1
|
Bornstein MR, Tian R, Arany Z. Human cardiac metabolism. Cell Metab 2024; 36:1456-1481. [PMID: 38959861 PMCID: PMC11290709 DOI: 10.1016/j.cmet.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
The heart is the most metabolically active organ in the human body, and cardiac metabolism has been studied for decades. However, the bulk of studies have focused on animal models. The objective of this review is to summarize specifically what is known about cardiac metabolism in humans. Techniques available to study human cardiac metabolism are first discussed, followed by a review of human cardiac metabolism in health and in heart failure. Mechanistic insights, where available, are reviewed, and the evidence for the contribution of metabolic insufficiency to heart failure, as well as past and current attempts at metabolism-based therapies, is also discussed.
Collapse
Affiliation(s)
- Marc R Bornstein
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Zoltan Arany
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Malloy CR, Sherry AD, Alger JR, Jin ES. Recent progress in analysis of intermediary metabolism by ex vivo 13 C NMR. NMR IN BIOMEDICINE 2023; 36:e4817. [PMID: 35997012 DOI: 10.1002/nbm.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Advanced imaging technologies, large-scale metabolomics, and the measurement of gene transcripts or enzyme expression all enable investigations of intermediary metabolism in human patients. Complementary information about fluxes in individual metabolic pathways may be obtained by ex vivo 13 C NMR of blood or tissue biopsies. Simple molecules such as 13 C-labeled glucose are readily administered to patients prior to surgical biopsies, and 13 C-labeled glycerol is easily administered orally to outpatients. Here, we review recent progress in practical applications of 13 C NMR to study cancer biology, the response to oxidative stress, gluconeogenesis, triglyceride synthesis in patients, as well as new insights into compartmentation of metabolism in the cytosol. The technical aspects of obtaining the sample, preparing material for analysis, and acquiring the spectra are relatively simple. This approach enables convenient, valuable, and quantitative insights into intermediary metabolism in patients.
Collapse
Affiliation(s)
- Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Veterans Affairs North Texas Healthcare System, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Jeffry R Alger
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Shestov AA, Nath K, Nelson DS, Wasik MA, Glickson JD. Bonded cumomer analysis of tumor metabolism based on 13 C magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2023; 36:e4716. [PMID: 35196744 DOI: 10.1002/nbm.4716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Bonded cumomers are sets of isotopomers of 13 C-labeled metabolites containing a particular sequence of contiguously or singly labeled carbon atoms. Only these isotopomers contribute to multiplet structure in the 13 C NMR spectrum. We discuss the application of this technique to the study of quantitative tumor metabolism, bioenergetics, and the Warburg effect. The advantages and sensitivity of bonded cumomer analysis over positional enrichment analysis are discussed. When sensitivity requirements are met, bonded cumomer analysis enables the extraction of fluxes through specific metabolic pathways with higher precision. In conjunction with isotopomer control analysis, we evaluate the sensitivity of experimentally measurable metabolite multiplets to determine the robustness of flux analysis in 13 C spectra of tumors. This review examines the role of glycolytic and tricarboxylic acid cycle metabolism with special emphasis on flux through the pentose phosphate pathway (PPP). The impact of reversibility of the nonoxidative branch of the PPP with various 13 C glucose tracers on fine-structure multiplets is analyzed.
Collapse
Affiliation(s)
- Alexander A Shestov
- Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kavindra Nath
- Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David S Nelson
- Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jerry D Glickson
- Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
5
|
Karlstaedt A. Stable Isotopes for Tracing Cardiac Metabolism in Diseases. Front Cardiovasc Med 2021; 8:734364. [PMID: 34859064 PMCID: PMC8631909 DOI: 10.3389/fcvm.2021.734364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Although metabolic remodeling during cardiovascular diseases has been well-recognized for decades, the recent development of analytical platforms and mathematical tools has driven the emergence of assessing cardiac metabolism using tracers. Metabolism is a critical component of cellular functions and adaptation to stress. The pathogenesis of cardiovascular disease involves metabolic adaptation to maintain cardiac contractile function even in advanced disease stages. Stable-isotope tracer measurements are a powerful tool for measuring flux distributions at the whole organism level and assessing metabolic changes at a systems level in vivo. The goal of this review is to summarize techniques and concepts for in vivo or ex vivo stable isotope labeling in cardiovascular research, to highlight mathematical concepts and their limitations, to describe analytical methods at the tissue and single-cell level, and to discuss opportunities to leverage metabolic models to address important mechanistic questions relevant to all patients with cardiovascular disease.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|