1
|
Abazid AH, Hollwedel TN, Nachtsheim BJ. Stereoselective Oxidative Cyclization of N-Allyl Benzamides to Oxaz(ol)ines. Org Lett 2021; 23:5076-5080. [PMID: 34138574 DOI: 10.1021/acs.orglett.1c01607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study presents an enantioselective oxidative cyclization of N-allyl carboxamides via a chiral triazole-substituted iodoarene catalyst. The method allows the synthesis of highly enantioenriched oxazolines and oxazines, with yields of up to 94% and enantioselectivities of up to 98% ee. Quaternary stereocenters can be constructed and, besides N-allyl amides, the corresponding thioamides and imideamides are well tolerated as substrates, giving rise to a plethora of chiral 5-membered N-heterocycles. By applying a multitude of further functionalizations, we finally demonstrate the high value of the observed chiral heterocycles as strategic intermediates for the synthesis of other enantioenriched target structures.
Collapse
Affiliation(s)
- Ayham H Abazid
- University of Bremen, Institute of Organic and Analytical Chemistry, Leobener Straße 7, 28359 Bremen, Germany
| | - Tom-Niklas Hollwedel
- University of Bremen, Institute of Organic and Analytical Chemistry, Leobener Straße 7, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- University of Bremen, Institute of Organic and Analytical Chemistry, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
2
|
Gromova MA, Kharitonov YV, Rybalova TV, Shults EE. Synthetic studies on tricyclic diterpenoids: convenient synthesis of 16-arylisopimaranes. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Sirazhetdinova NS, Savelyev VA, Frolova TS, Baev DS, Klimenko LS, Chernikov IV, Oleshko OS, Sarojan TA, Pokrovskii AG, Shults EE. 1-Hydroxyanthraquinones Containing Aryl Substituents as Potent and Selective Anticancer Agents. Molecules 2020; 25:molecules25112547. [PMID: 32486108 PMCID: PMC7321108 DOI: 10.3390/molecules25112547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
A series of 1,2-, 1,4-disubstituted or 1,2,4-trisubstituted anthraquinone-based compounds was designed, synthesized, characterized and biologically evaluated for anticancer efficacy. 2- or 4-arylated 1-hydroxy-9,10-antraquinones (anthracene-9,10-diones) were prepared by Suzuki–Miyaura cross-coupling reaction of 1-hydroxy-2-bromoanthraquinone, 1-hydroxy-4-iodoanthraquinone or 1-hydroxy-2,4-dibromoanthraquinone with arylboronic acids. The cross-coupling reaction of 2,4-dibromo-9,10-anthraquinone with arylboronic acids provide a convenient approach to 2,4-bis arylated 1-hydroxyanthraquinones with a variety of aryl substituent in the 2 and 4 position. The cytotoxicity of new anthraquinone derivatives was evaluated using the conventional MTT assays. The data revealed that six of the aryl substituted compounds among the entire series 3, 15, 16, 25, 27, 28 were comparable potent with the commercially available reference drug doxorubicin on the human glioblastoma cells SNB-19, prostate cancer DU-145 or breast cancer cells MDA-MB-231 and were relatively safe towards human telomerase (h-TERT)immortalized lung fibroblasts cells. The results suggested that the in vitro antitumor activity of synthesized 2-aryl, 4-aryl- and 2,4-diaryl substituted 1-hydroxyanthraquinones depends on the nature of the substituent within the cyclic backbone. Docking interaction of 2-, 4-substituted and 2,4-disubstituted 1-hydroxyanthraquinones indicates intercalative mode of binding of compounds with DNA topoisomerase. The interaction with the DNA of 4-aryl-13, 15, 16 and 4-(furan-3-yl)-23 1-hydroxyanthraquinones was experimentally confirmed through a change in electroforetic mobility. Further experiments with 1-hydroxy-4-phenyl-anthraquinone 13 demonstrated that the compound induced cell cycle arrest at sub-G1 phase in DU-145 cells in the concentration 1.1 μM, which is probably achieved by inducing apoptosis. 4-Arylsubstituted 1-hydroxyanthraquinones 13 and 16 induced the enhancement of DNA synthesis on SNB19 cell lines.
Collapse
Affiliation(s)
- Nafisa S. Sirazhetdinova
- Laboratory of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia; (N.S.S.); (V.A.S.); (D.S.B.)
| | - Victor A. Savelyev
- Laboratory of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia; (N.S.S.); (V.A.S.); (D.S.B.)
| | - Tatyana S. Frolova
- The Federal Research Center Institute of Cytology and Genetics, Acad. Lavrentyev Ave., 10, 630090 Novosibirsk, Russia;
- Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia; (O.S.O.); (T.A.S.); (A.G.P.)
| | - Dmitry S. Baev
- Laboratory of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia; (N.S.S.); (V.A.S.); (D.S.B.)
| | | | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia;
| | - Olga S. Oleshko
- Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia; (O.S.O.); (T.A.S.); (A.G.P.)
| | - Teresa A. Sarojan
- Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia; (O.S.O.); (T.A.S.); (A.G.P.)
| | - Andrey G. Pokrovskii
- Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia; (O.S.O.); (T.A.S.); (A.G.P.)
| | - Elvira E. Shults
- Laboratory of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia; (N.S.S.); (V.A.S.); (D.S.B.)
- Correspondence: ; Fax: +7-383-330-9752
| |
Collapse
|
5
|
Gromova MA, Kharitonov YV, Bagryanskaya IY, Shults EE. Efficient Synthesis of the N-(buta-2,3-dienyl)carboxamide of Isopimaric Acid and the Potential of This Compound towards Heterocyclic Derivatives of Diterpenoids. ChemistryOpen 2018; 7:890-901. [PMID: 30460170 PMCID: PMC6234760 DOI: 10.1002/open.201800205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
The N‐(2,3‐butadienyl)carboxamide of isopimaric acid, that is, compound 3, was prepared through a two‐step synthetic procedure starting from the natural diterpene isopimaric acid. The Pd‐catalyzed cross‐coupling and subsequent cyclization of terpenoid allene 3 with several aryl iodides and aryl bromides gave access to optically active diterpenoid–oxazoline derivatives in good to excellent yields. The functional group tolerance in the aryl iodides was demonstrated by several examples, including substrates with additional N‐tert‐butoxycarbonyl‐protected amino, hydroxy, and carboxy substituents in the ortho position. The cross‐coupling–cyclization reaction of those compounds with allene 3 proceeded selectively with the formation of cyclization products on the substituent in the aromatic ring. This transformation opens a potential route to the synthesis of hybrid compounds containing a tricyclic diterpenoid and several heterocycles.
Collapse
Affiliation(s)
- Marya A Gromova
- Novosibirsk Institute of Organic Chemistry SB RAS Lavrentjev Avenue 9 630090 Novosibirsk Russia
| | - Yurii V Kharitonov
- Novosibirsk Institute of Organic Chemistry SB RAS Lavrentjev Avenue 9 630090 Novosibirsk Russia
| | - Irina Yu Bagryanskaya
- Department of Physical Chemistry Novosibirsk Institute of Organic Chemistry SB RAS Lavrentjev Avenue 9 630090 Novosibirsk Russia.,Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russia
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry SB RAS Lavrentjev Avenue 9 630090 Novosibirsk Russia.,Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russia
| |
Collapse
|