1
|
Ma Z, Pan S, Yang Y, Ren H, Yin S, Chen Q, An Z, Zhao X, Xu Z. Lipid droplets: Emerging therapeutic targets for age-related metabolic diseases. Ageing Res Rev 2025; 108:102758. [PMID: 40300696 DOI: 10.1016/j.arr.2025.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Lipids metabolism is crucial in regulating aging and metabolic diseases. Lipid droplets (LDs) are dynamic, complex organelles responsible for the storage and release of neutral lipids, essential for maintaining lipid homeostasis and energy metabolism. Aging accelerates the accumulation of LDs, functional deterioration, and metabolic disorders, thereby inducing age-related metabolic diseases (ARMDs). This review examines published datasets on the association between LDs and ARMDs, focusing on the structure and function of LDs, their interactions with other organelles, and associated proteins. Furthermore, we explore the potential mechanisms by which LDs mediate the onset of ARMDs, including Alzheimer's disease (AD), sarcopenia, metabolic cardiomyopathy, non-alcoholic fatty liver disease (NAFLD), and cancer. Lastly, we discuss intervention strategies aimed at targeting LDs to improve outcomes in ARMDs, including exercise, dietary, and pharmacological interventions.
Collapse
Affiliation(s)
- Zheying Ma
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Yaming Yang
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Huiqian Ren
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Sikun Yin
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qianyu Chen
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zhenxian An
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaoqin Zhao
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
2
|
Dumitrescu IB, Drăgoi CM, Nicolae AC. From Soil to Brain: Olive Oil Attributes, Consumer Choices, Intermittent Fasting, and Their Impact on Health. Nutrients 2025; 17:1905. [PMID: 40507174 PMCID: PMC12157821 DOI: 10.3390/nu17111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2025] [Revised: 05/28/2025] [Accepted: 05/29/2025] [Indexed: 06/16/2025] Open
Abstract
Olive oil (OO) has longstanding significance in human history, particularly in the Mediterranean region, where it has been a cornerstone of diet, economy, and culture. This history adds to modern evidence-based knowledge. Background: The Mediterranean diet (MD), rich in plant-based foods and OO, has been extensively associated with improved cardiometabolic and cognitive health. Recent interest has emerged in understanding how intermittent fasting protocols may enhance these effects. Still, the quality of OO does not only lie in the extraction process; it is also dependent on the tree variety, the soil, and the agricultural practices, ending with the way in which the finished product is stored and consumed. Objectives: This review explores the synergistic potential between OO consumption and intermittent fasting, focusing on their combined impact on metabolic health, oxidative stress, and inflammatory pathways. Methods: A literature search was conducted using multiple databases to identify studies addressing the health effects of OO, fasting, and the MD. Both human and relevant preclinical studies were considered, with emphasis on those evaluating inflammatory markers, lipid metabolism, insulin sensitivity, and neuroprotective mechanisms. Results: Evidence suggests that the bioactive compounds in EVOO may potentiate the benefits of fasting by enhancing antioxidant capacity, reducing postprandial inflammation, and modulating gene expression related to cellular metabolism. Combined, these factors may support improved insulin sensitivity, reduced oxidative damage, and delayed onset of age-related diseases. Conclusions: Understanding the integrative role of OO and fasting within the MD framework could offer valuable insights for nutritional strategies aimed at preventing metabolic syndrome, type 2 diabetes, and neurodegeneration. These findings also support the need for future clinical trials exploring the timing, dosage, and dietary context in which these interventions are most effective.
Collapse
Affiliation(s)
- Ion-Bogdan Dumitrescu
- Department of Physics and Informatics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia St., 020956 Bucharest, Romania;
| | - Cristina Manuela Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia St., 020956 Bucharest, Romania;
| | - Alina Crenguța Nicolae
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia St., 020956 Bucharest, Romania;
| |
Collapse
|
3
|
Lv Y, Sun M, He Y, Zhang X, Min Y, Liu L, Yu W. Effects of induced molting on lipid accumulation in liver of aged laying hens. Poult Sci 2025; 104:104941. [PMID: 40020412 PMCID: PMC11910710 DOI: 10.1016/j.psj.2025.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
As the age of laying increases, the metabolic capacity of the liver decreases, leading to excessive lipid accumulation, which seriously affects the laying performance of laying hens. Induced molting (IM) can rejuvenate the reproductive system of older laying hens, allowing them to enter a new laying cycle. However, it remains unclear whether induced molting can enhance lipid accumulation in the liver of aged laying hens and what the underlying mechanism might be. In this study, fasting-induced molting was performed on 70-week-old Hy-line brown laying hens, and the resulting metabolic changes were analyzed using non-targeted metabolomics. Serum lipid levels, liver oxidative stress, and inflammation were measured using kits, while autophagy and lipid metabolism-related factors were assessed through immunofluorescence and western blotting. The results showed that IM could promote hepatic lipid deposition in aged laying hens, reduce hepatic steatosis and injury, lower the blood lipid level, improve hepatic antioxidant capacity and increase egg production rate. During the fasting period, the hepatic autophagic system was activated in laying hens and the level of hepatic autophagy increased. Additionally, AMPK phosphorylation levels increased, while the expression of fatty acid synthesis genes SREBP-1C, ACC, and FASN decreased (P < 0.01). The expression of PPARα, PGC 1α and CPT1A, which are associated with fatty acid oxidation, was upregulated (P < 0.01). In conclusion, IM enhanced lipid metabolism, increased liver autophagy, and improved liver function in aged laying hens.
Collapse
Affiliation(s)
- Yibo Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengqing Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yefei He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yahong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin Liu
- Guangdong Haida Group Co., Ltd. Research Institute, Guangzhou 510535, PR China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Gong Y, Zhang H, Feng J, Ying L, Ji M, Wei S, Ma Q. Time-restricted feeding improves metabolic syndrome by activating thermogenesis in brown adipose tissue and reducing inflammatory markers. Front Immunol 2025; 16:1501850. [PMID: 39925816 PMCID: PMC11802511 DOI: 10.3389/fimmu.2025.1501850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Background Obesity and metabolic syndrome (MetS) have become increasingly significant global health issues. Time-restricted feeding (TRF), as a novel dietary intervention, has garnered attention in recent years. However, there is limited research focusing on the effects of TRF on energy expenditure and systemic low-grade inflammation. This study aims to investigate the impact of TRF on weight management, glucose metabolism, insulin resistance, and lipid metabolism in male C57BL/6J mice, particularly in the context of metabolic disorders induced by a high-fat diet (HFD). Methods C57BL/6J mice were divided into two groups: a normal diet (ND) group and a high-fat diet (HFD) group. The study duration was 12 weeks. Key parameters observed included body weight, glucose tolerance (via glucose tolerance tests), insulin resistance (HOMA-IR), and insulin secretion under glucose stimulation. Additionally, liver tissue was subjected to Oil Red O staining to assess lipid accumulation, and white and brown adipose tissues were stained with hematoxylin and eosin (HE) to evaluate adipocyte size. The expression of hepatic lipogenesis-related genes (Srebp-c, Chrebp, Fasn, and Acc1) and thermogenic genes in brown adipose tissue (UCP1 and PGC-1α) were also measured. Furthermore, temperature changes in the interscapular brown adipose tissue (BAT) were monitored. Results In the ND group: TRF improved insulin resistance and reduced circulating levels of the pro-inflammatory cytokine IL-6, with a slight reduction in body weight.In the HFD group: TRF significantly mitigated weight gain, improved glucose tolerance and insulin resistance, and enhanced insulin secretion under glucose stimulation. Additionally, TRF reduced hepatic steatosis by downregulating the expression of lipogenesis-related genes in the liver. TRF also increased thermogenesis by upregulating the expression of thermogenic genes (UCP1 and PGC-1α) in BAT, while lowering serum levels of pro-inflammatory cytokines IL-6 and TNF-α, though IL-1β levels remained unchanged. Conclusion This study demonstrates that TRF can activate thermogenesis in brown adipose tissue and reduce inflammation maker, leading to an improvement in hepatic steatosis and a reduction in white adipose tissue accumulation. These findings suggest that TRF may be a promising intervention for mitigating metabolic disturbances associated with obesity and metabolic syndrome. The study provides mechanistic insights into the beneficial effects of TRF, highlighting its potential in modulating lipid metabolism and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Yueling Gong
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Traditional Chinese Medicine, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Honghui Zhang
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiang Feng
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Li Ying
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengmeng Ji
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shiyin Wei
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi (Cultivation), Guangxi, China
| | - Qiming Ma
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Msane S, Khathi A, Sosibo AM. The Effect of the 14:10-Hour Time-Restricted Feeding (TRF) Regimen on Selected Markers of Glucose Homeostasis in Diet-Induced Prediabetic Male Sprague Dawley Rats. Nutrients 2025; 17:292. [PMID: 39861423 PMCID: PMC11768421 DOI: 10.3390/nu17020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes. OBJECTIVES This study evaluated the impact of a 14:10-hour time-restricted feeding (TRF) regimen on leptin concentration, insulin sensitivity and selected markers associated with the insulin signalling pathway and glucose homeostasis in diet-induced prediabetic rats. METHODS Twenty-four male Sprague Dawley rats were obtained and randomly divided into two dietary groups: group 1 (n = 6) received a standard diet and water, while group 2 (n = 18) was provided a high-fat, high-carbohydrate (HFHC) diet supplemented with 15% fructose for a period of 20 weeks to induce prediabetes. After confirming prediabetes, an intermittent fasting (IF) regimen was assigned to the rats while also having untreated and metformin-treated prediabetic rats serving as controls. RESULTS Both IF and HFHC-Met groups yield significantly lower blood glucose, leptin and BMI results compared to the prediabetic group. The IF group yielded significantly lower insulin, HOMA-IR and HbA1C than both controls. CONCLUSIONS The study showed the potential of IF in alleviating prediabetes-induced dysregulation of glucose homeostasis and therefore warrants further investigations into its use in the management of prediabetes.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.M.); (A.M.S.)
| | | |
Collapse
|
6
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
7
|
Benjamin JI, Pati P, Luong T, Liu X, De Miguel C, Pollock JS, Pollock DM. Chronic mistimed feeding results in renal fibrosis and disrupted circadian blood pressure rhythms. Am J Physiol Renal Physiol 2024; 327:F683-F696. [PMID: 39205662 PMCID: PMC11563648 DOI: 10.1152/ajprenal.00047.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Circadian disruption is a disturbance in biological timing, which can occur within or between different organizational levels, ranging from molecular rhythms within specific cells to the misalignment of behavioral and environmental cycles. Previous work from our group showed that less than 1 wk of food restriction to the light (inactive) period is sufficient to invert diurnal blood pressure rhythms in mice. However, kidney excretory rhythms and functions remained aligned with the light-dark cycle. Shift workers have an increased risk of cardiovascular disease that may different between sexes and often have irregular mealtimes, making the possibility of mistimed feeding as a potential contributor to the development of kidney disease. Thus, we hypothesized that chronic mistimed food intake would result in adverse cardiorenal effects, with sex differences in severity. Here, we show that chronic circadian disruption via mistimed feeding results in renal fibrosis and aortic stiffness in a sex-dependent manner. Our results indicate the importance of meal timing for the maintenance of blood pressure rhythms and kidney function, particularly in males. Our results also demonstrate that females are better able to acclimate to circadian-related behavioral change. NEW & NOTEWORTHY Circadian disruption through mistimed feeding resulted in nondipping blood pressure, renal fibrosis, and arterial stiffness that were less severe in females versus males. Mice fed exclusively during the daytime maintain their circadian rhythms of locomotor activity regardless of their loss of blood pressure rhythms. Although these mice ate less food, they maintained body weight, suggesting inefficiencies in overall metabolism. These findings demonstrate the importance of maintaining optimal food intake patterns to prevent cardiorenal pathophysiology.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Paramita Pati
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tha Luong
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Xiaofen Liu
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
8
|
Kotarsky CJ, Frenett ML, Hoerle WF, Kim J, Lockwood J, Cryer L, Ives SJ. Plant-Based Dietary Protein Is Associated with Lower Metabolic Syndrome Risk in Division III Female Athletes: A Pilot Study. Nutrients 2024; 16:3486. [PMID: 39458481 PMCID: PMC11510158 DOI: 10.3390/nu16203486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND College athletes are often overlooked for metabolic syndrome (MetS), as their increased physical activity is assumed to reduce their disease risk. However, energy or macronutrient imbalance has been shown to increase risk independent of activity. The purpose of this investigation was to assess the current dietary habits of Division III female athletes and determine their associations with body composition and MetS. Secondly, we sought to determine whether dietary intake and dietary protein source (i.e., animal- and plant-based, ABP and PBP) and quality were associated with MetS, as estimated by the Simple Method for Quantifying Metabolic Syndrome (siMS) score and the siMS risk score, and whether protein pacing was associated with body composition in Division III female athletes. METHODS Stepwise linear regression determined whether age (years), body mass (kg), body mass index (BMI; kg/m2), ABP (g/d), PBP (g/d), ABP:PBP, ratio of high-quality to low-quality ABP (ABP QR), relative energy intake (kcal/kg/d), and relative protein, carbohydrate, and fat intake (g/kg/d) were predictors of siMS score and siMS risk score. RESULTS Twenty-five athletes (19.6 ± 1.3 years; 65.9 ± 7.0 kg; 23.5 ± 2.0 kg/m2; ABP 71.7 ± 28.2 g/d; PBP 30.0 ± 12.2 g/d) were included in the analyses. An inverse relationship was observed between PBP and the siMS score (F1, 22 = 5.498, p = 0.028) and siMS risk score (F1, 22 = 7.614, p = 0.011). The models explained 20% and 26% of the variance in siMS score and siMS risk score, respectively. CONCLUSIONS PBP was associated with lower MetS risk in Division III female athletes, while ABP, regardless of quality, was unrelated. These associations were independent of physical activity in this cohort of Division III female athletes.
Collapse
Affiliation(s)
- Christopher J. Kotarsky
- Department of Rehabilitation, Exercise and Nutrition Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Marissa L. Frenett
- Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| | - William F. Hoerle
- Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Jiseung Kim
- Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Jillian Lockwood
- Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Liala Cryer
- Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Stephen J. Ives
- Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| |
Collapse
|
9
|
Surugiu R, Iancu MA, Vintilescu ȘB, Stepan MD, Burdusel D, Genunche-Dumitrescu AV, Dogaru CA, Dumitra GG. Molecular Mechanisms of Healthy Aging: The Role of Caloric Restriction, Intermittent Fasting, Mediterranean Diet, and Ketogenic Diet-A Scoping Review. Nutrients 2024; 16:2878. [PMID: 39275194 PMCID: PMC11397047 DOI: 10.3390/nu16172878] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
As the population ages, promoting healthy aging through targeted interventions becomes increasingly crucial. Growing evidence suggests that dietary interventions can significantly impact this process by modulating fundamental molecular pathways. This review focuses on the potential of targeted dietary strategies in promoting healthy aging and the mechanisms by which specific nutrients and dietary patterns influence key pathways involved in cellular repair, inflammation, and metabolic regulation. Caloric restriction, intermittent fasting, the Mediterranean diet, as well as the ketogenic diet showed promising effects on promoting healthy aging, possibly by modulating mTORC1 AMPK, an insulin signaling pathway. By understanding the intricate interplay between diet and molecular pathways, we can develop personalized dietary strategies that not only prevent age-related diseases, but also promote overall health and well-being throughout the aging process.
Collapse
Affiliation(s)
- Roxana Surugiu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (R.S.); (D.B.)
| | - Mihaela Adela Iancu
- Department of Internal Medicine (Cardiology, Gastroenterology, Hepatology, Rheumatology, Geriatrics), Family Medicine, Labor Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Ștefănița Bianca Vintilescu
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (Ș.B.V.); (M.D.S.)
| | - Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (Ș.B.V.); (M.D.S.)
| | - Daiana Burdusel
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (R.S.); (D.B.)
| | | | - Carmen-Adriana Dogaru
- Department of Family Medicine, University of Medicine and Pharmacy of Craiova, St. Petru Rareș, No. 2-4, 200349 Craiova, Romania;
| | - Gheorghe Gindrovel Dumitra
- Department of Family Medicine, University of Medicine and Pharmacy of Craiova, St. Petru Rareș, No. 2-4, 200349 Craiova, Romania;
| |
Collapse
|
10
|
Msane S, Khathi A, Sosibo A. Therapeutic Potential of Various Intermittent Fasting Regimens in Alleviating Type 2 Diabetes Mellitus and Prediabetes: A Narrative Review. Nutrients 2024; 16:2692. [PMID: 39203828 PMCID: PMC11357349 DOI: 10.3390/nu16162692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Intermittent fasting has drawn significant interest in the clinical research community due to its potential to address metabolic complications such as obesity and type 2 diabetes mellitus. Various intermittent fasting regimens include alternate-day fasting (24 h of fasting followed by 24 h of eating), time-restricted fasting (fasting for 14 h and eating within a 10 h window), and the 5:2 diet (fasting for two days and eating normally for the other five days). Intermittent fasting is associated with a reduced risk of type 2 diabetes mellitus-related complications and can slow their progression. The increasing global prevalence of type 2 diabetes mellitus highlights the importance of early management. Since prediabetes is a precursor to type 2 diabetes mellitus, understanding its progression is essential. However, the long-term effects of intermittent fasting on prediabetes are not yet well understood. Therefore, this review aims to comprehensively compile existing knowledge on the therapeutic effects of intermittent fasting in managing type 2 diabetes mellitus and prediabetes.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Aubrey Sosibo
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| |
Collapse
|
11
|
Ribas-Latre A, Fernández-Veledo S, Vendrell J. Time-restricted eating, the clock ticking behind the scenes. Front Pharmacol 2024; 15:1428601. [PMID: 39175542 PMCID: PMC11338815 DOI: 10.3389/fphar.2024.1428601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Maintaining metabolic balance relies on accumulating nutrients during feeding periods and their subsequent release during fasting. In obesity and metabolic disorders, strategies aimed at reducing food intake while simulating fasting have garnered significant attention for weight loss. Caloric restriction (CR) diets and intermittent fasting (IF) interventions have emerged as effective approaches to improving cardiometabolic health. Although the comparative metabolic benefits of CR versus IF remain inconclusive, this review focuses on various forms of IF, particularly time-restricted eating (TRE). Methods This study employs a narrative review methodology, systematically collecting, synthesizing, and interpreting the existing literature on TRE and its metabolic effects. A comprehensive and unbiased search of relevant databases was conducted to identify pertinent studies, including pre-clinical animal studies and clinical trials in humans. Keywords such as "Obesity," "Intermittent Fasting," "Time-restricted eating," "Chronotype," and "Circadian rhythms" guided the search. The selected studies were critically appraised based on predefined inclusion and exclusion criteria, allowing for a thorough exploration and synthesis of current knowledge. Results This article synthesizes pre-clinical and clinical studies on TRE and its metabolic effects, providing a comprehensive overview of the current knowledge and identifying gaps for future research. It explores the metabolic outcomes of recent clinical trials employing different TRE protocols in individuals with overweight, obesity, or type II diabetes, emphasizing the significance of individual chronotype, which is often overlooked in practice. In contrast to human studies, animal models underscore the role of the circadian clock in mitigating metabolic disturbances induced by obesity through time-restricted feeding (TRF) interventions. Consequently, we examine pre-clinical evidence supporting the interplay between the circadian clock and TRF interventions. Additionally, we provide insights into the role of the microbiota, which TRE can modulate and its influence on circadian rhythms.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Joan Vendrell
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| |
Collapse
|
12
|
Mohr AE, Sweazea KL, Bowes DA, Jasbi P, Whisner CM, Sears DD, Krajmalnik-Brown R, Jin Y, Gu H, Klein-Seetharaman J, Arciero KM, Gumpricht E, Arciero PJ. Gut microbiome remodeling and metabolomic profile improves in response to protein pacing with intermittent fasting versus continuous caloric restriction. Nat Commun 2024; 15:4155. [PMID: 38806467 PMCID: PMC11133430 DOI: 10.1038/s41467-024-48355-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
The gut microbiome (GM) modulates body weight/composition and gastrointestinal functioning; therefore, approaches targeting resident gut microbes have attracted considerable interest. Intermittent fasting (IF) and protein pacing (P) regimens are effective in facilitating weight loss (WL) and enhancing body composition. However, the interrelationships between IF- and P-induced WL and the GM are unknown. The current randomized controlled study describes distinct fecal microbial and plasma metabolomic signatures between combined IF-P (n = 21) versus a heart-healthy, calorie-restricted (CR, n = 20) diet matched for overall energy intake in free-living human participants (women = 27; men = 14) with overweight/obesity for 8 weeks. Gut symptomatology improves and abundance of Christensenellaceae microbes and circulating cytokines and amino acid metabolites favoring fat oxidation increase with IF-P (p < 0.05), whereas metabolites associated with a longevity-related metabolic pathway increase with CR (p < 0.05). Differences indicate GM and metabolomic factors play a role in WL maintenance and body composition. This novel work provides insight into the GM and metabolomic profile of participants following an IF-P or CR diet and highlights important differences in microbial assembly associated with WL and body composition responsiveness. These data may inform future GM-focused precision nutrition recommendations using larger sample sizes of longer duration. Trial registration, March 6, 2020 (ClinicalTrials.gov as NCT04327141), based on a previous randomized intervention trial.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Devin A Bowes
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Yan Jin
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Judith Klein-Seetharaman
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Karen M Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA
| | | | - Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA.
- School of Health and Rehabilitation Sciences, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Lee MJ, Kim J. The pathophysiology of visceral adipose tissues in cardiometabolic diseases. Biochem Pharmacol 2024; 222:116116. [PMID: 38460909 PMCID: PMC11407912 DOI: 10.1016/j.bcp.2024.116116] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Central pattern of fat distribution, especially fat accumulation within the intraabdominal cavity increases risks for cardiometabolic diseases. Portal hypothesis combined with a pathological remodeling in visceral fat is considered the major etiological factor explaining the independent contribution of visceral obesity to cardiometabolic diseases. Excessive remodeling in visceral fat during development of obesity leads to dysfunctions in the depot, characterized by hypertrophy and death of adipocytes, hypoxia, inflammation, and fibrosis. Dysfunctional visceral fat secretes elevated levels of fatty acids, glycerol, and proinflammatory and profibrotic cytokines into the portal vein directly impacting the liver, the central regulator of systemic metabolism. These metabolic and endocrine products induce ectopic fat accumulation, insulin resistance, inflammation, and fibrosis in the liver, which in turn causes or exacerbates systemic metabolic derangements. Elucidation of underlying mechanisms that lead to the pathological remodeling and higher degree of dysfunctions in visceral adipose tissue is therefore, critical for the development of therapeutics to prevent deleterious sequelae in obesity. We review depot differences in metabolic and endocrine properties and expendabilities as well as underlying mechanisms that contribute to the pathophysiological aspects of visceral adiposity in cardiometabolic diseases. We also discuss impacts of different weight loss interventions on visceral adiposity and cardiometabolic diseases.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Hawaii 96822, USA.
| | - Jeehoon Kim
- Department of Sociology, Social Work, and Criminology, Idaho State University, Idaho 83209, USA
| |
Collapse
|
14
|
Lange MG, Coffey AA, Coleman PC, Barber TM, Van Rens T, Oyebode O, Abbott S, Hanson P. Metabolic changes with intermittent fasting. J Hum Nutr Diet 2024; 37:256-269. [PMID: 37786321 PMCID: PMC10953463 DOI: 10.1111/jhn.13253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The prevalence of obesity is rising globally and effective strategies to treat obesity are needed. Intermittent fasting, a dietary intervention for weight management, has received growing interest from the general public, as well as healthcare professionals, as a form of lifestyle intervention. METHODS We executed a rapid review using PUBMED database to identify systematic reviews that examined the impact of intermittent fasting on metabolic indices, published between 2011 and 2022. RESULTS Intermittent fasting leads to weight loss of a similar magnitude to continuous energy restriction. Most of the evidence shows that intermittent fasting leads to greater fat loss as measured by fat mass (kg) or body fat percentage compared to an ad libitum diet, but fat loss attained during intermittent fasting is not significantly different to continuous energy restriction, although recent evidence shows intermittent fasting to be superior. There is mixed evidence for the impact of intermittent fasting on insulin resistance, fasting glucose and lipid profile. Some studies focused on populations of Muslim people, which showed that Ramadan fasting may lead to weight loss and improvement of metabolic parameters during fasting, although the effects are reversed when fasting is finished. CONCLUSIONS Intermittent fasting is more effective than an ad libitum dietary intake, and equally or more effective as continuous energy restriction, for weight management. However, there is inconclusive evidence on whether intermittent fasting has a clinically beneficial effect on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Maria G. Lange
- Warwick Medical SchoolUniversity of WarwickCoventryUK
- Warwickshire Institute for the Study of Diabetes Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | | | | | - Thomas M. Barber
- Warwick Medical SchoolUniversity of WarwickCoventryUK
- Warwickshire Institute for the Study of Diabetes Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | | | - Oyinlola Oyebode
- Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Sally Abbott
- Department of DieteticsUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- Research Centre for Intelligent HealthcareCoventry UniversityCoventryUK
| | - Petra Hanson
- Warwick Medical SchoolUniversity of WarwickCoventryUK
- Warwickshire Institute for the Study of Diabetes Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| |
Collapse
|
15
|
Mannaa M, Pfennigwerth P, Fielitz J, Gollasch M, Boschmann M. Mammalian target of rapamycin inhibition impacts energy homeostasis and induces sex-specific body weight loss in humans. J Cachexia Sarcopenia Muscle 2023; 14:2757-2767. [PMID: 37897143 PMCID: PMC10751400 DOI: 10.1002/jcsm.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Previous data from a 2-year randomized controlled trial (CRAD001ADE12) indicated that mammalian target of rapamycin (mTOR) inhibition by everolimus slowed cyst growth in patients with autosomal-dominant polycystic kidney disease (ADPKD). During the trial, we noted body weight loss in some patients, particularly in women. We hypothesized that everolimus causes body weight reduction by reduced food intake and/or metabolic changes, which could lead to cachexia. METHODS Within a sub-analysis of the CRAD001ADE12 trial, body weight course was investigated regarding sex-specific differences in 433 adult ADPKD patients (everolimus, n = 215; placebo, n = 218). One hundred four out of 111 patients who participated in the clinical trial centre in Berlin were evaluated under everolimus/placebo therapy (on drug: everolimus, n = 48; placebo, n = 56) and after therapy (off drug: everolimus, n = 15; placebo, n = 18). Eating habits and nutrient/caloric intake were evaluated by validated questionnaires. Systemic and local metabolism was evaluated in four patients after an oral glucose load (OGL) by using calorimetry and adipose/muscle tissue microdialysis. RESULTS Within the 2-year CRAD001ADE12 trial, a significant body weight loss was observed in female patients on everolimus versus placebo (P = 0.0029). Data of the Berlin Cohort revealed that weight loss was greater in women on everolimus versus men (P < 0.01). After 9 months, women and men had lost 2.6 ± 3.8 and 0.8 ± 1.5 kg (P < 0.05) in body weight, respectively, and after 21 months, they had lost 4.1 ± 6.6 and 1.0 ± 3.3 kg (P < 0.05), respectively. On everolimus, caloric intake was significantly lower in women versus men (1510 ± 128 vs. 2264 ± 216 kcal/day, P < 0.05), caused mainly by a lower fat and protein intake in women versus men. Cognitive restraints, disinhibition and hunger remained unchanged. In a subgroup of patients resting metabolic rate was unchanged whereas OGL-induced thermogenesis was reduced (7 ± 2 vs. 11 ± 2 kcal, P < 0.05). Fasting and OGL-induced fat oxidation was increased (P < 0.05) on versus off everolimus. In adipose tissue, fasting lipolytic activity was increased, but lipolytic activity was inhibited similarly after the OGL on versus off everolimus, respectively. In skeletal muscle, postprandial glucose uptake and aerobic glycolysis was reduced in patients on everolimus. CONCLUSIONS mTOR inhibition by everolimus induces body weight reduction, specifically in female patients. This effect is possibly caused by a centrally mediated reduced food (fat and protein) intake and by centrally/peripherally mediated increased fat oxidation (systemic) and mobilization (adipose tissue). Glucose uptake and oxidation might be reduced in skeletal muscle. This could lead to cachexia and, possibly, muscle wasting. Therefore, our results have important implications for patients recieving immune-suppressive mTOR inhibition therapy.
Collapse
Affiliation(s)
- Marwan Mannaa
- Department of Internal Medicine and GeriatricsUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Pia Pfennigwerth
- Experimental and Clinical Research Center, a co‐operation between Charité – Universitätsmedizin and the Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jens Fielitz
- Klinik und Poliklinik für Innere Medizin BUniversitätsmedizin GreifswaldGreifswaldGermany
- DZHK (German Center for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
| | - Maik Gollasch
- Department of Internal Medicine and GeriatricsUniversitätsmedizin GreifswaldGreifswaldGermany
- Department of Nephrology and Medical Intensive CareCharité – Universitätsmedizin BerlinBerlinGermany
| | - Michael Boschmann
- Experimental and Clinical Research Center, a co‐operation between Charité – Universitätsmedizin and the Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| |
Collapse
|
16
|
Bradley M, Melchor J, Carr R, Karjoo S. Obesity and malnutrition in children and adults: A clinical review. OBESITY PILLARS 2023; 8:100087. [PMID: 38125660 PMCID: PMC10728708 DOI: 10.1016/j.obpill.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023]
Abstract
Background In the U.S., children and adults are consuming more low-nutrient foods with added sugar and excess fats as compared to healthy, high-quality calories and micronutrients. This diet is increasing the prevalence of malnutrition and nutritional deficiencies, despite high calorie intake. This is a review of the common micronutrient deficiencies, the risk factors for malnutrition, dietary plans, and the health consequences in children and adults with obesity in the U.S. Methods This clinical review of literature was performed on the MEDLINE (PubMed) search engine. A total of 1391 articles were identified and after review, a total of 130 were found to be most pertinent. Discussion The most common micronutrient deficiencies found in patients with obesity were vitamin A, thiamine (B1), folate (B9), cobalamin (B12), vitamin D, iron, calcium, and magnesium, especially prior and after bariatric surgery. Diets that produced the most weight reduction also further puts these individuals at risk for worsening malnutrition. Malnutrition and micronutrient deficiencies can worsen health outcomes if not properly managed. Conclusion Adequate screening and awareness of malnutrition can improve the health outcomes in patients with obesity. Physiologic changes in response to increased adiposity and inadequate intake increase this population's risk of adverse health effects. Malnutrition affects the individual and contributes to worse public health outcomes. The recommendations for screening for malnutrition are not exclusive to individuals undergoing bariatric procedures and can improve the health outcomes of any patient with obesity. However, clearly, improved nutritional status can assist with metabolism and prevent adverse nutritional outcomes post-bariatric surgery. Clinicians should advise on proper nutrition and be aware of diets that worsen deficiencies.
Collapse
Affiliation(s)
- Morgan Bradley
- Florida State University College of Medicine, 1115 W Call St, Tallahassee, FL, 32304, USA
| | - Julian Melchor
- Florida State University College of Medicine, 1115 W Call St, Tallahassee, FL, 32304, USA
| | - Rachel Carr
- Florida State University College of Medicine, 1115 W Call St, Tallahassee, FL, 32304, USA
| | - Sara Karjoo
- Florida State University College of Medicine, 1115 W Call St, Tallahassee, FL, 32304, USA
- Johns Hopkins All Children's Hospital, 601 5th St. S. Suite 605, St. Petersburg, FL, 33701, USA
- University of South Florida Morsani College of Medicine, 560 Channelside Drive MDD 54, Tampa, FL, 33602, USA
| |
Collapse
|