1
|
Zhou XY, Fu B, Jin WD, Wang X, Wang KK, Wang M, She YB, Shen HM. Efficient and Selective Oxygenation of Cycloalkanes and Alkyl Aromatics with Oxygen through Synergistic Catalysis of Bimetallic Active Centers in Two-Dimensional Metal-Organic Frameworks Based on Metalloporphyrins. Biomimetics (Basel) 2023; 8:325. [PMID: 37504212 PMCID: PMC10807029 DOI: 10.3390/biomimetics8030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Confined catalytic realms and synergistic catalysis sites were constructed using bimetallic active centers in two-dimensional metal-organic frameworks (MOFs) to achieve highly selective oxygenation of cycloalkanes and alkyl aromatics with oxygen towards partly oxygenated products. Every necessary characterization was carried out for all the two-dimensional MOFs. The selective oxygenation of cycloalkanes and alkyl aromatics with oxygen was accomplished with exceptional catalytic performance using two-dimensional MOF Co-TCPPNi as a catalyst. Employing Co-TCPPNi as a catalyst, both the conversion and selectivity were improved for all the hydrocarbons investigated. Less disordered autoxidation at mild conditions, inhibited free-radical diffusion by confined catalytic realms, and synergistic C-H bond oxygenation catalyzed by second metal center Ni employing oxygenation intermediate R-OOH as oxidant were the factors for the satisfying result of Co-TCPPNi as a catalyst. When homogeneous metalloporphyrin T(4-COOCH3)PPCo was replaced by Co-TCPPNi, the conversion in cyclohexane oxygenation was enhanced from 4.4% to 5.6%, and the selectivity of partly oxygenated products increased from 85.4% to 92.9%. The synergistic catalytic mechanisms were studied using EPR research, and a catalysis model was obtained for the oxygenation of C-H bonds with O2. This research offered a novel and essential reference for both the efficient and selective oxygenation of C-H bonds and other key chemical reactions involving free radicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai-Min Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (X.-Y.Z.); (B.F.); (W.-D.J.); (X.W.); (K.-K.W.); (M.W.); (Y.-B.S.)
| |
Collapse
|
2
|
Ni JY, He B, Huang H, Ning L, Liu QP, Wang KK, Wu HK, Shen HM, She YB. Cycloalkanes oxidation with O2 in high-efficiency and high-selectivity catalyzed by 3D MOFs with limiting domain and Zn(AcO)2 through synergistic mode. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
3
|
Guo AB, Qin JW, Wang KK, Liu QP, Wu HK, Wang M, Shen HM, She YB. Synergetic catalytic oxidation of C-H bonds in cycloalkanes and alkyl aromatics by dimetallic active sites in 3D metalloporphyrinic MOFs employing O2 as oxidant with increased conversion and unconsumed selectivity. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Ni JY, Cong SZ, Ning L, Wang M, Shen HM, She YB. Binary catalytic systems constructed by porphyrin cobalts(II) with confining nano-region and Zn(OAc)2 for oxygenation of cycloalkanes with O2 in relay mode. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Shen HM, Guo AB, Zhang Y, Liu QP, Qin JW, She YB. Relay catalysis of hydrocarbon oxidation using O2 in the confining domain of 3D metalloporphyrin-based metal-organic frameworks with bimetallic catalytic centers. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Nitrogen-doped graphene loaded non-noble Co catalysts for liquid-phase cyclohexane oxidation with molecular oxygen. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0825-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Shen HM, Wang X, Guo AB, Zhang L, She YB. Catalytic oxidation of cycloalkanes by porphyrin cobalt(II) through efficient utilization of oxidation intermediates. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The catalytic oxidation of cycloalkanes using molecular oxygen employing porphyrin cobalt(II) as catalyst was enhanced through use of cycloalkyl hydroperoxides, which are the primary intermediates in oxidation of cycloalkanes, as additional oxidants to further oxidize cycloalkanes in the presence of porphyrin copper(II), especially for cyclohexane, for which the selectivity was enhanced from 88.6 to 97.2% to the KA oil; at the same time, the conversion of cyclohexane was enhanced from 3.88 to 4.41%. The enhanced efficiency and selectivity were mainly attributed to the avoided autoxidation of cycloalkanes and efficient utilization of oxidation intermediate cycloalkyl hydroperoxides as additional oxidants instead of conventional thermal decomposition. In addition to cyclohexane, the protocol presented in this research is also very applicable in the oxidation of other cycloalkanes such as cyclooctane, cycloheptane and cyclopentane, and can serve as a applicable and efficient strategy to boost the conversion and selectivity simultaneously in oxidation of alkanes. This work also is a very important reference for the extensive application of metalloporphyrins in catalysis chemistry.
Collapse
Affiliation(s)
- Hai M. Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - A. Bing Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Long Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan B. She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
8
|
Shen HM, Liu L, Qi B, Hu MY, Ye HL, She YB. Efficient and selective oxidation of secondary benzylic C H bonds to ketones with O2 catalyzed by metalloporphyrins under solvent-free and additive-free conditions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Mo LQ, Huang XF, Wang GC, Huang G, Liu P. Full use of factors promoting catalytic performance of chitosan supported manganese porphyrin. Sci Rep 2020; 10:14132. [PMID: 32839460 PMCID: PMC7445284 DOI: 10.1038/s41598-020-70210-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/13/2020] [Indexed: 12/01/2022] Open
Abstract
In order to make full use of the impact of internal and external factors on the performance of title catalyst for ethyl benzene oxidation, the key internal influencing factors on the catalytic performance were modulated by coordinating and grafting manganese porphyrin to mesoporous and macroporous chitosan, and the important external factors (i.e. oxidation reaction conditions) were optimized using Response Surface Methodology. Under the Response Surface Methodology optimized oxidation reaction conditions (176.56 °C, 0.59 MPa, and 0.25 mg amount of manganese porphyrin), the catalyst could be used at least five times. The ethyl benzene conversion, catalyst turnover numbers, and yields reached up to 51.2%, 4.37 × 106 and 36.4% in average, respectively. Compared with the other optimized oxidation reaction conditions, the corresponding values increased 17%, 26% and 53%. Relative to the manganese porphyrin, the catalytic performance and efficiency of the immobilized catalyst had notably increased.
Collapse
Affiliation(s)
- Lin-Qiang Mo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
- School of Road and Bridge Engineering, Guangxi Transport Vocational and Technical College, Nanning, 530023, Guangxi, China
| | - Xian-Fei Huang
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Gao-Cai Wang
- School of Computer and Electronic Information, Guangxi University, Nanning, 530004, Guangxi, China
| | - Guan Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| |
Collapse
|
10
|
Shen HM, Qi B, Hu MY, Liu L, Ye HL, She YB. Selective Solvent-Free and Additive-Free Oxidation of Primary Benzylic C–H Bonds with O2 Catalyzed by the Combination of Metalloporphyrin with N-Hydroxyphthalimide. Catal Letters 2020. [DOI: 10.1007/s10562-020-03214-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Shen HM, Zhang L, Deng JH, Sun J, She YB. Enhanced catalytic performance of porphyrin cobalt(II) in the solvent-free oxidation of cycloalkanes (C5~C8) with molecular oxygen promoted by porphyrin zinc(II). CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Mo LQ, Huang XF, Huang G, Yuan GP, Wei SJ. Highly Active Catalysis of Cobalt Tetrakis(pentafluorophenyl)porphyrin Promoted by Chitosan for Cyclohexane Oxidation in Response-Surface-Methodology-Optimized Reaction Conditions. Chemistry 2019; 8:104-113. [PMID: 30693174 PMCID: PMC6345221 DOI: 10.1002/open.201800268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/16/2018] [Indexed: 11/11/2022]
Abstract
We aimed at elevating catalytic performances of cobalt tetrakis(pentafluorophenyl)porphyrin (Co TPFPP) through axial coordination, nanocavities, and covalently grafting action. The Co TPFPP was immobilized onto nanoporous and nonporous chitosan, forming Co TPFPP/np‐ and nonp‐CTS catalysts, respectively. The catalysts were characterized by various spectroscopic techniques. The catalytic performances of these catalysts for cyclohexane oxidation under response‐surface‐methodology‐optimized oxidation reaction conditions were estimated and compared. Co TPFPP/np‐CTS was an excellent catalyst at aspect of catalytic activity, exhibiting the considerable potential reusability, 24.2 mol % yields (KA oil : cyclohexanone and cyclohexanol) in average, and total turnover frequencies (TOFs) of 3.25×106 h−1. This is attributed to the structural characteristics of the Co TPFPP/np‐CTS catalyst: the cobalt porphyrin molecules could be highly scattered on CTS, forming the independent active sites, and were not leached. The axial coordination exerted the most important effect on the catalytic activity, and the covalent grafting action had a decisive effect on the increase of the total TOFs and on the reusability of the catalyst.
Collapse
Affiliation(s)
- Lin-Qiang Mo
- School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning, Guangxi P.R.China
| | - Xian-Fei Huang
- School ofComputerandElectronicInformation Guangxi University 530004 Nanning, Guangxi P.R.China
| | - Guan Huang
- School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning, Guangxi P.R.China
| | - Guang-Ping Yuan
- School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning, Guangxi P.R.China
| | - Su-Juan Wei
- School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning, Guangxi P.R.China
| |
Collapse
|