalamic nucleus and increased mean QSM value in subthalamic nucleus in PD patients, compared to HCs (all p values < 0.05 after FDR correction). The receiver operating characteristic analysis showed all these four quantitative parameters significantly contributed to PD diagnosis (all p values < 0.01 after FDR correction). Furthermore, the two quantitative parameters in subthalamic nucleus showed hemicerebral differences in regard to the clinically dominant side among PD patients. CONCLUSIONS MULTIPLEX might be feasible for clinical application to assist in PD diagnosis and provide possible pathological information of PD patients' subcortical nucleus and dopaminergic midbrain regions.
Collapse
Affiliation(s)
- Min Duan
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Pan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yamei Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Lindong Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China.
| | - Tong Fu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Zang Z, Song T, Li J, Yan S, Nie B, Mei S, Ma J, Yang Y, Shan B, Zhang Y, Lu J. Modulation effect of substantia nigra iron deposition and functional connectivity on putamen glucose metabolism in Parkinson's disease. Hum Brain Mapp 2022; 43:3735-3744. [PMID: 35471638 PMCID: PMC9294292 DOI: 10.1002/hbm.25880] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegeneration of the substantia nigra affects putamen activity in Parkinson's disease (PD), yet in vivo evidence of how the substantia nigra modulates putamen glucose metabolism in humans is missing. We aimed to investigate how substantia nigra modulates the putamen glucose metabolism using a cross-sectional design. Resting-state fMRI, susceptibility-weighted imaging, and [18 F]-fluorodeoxyglucose-PET (FDG-PET) data were acquired. Forty-two PD patients and 25 healthy controls (HCs) were recruited for simultaneous PET/MRI scanning. The main measurements of the current study were R 2 * images representing iron deposition (28 PD and 25 HCs), standardized uptake value ratio (SUVr) images representing FDG-uptake (33 PD and 25 HCs), and resting state functional connectivity maps from resting state fMRI (34 PD and 25 HCs). An interaction term based on the general linear model was used to investigate the joint modulation effect of nigral iron deposition and nigral-putamen functional connectivity on putamen FDG-uptake. Compared with HCs, we found increased iron deposition in the substantia nigra (p = .007), increased FDG-uptake in the putamen (left: PFWE < 0.001; right: PFWE < 0.001), and decreased functional connectivity between the substantia nigra and the anterior putamen (left PFWE < 0.001, right: PFWE = 0.007). We then identified significant interaction effect of nigral iron deposition and nigral-putamen connectivity on FDG-uptake in the putamen (p = .004). The current study demonstrated joint modulation effect of the substantia nigra iron deposition and nigral-putamen functional connectivity on putamen glucose metabolic distribution, thereby revealing in vivo pathological mechanism of nigrostriatal neurodegeneration of PD.
Collapse
Affiliation(s)
- Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentInstitute of High Energy Physics, Chinese Academy of SciencesChina
| | - Shanshan Mei
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Ma
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Yu Yang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentInstitute of High Energy Physics, Chinese Academy of SciencesChina
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
5
|
Ye Y, Lyu J, Hu Y, Zhang Z, Xu J, Zhang W, Yuan J, Zhou C, Fan W, Zhang X. Augmented T 1 -weighted steady state magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4729. [PMID: 35297115 DOI: 10.1002/nbm.4729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
T1 contrasts obtained using short-TR incoherent steady state gradient echo (GRE) methods are generally suboptimal, to which non-T1 factors in the signals play a major part. In this work, we proposed an augmented T1 -weighted (aT1 W) method to extract the signal ratio between routine GRE T1 W and proton density-weighted signals that effectively removes the non-T1 effects from the original T1 W signals, including proton density, T2 * decay, and coil sensitivity. A recently proposed multidimensional integration (MDI) technique was incorporated in the aT1 W calculation for better signal-to-noise ratio (SNR) performance. For comparison between aT1 W and T1 W results, Monte Carlo noise analysis was performed via simulation and on scanned data, and region-of-interest (ROI) analysis and comparison was performed on the system phantom. For brain scans, the image contrast, noise behavior, and SNR of aT1 W images were compared with routine GRE and inversion-recovery-based T1 W images. The proposed aT1 W method yielded saliently improved T1 contrasts (potentially > 30% higher contrast-to-noise ratio [CNR]) than routine GRE T1 W images. Good spatial homogeneity and signal consistency as well as high SNR/CNR were achieved in aT1 W images using the MDI technique. For contrast-enhanced (CE) imaging, aT1 W offered stronger post-CE contrast and better boundary delineation than T1 MPRAGE images while using a shorter scan time.
Collapse
Affiliation(s)
| | | | - Yichen Hu
- UIH America, Inc., Houston, Texas, USA
| | | | - Jian Xu
- UIH America, Inc., Houston, Texas, USA
| | | | - Jianmin Yuan
- Central Research Institute, UIH Group, Shanghai, China
| | - Chao Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Ye Y, Lyu J, Hu Y, Zhang Z, Xu J, Zhang W. MULTI-parametric MR imaging with fLEXible design (MULTIPLEX). Magn Reson Med 2022; 87:658-673. [PMID: 34464011 DOI: 10.1002/mrm.28999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To introduce a gradient echo (GRE) -based method, namely MULTIPLEX, for single-scan 3D multi-parametric MRI with high resolution, signal-to-noise ratio (SNR), accuracy, efficiency, and acquisition flexibility. THEORY With a comprehensive design with dual-repetition time (TR), dual flip angle (FA), multi-echo, and optional flow modulation features, the MULTIPLEX signals contain information on radiofrequency (RF) B1t fields, proton density, T1 , susceptibility and blood flows, facilitating multiple qualitative images and parametric maps. METHODS MULTIPLEX was evaluated on system phantom and human brains, via visual inspection for image contrasts and quality or quantitative evaluation via simulation, phantom scans and literature comparison. Region-of-interest (ROI) analysis was performed on parametric maps of the system phantom and brain scans, extracting the mean and SD of the T1 , T2∗ , proton density (PD), and/or quantitative susceptibility mapping (QSM) values for comparison with reference values or literature. RESULTS One MULTIPLEX scan offers multiple sets of images, including but not limited to: composited PDW/T1 W/ T2∗ W, aT1 W, SWI, MRA (optional), B1t map, T1 map, T2∗ / R2∗ maps, PD map, and QSM. The quantitative error of phantom T1 , T2∗ and PD mapping were <5%, and those in brain scans were in good agreement with literature. MULTIPLEX scan times for high resolution (0.68 × 0.68 × 2 mm3 ) whole brain coverage were about 7.5 min, while processing times were <1 min. With flow modulation, additional MRA images can be obtained without affecting the quality or accuracy of other images. CONCLUSION The proposed MUTLIPLEX method possesses great potential for multi-parametric MR imaging.
Collapse
Affiliation(s)
| | | | - Yichen Hu
- UIH America, Inc., Houston, Texas, USA
| | | | - Jian Xu
- UIH America, Inc., Houston, Texas, USA
| | | |
Collapse
|