1
|
Han H, Liu X, Wang Y, Yu L, Gao SQ, Lin YW. Structural and Functional Information of Human Hemoglobin Subunit μ. Chembiochem 2025; 26:e202500023. [PMID: 39933994 DOI: 10.1002/cbic.202500023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
The human hemoglobin subunit μ (Hb-μ) has been identified as a potential biomarker for α-thalassemia. However, little structural and functional information is available for this subunit. Here, we have overexpressed and purified a double mutant of C49S/C104S Hb-μ and solved its X-ray crystal structure. It adopts a typical protein fold of the globins, similar to that of the α-subunit. The structure also reveals that the protein undergoes self-oxidation of Met62 in the heme distal site, producing the form of sulfoxide (Met-SO). The property and function have also been studied by spectroscopy, which shows that the protein has considerable peroxidase activity due to the presence of a catalytic His-Arg pair in the heme distal site. The structure-function relationship of Hb-μ obtained in this study may provide useful insights into Hb-related diseases.
Collapse
Affiliation(s)
- Hui Han
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Xichun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Yanfei Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Lu Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Freindorf M, Antonio JJ, Kraka E. Iron-histidine bonding in bishistidyl hemoproteins-A local vibrational mode study. J Comput Chem 2024; 45:574-588. [PMID: 38041830 DOI: 10.1002/jcc.27267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
We investigated the intrinsic strength of distal and proximal FeN bonds for both ferric and ferrous oxidation states of bishistidyl hemoproteins from bacteria, animals, human, and plants, including two cytoglobins, ten hemoglobins, two myoglobins, six neuroglobins, and six phytoglobins. As a qualified measure of bond strength, we used local vibrational force constants ka (FeN) based on local mode theory developed in our group. All calculations were performed with a hybrid QM/MM ansatz. Starting geometries were taken from available x-ray structures. ka (FeN) values were correlated with FeN bond lengths and covalent bond character. We also investigated the stiffness of the axial NFeN bond angle. Our results highlight that protein effects are sensitively reflected in ka (FeN), allowing one to compare trends in diverse protein groups. Moreover, ka (NFeN) is a perfect tool to monitor changes in the axial heme framework caused by different protein environments as well as different Fe oxidation states.
Collapse
Affiliation(s)
- Marek Freindorf
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| | - Juliana J Antonio
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| | - Elfi Kraka
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
3
|
Kondo HX, Iizuka H, Masumoto G, Kabaya Y, Kanematsu Y, Takano Y. Prediction of Protein Function from Tertiary Structure of the Active Site in Heme Proteins by Convolutional Neural Network. Biomolecules 2023; 13:biom13010137. [PMID: 36671521 PMCID: PMC9855806 DOI: 10.3390/biom13010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Structure-function relationships in proteins have been one of the crucial scientific topics in recent research. Heme proteins have diverse and pivotal biological functions. Therefore, clarifying their structure-function correlation is significant to understand their functional mechanism and is informative for various fields of science. In this study, we constructed convolutional neural network models for predicting protein functions from the tertiary structures of heme-binding sites (active sites) of heme proteins to examine the structure-function correlation. As a result, we succeeded in the classification of oxygen-binding protein (OB), oxidoreductase (OR), proteins with both functions (OB-OR), and electron transport protein (ET) with high accuracy. Although the misclassification rate for OR and ET was high, the rates between OB and ET and between OB and OR were almost zero, indicating that the prediction model works well between protein groups with quite different functions. However, predicting the function of proteins modified with amino acid mutation(s) remains a challenge. Our findings indicate a structure-function correlation in the active site of heme proteins. This study is expected to be applied to the prediction of more detailed protein functions such as catalytic reactions.
Collapse
Affiliation(s)
- Hiroko X. Kondo
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita 565-0874, Japan
- Correspondence: (H.X.K.); (Y.T.); Tel.: +81-157-26-9401 (H.X.K.); +81-82-830-1825 (Y.T.)
| | - Hiroyuki Iizuka
- Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kitaku, Sapporo 060-0814, Japan
| | - Gen Masumoto
- Information Systems Division, RIKEN Information R&D and Strategy Headquarters, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yuichi Kabaya
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Yusuke Kanematsu
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan
- Correspondence: (H.X.K.); (Y.T.); Tel.: +81-157-26-9401 (H.X.K.); +81-82-830-1825 (Y.T.)
| |
Collapse
|
4
|
Guo C, Chadwick RJ, Foulis A, Bedendi G, Lubskyy A, Rodriguez KJ, Pellizzoni MM, Milton RD, Beveridge R, Bruns N. Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors. Chembiochem 2022; 23:e202200197. [PMID: 35816250 PMCID: PMC9545363 DOI: 10.1002/cbic.202200197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Indexed: 02/02/2023]
Abstract
Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Robert J. Chadwick
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Adam Foulis
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Giada Bedendi
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Kyle J. Rodriguez
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Nico Bruns
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK,Department of ChemistryTechnical University of DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
5
|
Dong Y, Chen YM, Kong XJ, Gao SQ, Lang JJ, Du KJ, Lin YW. Rational design of an artificial hydrolytic nuclease by introduction of a sodium copper chlorophyllin in L29E myoglobin. J Inorg Biochem 2022; 235:111943. [PMID: 35907294 DOI: 10.1016/j.jinorgbio.2022.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme proteins have recently emerged as promising artificial metalloenzymes for catalyzing diverse reactions. In this report, L29E Mb, a single mutant of myoglobin (Mb), was reconstituted by replacing the heme with a sodium copper cholorophyllin (CuCP) to form a new green artificial enzyme (named CuCP-L29E Mb). The reconstituted protein CuCP-L29E Mb was found to exhibit hydrolytic DNA cleavage activity, which was not depending on O2. In addition, Mg2+ ion could effectively promote the DNA cleavage activity of CuCP-L29E Mb. Wild-type (WT) Mb reconstituted with CuCP (named CuCP-WT Mb) did not show DNA cleavage activity under the same conditions. This study suggests that both Mg2+ and the ligand Glu29 are critical for the nuclease activity and the artificial nuclease of Mg2+-CuCP-L29E Mb may have potential applications in the future.
Collapse
Affiliation(s)
- Yao Dong
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Yu-Mei Chen
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Xiang-Jun Kong
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Jia-Jia Lang
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Ke-Jie Du
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China.
| |
Collapse
|
6
|
The effects of high pressure treatment on the structural and digestive properties of myoglobin. Food Res Int 2022; 156:111193. [DOI: 10.1016/j.foodres.2022.111193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
|
7
|
Xiang HF, Xu JK, Liu J, Yang XZ, Gao SQ, Wen GB, Lin YW. Efficient biodegradation of malachite green by an artificial enzyme designed in myoglobin. RSC Adv 2021; 11:16090-16095. [PMID: 35481174 PMCID: PMC9029994 DOI: 10.1039/d1ra02202d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 12/26/2022] Open
Abstract
Synthetic dyes such as malachite green (MG) have a wide range of applications. Meanwhile, they bring great challenges for environmental security and cause potential damages to human health. Compared with traditional approaches, enzymatic catalysis is an emerging technique for wastewater treatment. As alternatives to natural enzymes, artificial enzymes have received much attention for potential applications. In previous studies, we have rationally designed artificial enzymes based on myoglobin (Mb), such as by introducing a distal histidine (F43H mutation) and creating a channel to the heme pocket (H64A mutation). We herein show that the artificial enzyme of F43H/H64A Mb can be successfully applied for efficient biodegradation of MG under weak acid conditions. The degradation efficiency is much higher than those of natural enzymes, such as dye-decolorizing peroxidase and laccase (13-18-fold). The interaction of MG and F43H/H64A Mb was investigated by using both experimental and molecular docking studies, and the biodegradation products of MG were also revealed by UPLC-ESI-MS analysis. Based on these results, we proposed a plausible biodegradation mechanism of MG. With the high-yield of overexpression in E. coli cells, this study suggests that the artificial enzyme has potential applications in the biodegradation of MG in fisheries and textile industries.
Collapse
Affiliation(s)
- Heng-Fang Xiang
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology Qingdao 266071 China
| | - Jiao Liu
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Xin-Zhi Yang
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| |
Collapse
|
8
|
Rational Design of an Artificial Nuclease by Engineering a Hetero-Dinuclear Center of Mg-Heme in Myoglobin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Molecular Dynamics Simulation and Kinetic Study of Fluoride Binding to V21C/V66C Myoglobin with a Cytoglobin-like Disulfide Bond. Int J Mol Sci 2020; 21:ijms21072512. [PMID: 32260401 PMCID: PMC7177771 DOI: 10.3390/ijms21072512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
Protein design is able to create artificial proteins with advanced functions, and computer simulation plays a key role in guiding the rational design. In the absence of structural evidence for cytoglobin (Cgb) with an intramolecular disulfide bond, we recently designed a de novo disulfide bond in myoglobin (Mb) based on structural alignment (i.e., V21C/V66C Mb double mutant). To provide deep insight into the regulation role of the Cys21-Cys66 disulfide bond, we herein perform molecular dynamics (MD) simulation of the fluoride–protein complex by using a fluoride ion as a probe, which reveals detailed interactions of the fluoride ion in the heme distal pocket, involving both the distal His64 and water molecules. Moreover, we determined the kinetic parameters of fluoride binding to the double mutant. The results agree with the MD simulation and show that the formation of the Cys21-Cys66 disulfide bond facilitates both fluoride binding to and dissociating from the heme iron. Therefore, the combination of theoretical and experimental studies provides valuable information for understanding the structure and function of heme proteins, as regulated by a disulfide bond. This study is thus able to guide the rational design of artificial proteins with tunable functions in the future.
Collapse
|
10
|
Vlasova II. Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules 2018; 23:E2561. [PMID: 30297621 PMCID: PMC6222727 DOI: 10.3390/molecules23102561] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The heme in the active center of peroxidases reacts with hydrogen peroxide to form highly reactive intermediates, which then oxidize simple substances called peroxidase substrates. Human peroxidases can be divided into two groups: (1) True peroxidases are enzymes whose main function is to generate free radicals in the peroxidase cycle and (pseudo)hypohalous acids in the halogenation cycle. The major true peroxidases are myeloperoxidase, eosinophil peroxidase and lactoperoxidase. (2) Pseudo-peroxidases perform various important functions in the body, but under the influence of external conditions they can display peroxidase-like activity. As oxidative intermediates, these peroxidases produce not only active heme compounds, but also protein-based tyrosyl radicals. Hemoglobin, myoglobin, cytochrome c/cardiolipin complexes and cytoglobin are considered as pseudo-peroxidases. Рeroxidases play an important role in innate immunity and in a number of physiologically important processes like apoptosis and cell signaling. Unfavorable excessive peroxidase activity is implicated in oxidative damage of cells and tissues, thereby initiating the variety of human diseases. Hence, regulation of peroxidase activity is of considerable importance. Since peroxidases differ in structure, properties and location, the mechanisms controlling peroxidase activity and the biological effects of peroxidase products are specific for each hemoprotein. This review summarizes the knowledge about the properties, activities, regulations and biological effects of true and pseudo-peroxidases in order to better understand the mechanisms underlying beneficial and adverse effects of this class of enzymes.
Collapse
Affiliation(s)
- Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Department of Biophysics, Malaya Pirogovskaya, 1a, Moscow 119435, Russia.
- Institute for Regenerative Medicine, Laboratory of Navigational Redox Lipidomics, Sechenov University, 8-2 Trubetskaya St., Moscow 119991, Russia.
| |
Collapse
|
11
|
Cheng HM, Yuan H, Wang XJ, Xu JK, Gao SQ, Wen GB, Tan X, Lin YW. Formation of Cys-heme cross-link in K42C myoglobin under reductive conditions with molecular oxygen. J Inorg Biochem 2018; 182:141-149. [PMID: 29477977 DOI: 10.1016/j.jinorgbio.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022]
Abstract
The structure and function of heme proteins are regulated by diverse post-translational modifications including heme-protein cross-links, with the underlying mechanisms not well understood. In this study, we introduced a Cys (K42C) close to the heme 4-vinyl group in sperm whale myoglobin (Mb) and solved its X-ray crystal structure. Interestingly, we found that K42C Mb can partially form a Cys-heme cross-link (termed K42C Mb-X) under dithiothreitol-induced reductive conditions in presence of O2, as suggested by guanidine hydrochloride-induced unfolding and heme extraction studies. Mass spectrometry (MS) studies, together with trypsin digestion studies, further indicated that a thioether bond is formed between Cys42 and the heme 4-vinyl group with an additional mass of 16 Da, likely due to hydroxylation of the α‑carbon. We then proposed a plausible mechanism for the formation of the novel Cys-heme cross-link based on MS, kinetic UV-vis and electron paramagnetic resonance (EPR) studies. Moreover, the Cys-heme cross-link was shown to fine-tune the protein reactivity toward activation of H2O2. This study provides valuable insights into the post-translational modification of heme proteins, and also suggests that the Cys-heme cross-link can be induced to form in vitro, making it useful for design of new heme proteins with a non-dissociable heme and improved functions.
Collapse
Affiliation(s)
- Hui-Min Cheng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry, Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Yellow Sea Fisheries Research Institute, Qingdao 266071, China
| | - Shu-Qin Gao
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry, Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Lab of Protein Structure and Function, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Boitrel B, Le Gac S. Stabilization of synthetic heme-superoxo complexes by hydrogen bonding: a still on-going quest. NEW J CHEM 2018. [DOI: 10.1039/c7nj04145d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of various types of synthetic heme models has allowed the fine tuning of the location of hydrogen bond donors around the ferrous coordination site. Through the years, it has migrated from a lateral to a quasi-apical position. Still, the unambiguous existence of an actual H-bond with the dioxygen adduct remains to be established.
Collapse
Affiliation(s)
- Bernard Boitrel
- UMR CNRS 6226
- Institut des Sciences Chimiques de Rennes, Université de Rennes 1
- 35042 Rennes cedex
- France
| | - Stéphane Le Gac
- UMR CNRS 6226
- Institut des Sciences Chimiques de Rennes, Université de Rennes 1
- 35042 Rennes cedex
- France
| |
Collapse
|
13
|
Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. J Biol Inorg Chem 2017; 23:7-25. [DOI: 10.1007/s00775-017-1506-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
|
14
|
Hu S, He B, Du KJ, Wang XJ, Gao SQ, Lin YW. Peroxidase Activity of a c-Type Cytochrome b5 in the Non-Native State is Comparable to that of Native Peroxidases. ChemistryOpen 2017. [PMID: 28638761 PMCID: PMC5474653 DOI: 10.1002/open.201700055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The design of artificial metalloenzymes has achieved tremendous progress, although few designs can achieve catalytic performances comparable to that of native enzymes. Moreover, the structure and function of artificial metalloenzymes in non‐native states has rarely been explored. Herein, we found that a c‐type cytochrome b5 (Cyt b5), N57C/S71C Cyt b5, with heme covalently attached to the protein matrix through two Cys–heme linkages, adopts a non‐native state with an open heme site after guanidine hydrochloride (Gdn⋅HCl)‐induced unfolding, which facilitates H2O2 activation and substrate binding. Stopped‐flow kinetic studies further revealed that c‐type Cyt b5 in the non‐native state exhibited impressive peroxidase activity comparable to that of native peroxidases, such as the most efficient horseradish peroxidase. This study presents an alternative approach to the design of functional artificial metalloenzymes by exploring enzymatic functions in non‐native states.
Collapse
Affiliation(s)
- Shan Hu
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Bo He
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Ke-Jie Du
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function University of South China Hengyang 421001 P.R. China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China.,Laboratory of Protein Structure and Function University of South China Hengyang 421001 P.R. China
| |
Collapse
|
15
|
Holliday MJ, Camilloni C, Armstrong GS, Vendruscolo M, Eisenmesser EZ. Networks of Dynamic Allostery Regulate Enzyme Function. Structure 2017; 25:276-286. [PMID: 28089447 DOI: 10.1016/j.str.2016.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
Many protein systems rely on coupled dynamic networks to allosterically regulate function. However, the broad conformational space sampled by non-coherently dynamic systems has precluded detailed analysis of their communication mechanisms. Here, we have developed a methodology that combines the high sensitivity afforded by nuclear magnetic resonance relaxation techniques and single-site multiple mutations, termed RASSMM, to identify two allosterically coupled dynamic networks within the non-coherently dynamic enzyme cyclophilin A. Using this methodology, we discovered two key hotspot residues, Val6 and Val29, that communicate through these networks, the mutation of which altered active-site dynamics, modulating enzymatic turnover of multiple substrates. Finally, we utilized molecular dynamics simulations to identify the mechanism by which one of these hotspots is coupled to the larger dynamic networks. These studies confirm a link between enzyme dynamics and the catalytic cycle of cyclophilin A and demonstrate how dynamic allostery may be engineered to tune enzyme function.
Collapse
Affiliation(s)
- Michael Joseph Holliday
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, MS 8101, Aurora, CO 80045, USA
| | - Carlo Camilloni
- Department of Chemistry, Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | | | | | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, MS 8101, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Shi ZH, Du KJ, He B, Gao SQ, Wen GB, Lin YW. Photo-induced DNA cleavage by zinc-substituted myoglobin with a redesigned active center. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00384f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial nucleases were constructed by the redesign of the heme center in myoglobin (Mb) and replacement of the native heme with zinc protoporphyrin (ZnPP), which exhibit tunable photo-induced DNA cleavage activity.
Collapse
Affiliation(s)
- Zhen-Hua Shi
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Ke-Jie Du
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Bo He
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
- Laboratory of Protein Structure and Function
| |
Collapse
|
17
|
Wu LB, Du KJ, Nie CM, Gao SQ, Wen GB, Tan X, Lin YW. Peroxidase activity enhancement of myoglobin by two cooperative distal histidines and a channel to the heme pocket. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Continuous Reusability using Immobilized HasApf in Chemoenzymatic Deracemization: A New Heterogeneous Enzyme Catalysis. Biomolecules 2016; 6:biom6040041. [PMID: 27792150 PMCID: PMC5197951 DOI: 10.3390/biom6040041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 11/23/2022] Open
Abstract
This study found that the calibration curve of heme acquisition system A (HasA, a new reactive active species) immobilized by a porous ceramic particle (ImHApf; immobilized HasA from Pseudomonas fluorescens) can be constructed in the range of 1750–1450 cm−1 using Fourier transform infrared spectroscopy (FTIR) analysis, and evaluated its catalytic efficiency. In the asymmetric oxidation of rac-1-(6-methoxynaphthalen-2-yl)ethanol (rac-1: a naproxen precursor), a product ketone from the (R)-isomer is desymmetrized using NaBH4 and continuously reused even if treated with an organic solvent in 50 mM glycine–NaOH buffer at 40 °C in the absence of nicotinamide adenine dinucleotide (NAD(P)), leading to >99% enantiomeric excess and >90% chemical yield; the activity was calculated at 0.74 ± 0.03 mU/(mg·min) and the turnover number was determined to be approximately 2 × 106. It was confirmed that the other sec-alcohols such as rac-1-(2-naphthyl)ethanol (rac-2) and m- and p-substituted rac-1-phenyl ethanols (rac-3ab–6ab) using ImHApf can also yield a single stereoisomer from a racemate. Therefore, HasA immobilization can be expected to become an important tool for building an environmentally friendly system that promotes industrial sustainability.
Collapse
|
19
|
Liao F, Yuan H, Du KJ, You Y, Gao SQ, Wen GB, Lin YW, Tan X. Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin. MOLECULAR BIOSYSTEMS 2016; 12:3139-45. [PMID: 27476534 DOI: 10.1039/c6mb00537c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.
Collapse
Affiliation(s)
- Fei Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu LB, Yuan H, Zhou H, Gao SQ, Nie CM, Tan X, Wen GB, Lin YW. An intramolecular disulfide bond designed in myoglobin fine-tunes both protein structure and peroxidase activity. Arch Biochem Biophys 2016; 600:47-55. [DOI: 10.1016/j.abb.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 01/08/2023]
|
21
|
Shu X, Su J, Du K, You Y, Gao S, Wen G, Tan X, Lin Y. Rational Design of Dual Active Sites in a Single Protein Scaffold: A Case Study of Heme Protein in Myoglobin. ChemistryOpen 2016; 5:192-196. [PMID: 27933225 PMCID: PMC5125789 DOI: 10.1002/open.201500224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 01/03/2023] Open
Abstract
Rational protein design has been proven to be a powerful tool for creating functional artificial proteins. Although many artificial metalloproteins with a single active site have been successfully created, those with dual active sites in a single protein scaffold are still relatively rare. In this study, we rationally designed dual active sites in a single heme protein scaffold, myoglobin (Mb), by retaining the native heme site and creating a copper-binding site remotely through a single mutation of Arg118 to His or Met. Isothermal titration calorimetry (ITC) and electron paramagnetic resonance (EPR) studies confirmed that a copper-binding site of [3-His] or [2-His-1-Met] motif was successfully created in the single mutant of R118H Mb and R118M Mb, respectively. UV/Vis kinetic spectroscopy and EPR studies further revealed that both the heme site and the designed copper site exhibited nitrite reductase activity. This study presents a new example for rational protein design with multiple active sites in a single protein scaffold, which also lays the groundwork for further investigation of the structure and function relationship of heme/non-heme proteins.
Collapse
Affiliation(s)
- Xiao‐Gang Shu
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001P. R. China
| | - Ji‐Hu Su
- Department of Modern PhysicsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Ke‐Jie Du
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001P. R. China
| | - Yong You
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001P. R. China
| | - Shu‐Qin Gao
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001P. R. China
| | - Ge‐Bo Wen
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001P. R. China
| | - Xiangshi Tan
- Department of ChemistryShanghai Key Lab of Chemical Biology for Protein Research& Institute of Biomedical ScienceFudan UniversityShanghai200433P. R. China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001P. R. China
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001P. R. China
| |
Collapse
|
22
|
Yan DJ, Yuan H, Li W, Xiang Y, He B, Nie CM, Wen GB, Lin YW, Tan X. How a novel tyrosine-heme cross-link fine-tunes the structure and functions of heme proteins: a direct comparitive study of L29H/F43Y myoglobin. Dalton Trans 2016; 44:18815-22. [PMID: 26458300 DOI: 10.1039/c5dt03040d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A heme-protein cross-link is a key post-translational modification (PTM) of heme proteins. Meanwhile, the structural and functional consequences of heme-protein cross-links are not fully understood, due to limited studies on a direct comparison of the same protein with and without the cross-link. A Tyr-heme cross-link with a C-O bond is a newly discovered PTM of heme proteins, and is spontaneously formed in F43Y myoglobin (Mb) between the Tyr hydroxyl group and the heme 4-vinyl group in vivo. In this study, we found that with an additional distal His29 introduced in the heme pocket, the double mutant L29H/F43Y Mb can form two distinct forms under different protein purification conditions, with and without a novel Tyr-heme cross-link. By solving the X-ray structures of both forms of L29H/F43Y Mb and performing spectroscopic studies, we made a direct structural and functional comparison in the same protein scaffold. It revealed that the Tyr-heme cross-link regulates the heme distal hydrogen-bonding network, and fine-tunes not only the spectroscopic and ligand binding properties, but also the protein reactivity. Moreover, the formation of the Tyr-heme cross-link in the double mutant L29H/F43Y Mb was investigated in vitro. This study addressed the key issue of how Tyr-heme cross-link fine-tunes the structure and functions of the heme protein, and provided a plausible mechanism for the formation of the newly discovered Tyr-heme cross-link.
Collapse
Affiliation(s)
- Dao-Jing Yan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hong Yuan
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| | - Wei Li
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| | - Yu Xiang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China. and Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
23
|
Wu LB, Yuan H, Gao SQ, You Y, Nie CM, Wen GB, Lin YW, Tan X. Regulating the nitrite reductase activity of myoglobin by redesigning the heme active center. Nitric Oxide 2016; 57:21-29. [PMID: 27108710 DOI: 10.1016/j.niox.2016.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Heme proteins perform diverse functions in living systems, of which nitrite reductase (NIR) activity receives much attention recently. In this study, to better understand the structural elements responsible for the NIR activity, we used myoglobin (Mb) as a model heme protein and redesigned the heme active center, by introducing one or two distal histidines, and by creating a channel to the heme center with removal of the native distal His64 gate (His to Ala mutation). UV-Vis kinetic studies, combined with EPR studies, showed that a single distal histidine with a suitable position to the heme iron, i.e., His43, is crucial for nitrite (NO2(-)) to nitric oxide (NO) reduction. Moreover, creation of a water channel to the heme center significantly enhanced the NIR activity compared to the corresponding mutant without the channel. In addition, X-ray crystallographic studies of F43H/H64A Mb and its complexes with NO2(-) or NO revealed a unique hydrogen-bonding network in the heme active center, as well as unique substrate and product binding models, providing valuable structural information for the enhanced NIR activity. These findings enriched our understanding of the structure and NIR activity relationship of heme proteins. The approach of creating a channel in this study is also useful for rational design of other functional heme proteins.
Collapse
Affiliation(s)
- Lei-Bin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Yong You
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China.
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
24
|
Heterogeneous Asymmetric Oxidation Catalysis Using Hemophore HasApf. Application in the Chemoenzymatic Deracemization of sec-Alcohols with Sodium Borohydride. Catalysts 2016. [DOI: 10.3390/catal6030038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Zhao Y, Du KJ, Gao SQ, He B, Wen GB, Tan X, Lin YW. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center. J Inorg Biochem 2016; 156:113-21. [DOI: 10.1016/j.jinorgbio.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
|
26
|
Zhao C, Du W. Dynamic features of carboxy cytoglobin distal mutants investigated by molecular dynamics simulations. J Biol Inorg Chem 2016; 21:251-61. [DOI: 10.1007/s00775-016-1334-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023]
|
27
|
Lin YW. The broad diversity of heme-protein cross-links: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:844-59. [DOI: 10.1016/j.bbapap.2015.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/26/2015] [Accepted: 04/17/2015] [Indexed: 12/30/2022]
|