1
|
Cheng W, Zeng W, Guo J, Dai J, Zhou F, Li F, Fang X. Radiomics analysis of substantia nigra on multi-echo susceptibility map-weighted imaging for differentiating Parkinson's disease from atypical parkinsonian syndromes. Acta Radiol 2025; 66:494-504. [PMID: 39992089 DOI: 10.1177/02841851251315707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
BackgroundWhile the "swallow tail" sign observed in the substantia nigra (SN) on susceptibility map-weighted imaging (SMWI) serves as an effective marker for differentiating patients with Parkinson's disease (PD) from healthy individuals, its visual assessment proves inadequate in differentiating PD from atypical Parkinson syndromes (APS).PurposeTo employ radiomic features extracted from multi-echo SMWI of the SN to distinguish between PD and APS.Material and MethodsSMWI data were acquired from 63 PD patients, 38 APS patients, and 89 healthy controls. The participants were randomly assigned to either training or test groups in a 7:3 proportion. Utilizing the PyRadiomics software, a set of radiomic features were extracted from SN for analysis. Features underwent standardization via the maximum-minimum method, with 166 statistically significant features identified through independent t-tests. To minimize the risk of overfitting, the least absolute shrinkage and selection operator (LASSO) algorithm was implemented to identify and select the five most significant features from the radiomic dataset. Five distinct machine-learning classifiers were developed to distinguish between PD, APS, and healthy controls. The SHapley Additive Explanations was employed to gain insights into and visualize the relative importance of each feature within these models.ResultsMorphological, first-order, texture, and wavelet transform features of the SN emerged as the most crucial determinants. The light gradient-boosting machine model demonstrated superior performance in distinguishing between PD, APS, and healthy controls.ConclusionRadiomic features of the SN derived from SMWI show promise in differentiating PD from APS, potentially enhancing diagnostic accuracy in clinical settings.
Collapse
Affiliation(s)
- Weiling Cheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
- Clinical Research Center for Medical Imaging, Nanchang, PR China
| | - Wei Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
- Clinical Research Center for Medical Imaging, Nanchang, PR China
| | - Jiali Guo
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Jiankun Dai
- MRI Research, GE Healthcare, Beijing, PR China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
- Clinical Research Center for Medical Imaging, Nanchang, PR China
| | - Fangjun Li
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Xin Fang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| |
Collapse
|
2
|
Spiegel C, Marotta C, Bertram K, Vivash L, Harding IH. Brainstem and cerebellar radiological findings in progressive supranuclear palsy. Brain Commun 2025; 7:fcaf051. [PMID: 39958262 PMCID: PMC11829206 DOI: 10.1093/braincomms/fcaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Progressive supranuclear palsy is a sporadic neurodegenerative 4-repeat tauopathy associated with significant morbidity. Heterogeneity of symptom expression among this group is increasingly recognized, reflecting variable tau spread and neurodegeneration. Clinical manifestations consist of debilitating and rapidly progressive motor, oculomotor, speech, cognitive and affective impairments. Core pathological changes are noted with a predominance in the midbrain and basal ganglia; however, spread to the more caudal brainstem and cerebellar regions is reported at various stages. Accordingly, whilst midbrain atrophy is the best recognized supportive imaging finding, quantitative neuroimaging studies using MRI and PET approaches have revealed a wider profile of brain abnormalities in cohorts of individuals with progressive supranuclear palsy. This expanded neurobiological scope of disease may account for individual heterogeneity and may highlight additional biological markers that are relevant to diagnosing and tracking the illness. Additionally, there is increasing understanding of the diverse cognitive, affective and speech functions of the cerebellum, which may be implicated in progressive supranuclear palsy beyond current recognition. In this review, we undertake a systematic literature search and summary of in vivo structural and functional neuroimaging findings in the brainstem and cerebellum in progressive supranuclear palsy to date. Novel and multimodal imaging techniques have emerged over recent years, which reveal several infratentorial alterations beyond midbrain atrophy in progressive supranuclear palsy. Most saliently, there is evidence for volume loss and microstructural damage in the pons, middle cerebellar peduncles and cerebellar cortex and deep nuclei, reported alongside recognized midbrain and superior cerebellar peduncle changes. Whilst the literature supporting the presence of these features is not unanimous, the evidence base is compelling, including correlations with disease progression, severity or variant differences. A smaller number of studies report on abnormalities in MRI measures of iron deposition, neuromelanin, viscoelasticity and the glymphatic system involving the infratentorial regions. Molecular imaging studies have also shown increased uptake of tau tracer in the midbrain and cerebellar dentate nucleus, although concern remains regarding possible off-target binding. Imaging of other molecular targets has been sparse, but reports of neurotransmitter, inflammatory and synaptic density alterations in cerebellar and brainstem regions are available. Taken together, there is an established evidence base of in vivo imaging alterations in the brainstem and cerebellum which highlights that midbrain atrophy is often accompanied by other infratentorial alterations in people with progressive supranuclear palsy. Further research examining the contribution of these features to clinical morbidity and inter-individual variability in symptom expression is warranted.
Collapse
Affiliation(s)
- Chloe Spiegel
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- Department of Neurology, Alfred Health, Melbourne 3004, Australia
| | - Cassandra Marotta
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Kelly Bertram
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- Department of Neurology, Alfred Health, Melbourne 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Ian H Harding
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
3
|
Hervouin A, Bézy-Wendling J, Noury F. How to accurately quantify brain magnetic susceptibility in the context of Parkinson's disease: Validation on phantoms and healthy volunteers at 1.5 and 3 T. NMR IN BIOMEDICINE 2024; 37:e5182. [PMID: 38993048 DOI: 10.1002/nbm.5182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024]
Abstract
Currently, brain iron content represents a new neuromarker for understanding the physiopathological mechanisms leading to Parkinson's disease (PD). In vivo quantification of biological iron is possible by reconstructing magnetic susceptibility maps obtained using quantitative susceptibility mapping (QSM). Applying QSM is challenging, as up to now, no standardization of acquisition protocols and phase image processing has emerged from referenced studies. Our objectives were to compare the accuracy and the sensitivity of 10 QSM pipelines built from algorithms from the literature, applied on phantoms data and on brain data. Two phantoms, with known magnetic susceptibility ranges, were created from several solutions of gadolinium chelate. Twenty healthy volunteers from two age groups were included. Phantoms and brain data were acquired at 1.5 and 3 T, respectively. Susceptibility-weighted images were obtained using a 3D multigradient-recalled-echo sequence. For brain data, 3D anatomical T1- and T2-weighted images were also acquired to segment the deep gray nuclei of interest. Concerning in vitro data, the linear dependence of magnetic susceptibility versus gadolinium concentration and deviations from the theoretically expected values were calculated. For brain data, the accuracy and sensitivity of the QSM pipelines were evaluated in comparison with results from the literature and regarding the expected magnetic susceptibility increase with age, respectively. A nonparametric Mann-Whitney U-test was used to compare the magnetic susceptibility quantification in deep gray nuclei between the two age groups. Our methodology enabled quantifying magnetic susceptibility in human brain and the results were consistent with those from the literature. Statistically significant differences were obtained between the two age groups in all cerebral regions of interest. Our results show the importance of optimizing QSM pipelines according to the application and the targeted magnetic susceptibility range, to achieve accurate quantification. We were able to define the optimal QSM pipeline for future applications on patients with PD.
Collapse
Affiliation(s)
| | | | - Fanny Noury
- Univ Rennes, Inserm, LTSI-UMR 1099, Rennes, France
| |
Collapse
|
4
|
Ji S, Choi EJ, Sohn B, Baik K, Shin NY, Moon WJ, Park S, Song S, Lee PH, Shin DH, Oh SH, Kim EY, Lee J. Sandwich spatial saturation for neuromelanin-sensitive MRI: Development and multi-center trial. Neuroimage 2022; 264:119706. [PMID: 36349597 DOI: 10.1016/j.neuroimage.2022.119706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
Neuromelanin (NM)-sensitive MRI using a magnetization transfer (MT)-prepared T1-weighted sequence has been suggested as a tool to visualize NM contents in the brain. In this study, a new NM-sensitive imaging method, sandwichNM, is proposed by utilizing the incidental MT effects of spatial saturation RF pulses in order to generate consistent high-quality NM images using product sequences. The spatial saturation pulses are located both superior and inferior to the imaging volume, increasing MT weighting while avoiding asymmetric MT effects. When the parameters of the spatial saturation were optimized, sandwichNM reported a higher NM contrast ratio than those of conventional NM-sensitive imaging methods with matched parameters for comparability with sandwichNM (SandwichNM: 23.6 ± 5.4%; MT-prepared TSE: 20.6 ± 7.4%; MT-prepared GRE: 17.4 ± 6.0%). In a multi-vendor experiment, the sandwichNM images displayed higher means and lower standard deviations of the NM contrast ratio across subjects in all three vendors (SandwichNM vs. MT-prepared GRE; Vendor A: 28.4 ± 1.5% vs. 24.4 ± 2.8%; Vendor B: 27.2 ± 1.0% vs. 13.3 ± 1.3%; Vendor C: 27.3 ± 0.7% vs. 20.1 ± 0.9%). For each subject, the standard deviations of the NM contrast ratio across the vendors were substantially lower in SandwichNM (SandwichNM vs. MT-prepared GRE; subject 1: 1.5% vs. 8.1%, subject 2: 1.1 % vs. 5.1%, subject 3: 0.9% vs. 4.0%, subject 4: 1.1% vs. 5.3%), demonstrating consistent contrasts across the vendors. The proposed method utilizes product sequences, requiring no alteration of a sequence and, therefore, may have a wide practical utility in exploring the NM imaging.
Collapse
Affiliation(s)
- Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Eun-Jung Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Sohn
- Department of Radiology, Severance Hospital, Seoul, Republic of Korea
| | - Kyoungwon Baik
- Department of Radiology, Severance Hospital, Seoul, Republic of Korea
| | - Na-Young Shin
- Department of Radiology, Catholic University of Korea, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | | | | | - Phil Hyu Lee
- Department of Neurology, Severance Hospital, Seoul, Republic of Korea
| | | | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| | - Eung Yeop Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, Republic of Korea.
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|