1
|
Hachin A, Buffeteau T, Hunel J, Salvetat JP, Roupioz Y, Bonhommeau S, Mornet S, Treguer-Delapierre M, Humblot V, Vellutini L. Spin-Coated Amino-Terminated Monolayers to Immobilize Gold Nanorods for Surface-Enhanced Raman Scattering-Active Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40402863 DOI: 10.1021/acs.langmuir.5c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Silane-based self-assembled monolayers (SAMs) are widely used to control the surface properties of materials. The spin coating technique is an interesting alternative to the conventional immersion solution for organosilane deposition owing to its speed and ease of use under ambient conditions. In this work, we study the impact of the drying step following organosilane deposition by spin coating. We investigated the influence of the temperature and duration of the drying step on the quality of the monolayers. Two trimethoxysilanes bearing a phthalimide end group with an alkyl chain or a urea moiety as a spacer were used to prepare amino-terminated SAMs. The structural information on SAMs was provided by polarization modulation infrared reflection-adsorption spectroscopy (PM-IRRAS), time-of-flight secondary-ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). Results showed that the urea group that induced self-assembly by intermolecular hydrogen bonding reduced the drying step duration by half compared with the alkyl chain. In addition, PM-IRRAS and XPS measurements demonstrated the formation by the spin coating with a drying step at RT or 100 °C of a single monolayer. ToF-SIMS analysis showed the strong anchoring of organosilanes by polymerization in the monolayers. The use of spin coating has enabled to achieve homogeneous coverage on a micrometer scale. After deprotection, amino-terminated SAMs were derivatized to afford thiol-terminated SAMs to immobilize gold nanorods and constitute a surface-enhanced Raman scattering (SERS) substrate. An oligonucleotide bearing a terminal thiol immobilized on gold nanorods was identified by SERS, highlighting the potential of this SERS platform to be used as a biosensor in the future.
Collapse
Affiliation(s)
- Axelle Hachin
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Thierry Buffeteau
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Julien Hunel
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | | | - Yoann Roupioz
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble-INP, IRIG, SyMMES, Grenoble F-38000, France
| | | | - Stéphane Mornet
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | | | - Vincent Humblot
- Université Marie et Louis Pasteur, CNRS, institut FEMTO-ST, Besançon F-25000, France
| | - Luc Vellutini
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| |
Collapse
|
2
|
Naz Z, Fareed M, Chaudhary ARH, Snigdha NT, Zafar A, Alsaidan OA, Mangu K, Ahmad S, Aslam M, Rizwanullah M. Exploring the therapeutic potential of ligand-decorated nanostructured lipid carriers for targeted solid tumor therapy. Int J Pharm 2025; 678:125687. [PMID: 40348302 DOI: 10.1016/j.ijpharm.2025.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/19/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Solid tumors present significant therapeutic challenges due to their complex pathophysiology, including poor vascularization, dense extracellular matrix, multidrug resistance, and immune evasion. Conventional treatment strategies, such as chemotherapy, radiotherapy, and surgical interventions, are often associated with systemic toxicity, suboptimal drug accumulation at the tumor site, and chemoresistance. Nanostructured lipid carriers (NLCs) have emerged as a promising approach to enhance anticancer therapy. NLCs offer several advantages, including high drug loading capacity, improved bioavailability, controlled release, and enhanced stability. Recent advancements in active targeting strategies have led to the development of ligand-decorated NLCs, which exhibit selective tumor targeting, improved cellular uptake, and reduced systemic toxicity. By functionalizing NLCs with different targeting ligands, site-specific drug delivery can be achieved for better therapeutic efficacy. This review comprehensively explores the potential of ligand-decorated NLCs in solid tumor therapy, highlights their design principles, and mechanisms of tumor targeting. Furthermore, it discusses various receptor-targeted NLCs for the effective treatment of solid tumors. The potential of ligand-decorated NLCs in combination therapy, gene therapy, photothermal therapy, and photodynamic therapy is also explored. Overall, ligand-decorated NLCs represent a versatile and effective strategy to achieve better therapeutic outcomes in solid tumor therapy.
Collapse
Affiliation(s)
- Zrien Naz
- Department of Pharmaceutics, College of Pharmacy, Al Asmarya University, Zliten 218521, Libya
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | | | - Niher Tabassum Snigdha
- Department of Dental Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105 Tamil Nadu, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Karthik Mangu
- Kogniverse Education and Research, Bionest, Avishkaran (NIPER), Hyderabad-500037, Telangana, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001 Kurdistan Region, Iraq
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401 Punjab, India.
| |
Collapse
|
3
|
Yang J, Wu Y, Liu YY, Yu SB, Feng K, Wang H, Zhou W, Ma D, Zhao G, Zhang J, Zhang DW, Li ZT. Discovery of an Ultralong-acting Nondepolarizing Neuromuscular Blocker That Displays Short Onset Time and On-Demand Rapid Reversal by a Biocompatible Antagonist. J Med Chem 2025; 68:7031-7043. [PMID: 39854499 DOI: 10.1021/acs.jmedchem.4c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The combination of ultralong-acting neuromuscular block and subsequent on-demand rapid reversal may provide prolonged surgeries with improved conditions by omitting continuous or repetitive blocker administration, enabling a more stable and predictable hemodynamic profile and eliminating residual block. For this target, we prepared 19 imidazolium-incorporated tetracationic macrocycles. In vivo studies with rats revealed that one macrocycle (IMC-14) displays extremely high blocking activity. At the dose of 12.5-fold ED90, IMC-14 exhibits an onset time shorter than that of cisatracurium of 2-fold dose and a duration time corresponding to more than 13 h for human adults. Moreover, within the dose range of 12.5-187.5-fold ED90, the profound block induced by IMC-14 can be rapidly reversed at any stage by a highly biocompatible acyclic cucurbit[n]uril antagonist, with a reversal time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, a clinically widely used intermediate-acting neuromuscular blocking agent.
Collapse
Affiliation(s)
- Jingyu Yang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yan Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yue-Yang Liu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ke Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hui Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
| | - Gang Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
4
|
Islam MA, Masson JF. Plasmonic Biosensors for Health Monitoring: Inflammation Biomarker Detection. ACS Sens 2025; 10:577-601. [PMID: 39917878 DOI: 10.1021/acssensors.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Surface plasmon resonance (SPR) and localized SPR (LSPR) biosensors have emerged as viable technologies in the clinical detection of biomarkers for a wide array of health conditions. The success of SPR biosensors lies in their ability to monitor in real-time label-free biomarkers in complex biofluids. Recent breakthroughs in nanotechnology and surface chemistry have significantly improved this feature, notably from the incorporation of advanced nanomaterials including gold nanoparticles, graphene, and carbon nanotubes providing better SPR sensor performance in terms of detection limits, stability, and specificity. Recent progress in microfluidic integration has enabled SPR biosensors to detect multiple biomarkers simultaneously in complex biological samples. Taken together, these advances are closing the gap for their use in clinical diagnostics and point-of-care (POC) applications. While broadly applicable, the latest advancements in plasmonic biosensing are overviewed using inflammation biomarkers C-reactive protein (CRP), interleukins (ILs), tumor necrosis factor-α (TNF-α), procalcitonin (PCT), ferritin, and fibrinogen for a series of conditions, including cardiovascular diseases, autoimmune disorders, infections, and sepsis, as a key example of plasmonic biosensors for clinical applications. We highlight developments in sensor design, nanomaterial integration, surface functionalization, and multiplexing and provide a look forward to clinical applications by assessing the current limitations and exploring future directions for translating SPR biosensors for diagnostics and health monitoring. By enhancement of diagnostic accuracy, reproducibility, and accessibility, particularly in POC settings, SPR biosensors have the potential to significantly contribute to personalized healthcare and bring real-time, high-precision diagnostics to the forefront of clinical practice.
Collapse
Affiliation(s)
- M Amirul Islam
- Département de Chimie, Institut Courtois, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jean-François Masson
- Département de Chimie, Institut Courtois, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
5
|
Sasaki Y, Ohshiro K, Kato M, Tanaka H, Yamagami A, Hagiya K, Minami T. Quantitative Spermidine Detection in Cosmetics using an Organic Transistor-Based Chemical Sensor. ChemistryOpen 2024; 13:e202400098. [PMID: 39235692 PMCID: PMC12056924 DOI: 10.1002/open.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Indexed: 09/06/2024] Open
Abstract
Spermidine is an essential biomarker related to antiaging. Although the detection of spermidine levels is in high demand in life science fields, easy-to-use analytical tools without sample purification have not yet been fully established. Herein, we propose an organic field-effect transistor-based chemical sensor for quantifying the spermidine concentration in commercial cosmetics. An extended-gate structure was employed for organic field-effect transistor (OFET)-based chemical sensing in aqueous media. A coordination-bond-based sensing system was introduced into the OFET device to visualize the spermidine detection information through changes in the transistor characteristics. The extended-gate-type OFET has shown quantitative responses to spermidine, which indicates sufficient detectability (i. e., the limit of detection for spermidine: 2.3 μM) considering actual concentrations in cosmetics. The applicability of the OFET-based chemical sensor for cosmetic analysis was validated by instrumental analysis using high-performance liquid chromatography. The estimated recovery rates for spermidine in cosmetic ingredient products (108-111 %) suggest the feasibility of cosmetic analysis based on the OFET-based chemical sensor.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial ScienceThe University of Tokyo4-6-1, KomabaMeguro-ku153-8505 TokyoJapan
- JST, PRESTO4-1-8 HonchoKawaguchi332-0012 SaitamaJapan
| | - Kohei Ohshiro
- Institute of Industrial ScienceThe University of Tokyo4-6-1, KomabaMeguro-ku153-8505 TokyoJapan
| | - Miyuki Kato
- Institute of Industrial ScienceThe University of Tokyo4-6-1, KomabaMeguro-ku153-8505 TokyoJapan
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd.2-1-1 KatataOtsu520-0292 ShigaJapan
| | - Akari Yamagami
- Corporate Research Center, Toyobo Co., Ltd.2-1-1 KatataOtsu520-0292 ShigaJapan
| | - Kazutake Hagiya
- Corporate Research Center, Toyobo Co., Ltd.2-1-1 KatataOtsu520-0292 ShigaJapan
| | - Tsuyoshi Minami
- Institute of Industrial ScienceThe University of Tokyo4-6-1, KomabaMeguro-ku153-8505 TokyoJapan
| |
Collapse
|
6
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
7
|
Chabaud B, Bonnet H, Lartia R, Van Der Heyden A, Auzély-Velty R, Boturyn D, Coche-Guérente L, Dubacheva GV. Influence of Surface Chemistry on Host/Guest Interactions: A Model Study on Redox-Sensitive β-Cyclodextrin/Ferrocene Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4646-4660. [PMID: 38387876 DOI: 10.1021/acs.langmuir.3c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
While host/guest interactions are widely used to control molecular assembly on surfaces, quantitative information on the effect of surface chemistry on their efficiency is lacking. To address this question, we combined electrochemical characterization with quartz crystal microbalance with dissipation monitoring to study host/guest interactions between surface-attached ferrocene (Fc) guests and soluble β-cyclodextrin (β-CD) hosts. We identified several parameters that influence the redox response, β-CD complexation ability, and repellent properties of Fc monolayers, including the method of Fc grafting, the linker connecting Fc with the surface, and the diluting molecule used to tune Fc surface density. The study on monovalent β-CD/Fc complexation was completed by the characterization of multivalent interactions between Fc monolayers and β-CD-functionalized polymers, with new insights being obtained on the interplay between the surface chemistry, binding efficiency, and reversibility under electrochemical stimulus. These results should facilitate the design of well-defined functional interfaces and their implementation in stimuli-responsive materials and sensing devices.
Collapse
Affiliation(s)
- Baptiste Chabaud
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Hugues Bonnet
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Rémy Lartia
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Angéline Van Der Heyden
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | | | - Didier Boturyn
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Liliane Coche-Guérente
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Galina V Dubacheva
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| |
Collapse
|
8
|
Wu Y, Yang J, Zhuang SY, Yu SB, Zong Y, Liu YY, Wu G, Qi QY, Wang H, Tian J, Zhou W, Ma D, Zhang DW, Li ZT. Macrocycles and Acyclic Cucurbit[ n]urils as Pseudo[2]catenane Partners for Long-Acting Neuromuscular Blocks and Rapid Reversal In Vivo. J Med Chem 2024; 67:2176-2187. [PMID: 38284525 DOI: 10.1021/acs.jmedchem.3c02110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Long-acting neuromuscular blocks followed by rapid reversal may provide prolonged surgeries with improved conditions by omitting repetitive or continuous administration of the neuromuscular blocking agent (NMBA), eliminating residual neuromuscular block and minimizing postoperative recovery, which, however, is not clinically available. Here, we demonstrate that imidazolium-based macrocycles (IMCs) and acyclic cucurbit[n]urils (ACBs) can form such partners by functioning as long-acting NMBAs and rapid reversal agents through a pseudo[2]catenation mechanism based on stable complexation with Ka values of over 109 M-1. In vivo experiments with rats reveal that, at the dose of 2- and 3-fold ED90, one IMC attains a duration of action corresponding to 158 or 442 min for human adults, covering most of prolonged surgeries. The block can be reversed by one ACB with recovery time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, the clinically most widely used intermediate-acting NMBA.
Collapse
Affiliation(s)
- Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Jingyu Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Sheng-Yi Zhuang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yang Zong
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yue-Yang Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Gang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Qiao-Yan Qi
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Jia Tian
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
9
|
Kirichuk O, Srimasorn S, Zhang X, Roberts ARE, Coche-Guerente L, Kwok JCF, Bureau L, Débarre D, Richter RP. Competitive Specific Anchorage of Molecules onto Surfaces: Quantitative Control of Grafting Densities and Contamination by Free Anchors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18410-18423. [PMID: 38049433 PMCID: PMC10734310 DOI: 10.1021/acs.langmuir.3c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
The formation of surfaces decorated with biomacromolecules such as proteins, glycans, or nucleic acids with well-controlled orientations and densities is of critical importance for the design of in vitro models, e.g., synthetic cell membranes and interaction assays. To this effect, ligand molecules are often functionalized with an anchor that specifically binds to a surface with a high density of binding sites, providing control over the presentation of the molecules. Here, we present a method to robustly and quantitatively control the surface density of one or several types of anchor-bearing molecules by tuning the relative concentrations of target molecules and free anchors in the incubation solution. We provide a theoretical background that relates incubation concentrations to the final surface density of the molecules of interest and present effective guidelines toward optimizing incubation conditions for the quantitative control of surface densities. Focusing on the biotin anchor, a commonly used anchor for interaction studies, as a salient example, we experimentally demonstrate surface density control over a wide range of densities and target molecule sizes. Conversely, we show how the method can be adapted to quality control the purity of end-grafted biopolymers such as biotinylated glycosaminoglycans by quantifying the amount of residual free biotin reactant in the sample solution.
Collapse
Affiliation(s)
- Oksana Kirichuk
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
- Université
Grenoble-Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Sumitra Srimasorn
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Xiaoli Zhang
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Abigail R. E. Roberts
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Liliane Coche-Guerente
- Département
de Chimie Moléculaire, Université
Grenoble-Alpes, CNRS, 38000 Grenoble, France
| | - Jessica C. F. Kwok
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lionel Bureau
- Université
Grenoble-Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Ralf P. Richter
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
10
|
Zhao H, Chen T, Wu T, Xie L, Ma Y, Sha J. Strategy based on multiplexed brush architectures for regulating the spatiotemporal immobilization of biomolecules. BIOMATERIALS ADVANCES 2022; 141:213092. [PMID: 36191539 DOI: 10.1016/j.bioadv.2022.213092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Functional surfaces that enable both spatial and temporal control of biomolecules immobilization have attracted enormous attention for various fields including smart biointerface materials, high-throughput bioarrays, and fundamental research in the biosciences. Here, a flexible and promising method was presented for regulating the spatiotemporal arrangement of multiple biomolecules by constructing the topographically and chemically diverse polymer brushes patterned surfaces. A series of polymer brushes patterned surfaces, including antifouling brushes patterned surface, epoxy-presenting brushes patterned surface without and with antifouling background layer, were fabricated to control the spatial distribution of protein and cell adhesion through specific and nonspecific means. The fluorescence measurements demonstrated the effectiveness of spatially regulating the density of surface-immobilized protein through controlling the areal thickness of the poly (glycidyl methacrylate) (PGMA) brush patterns, leading to various complex patterns featuring well-defined biomolecule concentration gradients. Furthermore, a multiplexed surface bearing epoxy groups and azido groups with various areal densities was fabricated for regulating the spatiotemporal arrangement of different proteins, enabling binary biomolecules patterns with higher degrees of functionality and complexity. The presented strategy for the spatiotemporal control of biomolecules immobilization would boost the development of dynamic and multifunctional biosystems.
Collapse
Affiliation(s)
- Haili Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tao Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tong Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsheng Xie
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulu Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Mahato RR, Priyanka, Shandilya E, Maiti S. Perpetuating enzymatically induced spatiotemporal pH and catalytic heterogeneity of a hydrogel by nanoparticles. Chem Sci 2022; 13:8557-8566. [PMID: 35974757 PMCID: PMC9337733 DOI: 10.1039/d2sc02317b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The attainment of spatiotemporally inhomogeneous chemical and physical properties within a system is gaining attention across disciplines due to the resemblance to environmental and biological heterogeneity. Notably, the origin of natural pH gradients and how they have been incorporated in cellular systems is one of the most important questions in understanding the prebiotic origin of life. Herein, we have demonstrated a spatiotemporal pH gradient formation pattern on a hydrogel surface by employing two different enzymatic reactions, namely, the reactions of glucose oxidase (pH decreasing) and urease (pH increasing). We found here a generic pattern of spatiotemporal change in pH and proton transfer catalytic activity that was completely altered in a cationic gold nanoparticle containing hydrogel. In the absence of nanoparticles, the gradually generated macroscopic pH gradient slowly diminished with time, whereas the presence of nanoparticles helped to perpetuate the generated gradient effect. This behavior is due to the differential responsiveness of the interface of the cationic nanoparticle in temporally changing surroundings with increasing or decreasing pH or ionic contents. Moreover, the catalytic proton transfer ability of the nanoparticle showed a concerted kinetic response following the spatiotemporal pH dynamics in the gel matrix. Notably, this nanoparticle-driven spatiotemporally resolved gel matrix will find applicability in the area of the membrane-free generation and control of spatially segregated chemistry at the macroscopic scale.
Collapse
Affiliation(s)
- Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| |
Collapse
|
12
|
Sut TN, Park H, Koo DJ, Yoon BK, Jackman JA. Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization. SENSORS 2022; 22:s22145185. [PMID: 35890865 PMCID: PMC9316181 DOI: 10.3390/s22145185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
The exceptional strength and stability of noncovalent avidin-biotin binding is widely utilized as an effective bioconjugation strategy in various biosensing applications, and neutravidin and streptavidin proteins are two commonly used avidin analogues. It is often regarded that the biotin-binding abilities of neutravidin and streptavidin are similar, and hence their use is interchangeable; however, a deeper examination of how these two proteins attach to sensor surfaces is needed to develop reliable surface functionalization options. Herein, we conducted quartz crystal microbalance-dissipation (QCM-D) biosensing experiments to investigate neutravidin and streptavidin binding to biotinylated supported lipid bilayers (SLBs) in different pH conditions. While streptavidin binding to biotinylated lipid receptors was stable and robust across the tested pH conditions, neutravidin binding strongly depended on the solution pH and was greater with increasingly acidic pH conditions. These findings led us to propose a two-step mechanistic model, whereby streptavidin and neutravidin binding to biotinylated sensing interfaces first involves nonspecific protein adsorption that is mainly influenced by electrostatic interactions, followed by structural rearrangement of adsorbed proteins to specifically bind to biotin functional groups. Practically, our findings demonstrate that streptavidin is preferable to neutravidin for constructing SLB-based sensing platforms and can improve sensing performance for detecting antibody–antigen interactions.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Hyeonjin Park
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
- Correspondence: (B.K.Y.); (J.A.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
- Correspondence: (B.K.Y.); (J.A.J.)
| |
Collapse
|
13
|
Oberc C, Sedighi A, Li PCH. The genetic authentication of Panax ginseng and Panax quinquefolius based on using single nucleotide polymorphism (SNP) conducted in a nucleic acid test chip. Anal Bioanal Chem 2022; 414:3987-3998. [PMID: 35385984 DOI: 10.1007/s00216-022-04044-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
Panax ginseng and Panax quinquefolius, which are commonly called Chinese ginseng and American ginseng respectively, have different medicinal properties and market values; however, these samples can be difficult to differentiate from one another based on physical appearances of the samples especially when they are in powdery or granular forms. A molecular technique is thus needed to overcome this difficulty; this technique is based on the nucleic acid test (NAT) conducted on the microfluidic chip surface. Three single nucleotide polymorphism (SNP) sites (i.e. N1, N2, N3) on the Panax genome that differ between P. ginseng (G) and P. quinquefolius (Q) have been selected to design probes for the NAT. Primers were designed to amplify the antisense strands by asymmetric PCR. We have developed three different NAT methodologies involving surface immobilization and subsequent (stop flow or dynamic) hybridization of probes (i.e. N1G, N1Q, N2G, N2Q, N3Q) to the antisense strands. These NAT methods consist of two steps, namely immobilization and hybridization, and each method is distinguished by what is immobilized on the microfluidic chip surface in the first step (i.e. probe, target or capture strand). These three NATs developed are called probe-target method 1, target-probe method 2 and three-strand complex method 3. Out of the three methods, it was found that the capture strand-target-probe method 3 provided the best differentiation of the ginseng species, in which a 3' NH2 capture strand is first immobilized and the antisense PCR strand is then bound, while N2G and N3Q probes are used for detection of P. ginseng (G) and P. quinquefolius (Q) respectively.
Collapse
Affiliation(s)
- Christopher Oberc
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Abootaleb Sedighi
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Paul C H Li
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
14
|
Carbohydrate anchored lipid nanoparticles. Int J Pharm 2022; 618:121681. [PMID: 35307469 DOI: 10.1016/j.ijpharm.2022.121681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Nanotechnology has been a dynamic field for formulation scientists with multidisciplinary research being conducted worldwide. Advancements in development of functional nanosystems have led to evolution of breakthrough technologies. Lipidic nanosystems, in particular, are highly preferred owing to their non-immunogenic safety profiles along with a range of versatile intrinsic properties. Surface modification of lipid nanoparticles by anchoring carbohydrates to these systems is one such attractive drug delivery technology. Carbohydrates confer interesting properties to the nanosystems such as stealth, biostability, bioavailability, reduced toxicity due to decreased immunogenic response, targeting potential as well as ease of commercial availability. The carbohydrate anchored systems can be developed using methods such as adsorption, incorporation (nanoprecipitation or solvent displacement method), crosslinking and grafting. Current review provides a detailed overview of potential lipid based nanoparticulate systems with an emphasis on liposomes, solid lipid nanoparticles, nanostructures lipid carriers and micelles. Review further explores basics of surface modification, methods applied therein, advantages of carbohydrates as surface modifiers, their versatile applications, techniques for characterization of carbohydrate anchored systems and vital regulatory aspects concerned with these specialized systems.
Collapse
|
15
|
Lionello C, Gardin A, Cardellini A, Bochicchio D, Shivrayan M, Fernandez A, Thayumanavan S, Pavan GM. Toward Chemotactic Supramolecular Nanoparticles: From Autonomous Surface Motion Following Specific Chemical Gradients to Multivalency-Controlled Disassembly. ACS NANO 2021; 15:16149-16161. [PMID: 34549951 PMCID: PMC8552489 DOI: 10.1021/acsnano.1c05000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nature designs chemotactic supramolecular structures that can selectively bind specific groups present on surfaces, autonomously scan them moving along density gradients, and react once a critical concentration is encountered. Since such properties are key in many biological functions, these also offer inspirations for designing artificial systems capable of similar bioinspired autonomous behaviors. One approach is to use soft molecular units that self-assemble in an aqueous solution generating nanoparticles (NPs) that display specific chemical groups on their surface, enabling multivalent interactions with complementarily functionalized surfaces. However, a first challenge is to explore the behavior of these assemblies at sufficiently high-resolution to gain insights on the molecular factors controlling their behaviors. Here, by coupling coarse-grained molecular models and advanced simulation approaches, we show that it is possible to study the (autonomous or driven) motion of self-assembled NPs on a receptor-grafted surface at submolecular resolution. As an example, we focus on self-assembled NPs composed of facially amphiphilic oligomers. We observe how tuning the multivalent interactions between the NP and the surface allows to control of the NP binding, its diffusion along chemical surface gradients, and ultimately, the NP reactivity at determined surface group densities. In silico experiments provide physical-chemical insights on key molecular features in the self-assembling units which determine the dynamic behavior and fate of the NPs on the surface: from adhesion, to diffusion, and disassembly. This offers a privileged point of view into the chemotactic properties of supramolecular assemblies, improving our knowledge on how to design new types of materials with bioinspired autonomous behaviors.
Collapse
Affiliation(s)
- Chiara Lionello
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Andrea Gardin
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Annalisa Cardellini
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Davide Bochicchio
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, Campus Est, Via
la Santa 1, 6962 Lugano-Viganello, Switzerland
- Department
of Physics, Università degli studi
di Genova, Via Dodecaneso
33, 16100 Genova, Italy
| | - Manisha Shivrayan
- Department
of Chemistry, Center for Bioactive Delivery at the Institute for Applied
Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ann Fernandez
- Department
of Chemistry, Center for Bioactive Delivery at the Institute for Applied
Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department
of Chemistry, Center for Bioactive Delivery at the Institute for Applied
Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Giovanni M. Pavan
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, Campus Est, Via
la Santa 1, 6962 Lugano-Viganello, Switzerland
| |
Collapse
|
16
|
Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? Int J Mol Sci 2021; 22:ijms22158347. [PMID: 34361117 PMCID: PMC8348784 DOI: 10.3390/ijms22158347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
It is acknowledged that the physicochemical properties of nanomaterials (NMs) have an impact on their toxicity and, eventually, their pathogenicity. These properties may include the NMs’ surface chemical composition, size, shape, surface charge, surface area, and surface coating with ligands (which can carry different functional groups as well as proteins). Nanotopography, defined as the specific surface features at the nanoscopic scale, is not widely acknowledged as an important physicochemical property. It is known that the size and shape of NMs determine their nanotopography which, in turn, determines their surface area and their active sites. Nanotopography may also influence the extent of dissolution of NMs and their ability to adsorb atoms and molecules such as proteins. Consequently, the surface atoms (due to their nanotopography) can influence the orientation of proteins as well as their denaturation. However, although it is of great importance, the role of surface topography (nanotopography) in nanotoxicity is not much considered. Many of the issues that relate to nanotopography have much in common with the fundamental principles underlying classic catalysis. Although these were developed over many decades, there have been recent important and remarkable improvements in the development and study of catalysts. These have been brought about by new techniques that have allowed for study at the nanoscopic scale. Furthermore, the issue of quantum confinement by nanosized particles is now seen as an important issue in studying nanoparticles (NPs). In catalysis, the manipulation of a surface to create active surface sites that enhance interactions with external molecules and atoms has much in common with the interaction of NP surfaces with proteins, viruses, and bacteria with the same active surface sites of NMs. By reviewing the role that surface nanotopography plays in defining many of the NMs’ surface properties, it reveals the need for its consideration as an important physicochemical property in descriptive and predictive toxicology. Through the manipulation of surface topography, and by using principles developed in catalysis, it may also be possible to make safe-by-design NMs with a reduction of the surface properties which contribute to their toxicity.
Collapse
|
17
|
Abstract
We present here a model for multivalent diffusive transport whereby a central point-like hub is coupled to multiple feet, which bind to complementary sites on a two-dimensional landscape. The available number of binding interactions is dependent on the number of feet (multivalency) and on their allowed distance from the central hub (span). Using Monte Carlo simulations that implement the Gillespie algorithm, we simulate multivalent diffusive transport processes for 100 distinct walker designs. Informed by our simulation results, we derive an analytical expression for the diffusion coefficient of a general multivalent diffusive process as a function of multivalency, span, and dissociation constant Kd. Our findings can be used to guide the experimental design of multivalent transporters, in particular, providing insight into how to overcome trade-offs between diffusivity and processivity.
Collapse
Affiliation(s)
- Antonia Kowalewski
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Chapin S Korosec
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
18
|
Overeem NJ, van der Vries E, Huskens J. A Dynamic, Supramolecular View on the Multivalent Interaction between Influenza Virus and Host Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007214. [PMID: 33682339 DOI: 10.1002/smll.202007214] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Understanding how influenza viruses traverse the mucus and recognize host cells is critical for evaluating their zoonotic potential, and for prevention and treatment of the disease. The surface of the influenza A virus is covered with the receptor-binding protein hemagglutinin and the receptor-cleaving enzyme neuraminidase, which jointly control the interactions between the virus and the host cell. These proteins are organized in closely spaced trimers and tetramers to facilitate multivalent interactions with sialic acid-terminated glycans. This review shows that the individually weak multivalent interactions of influenza viruses allow superselective binding, virus-induced recruitment of receptors, and the formation of dynamic complexes that facilitate molecular walking. Techniques to measure the avidity and receptor specificity of influenza viruses are reviewed, and the pivotal role of multivalent interactions with their emergent properties in crossing the mucus and entering host cells is discussed. A model is proposed for the initiation of cell entry through virus-induced receptor clustering. The multivalent interactions of influenza viruses are maintained in a dynamic regime by a functional balance between binding and cleaving.
Collapse
Affiliation(s)
- Nico J Overeem
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Erhard van der Vries
- Royal GD, Arnsbergstraat 7, Deventer, 7418 EZ, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Jurriaan Huskens
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
19
|
Distaffen HE, Jones CW, Abraham BL, Nilsson BL. Multivalent display of chemical signals on
self‐assembled
peptide scaffolds. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Bhadra P, Siu SWI. Effect of Concentration, Chain Length, Hydrophobicity, and an External Electric Field on the Growth of Mixed Alkanethiol Self-Assembled Monolayers: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1913-1924. [PMID: 33503375 DOI: 10.1021/acs.langmuir.0c03414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Growing functionalized self-assembled monolayers (SAMs) with fewer defects and lower cost is the focus of ongoing investigations. In the present study, molecular dynamics simulations were performed to investigate the process of SAM formation on a gold substrate from mixed alkanethiolates in ethanol solution. Using the mixed-SAM system of 11-mercaptoundecanoic acid (MUA) with either 1-decanethiol (C9CH3) or 6-mercaptohexanol (C6OH) in a 3:7 ratio as the standard SAM model, we systematically investigated the effects of the concentration, chain length, functional group, and an external electric field on SAM growth. The results showed that the initial growth rate and surface coverage of the SAM are dependent on the ligand concentration. At a certain high concentration (about 1.2-1.5 times the minimum concentration), the final surface coverage is optimal. Reducing the chain length and increasing the proportion of hydrophobic diluting molecules are effective ways to improve the surface coverage, but the compositional ligands have to be changed, which may not be desirable for the functional requirements of SAMs. Furthermore, by investigating the behavior of the alkanethiolates and ethanol solvent under an applied external field, we find that a strong electric field with a proper field direction can facilitate the generation of defect-free monolayers. These findings will contribute to the understanding of mixed-SAM formation and provide insight into experimental design for efficient and effective SAM formation.
Collapse
Affiliation(s)
- Pratiti Bhadra
- Department of Computer and Information Science, University of Macau, Taipa, Macau
| | - Shirley W I Siu
- Department of Computer and Information Science, University of Macau, Taipa, Macau
| |
Collapse
|
21
|
Erlendsson S, Teilum K. Binding Revisited-Avidity in Cellular Function and Signaling. Front Mol Biosci 2021; 7:615565. [PMID: 33521057 PMCID: PMC7841115 DOI: 10.3389/fmolb.2020.615565] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
When characterizing biomolecular interactions, avidity, is an umbrella term used to describe the accumulated strength of multiple specific and unspecific interactions between two or more interaction partners. In contrast to the affinity, which is often sufficient to describe monovalent interactions in solution and where the binding strength can be accurately determined by considering only the relationship between the microscopic association and dissociation rates, the avidity is a phenomenological macroscopic parameter linked to several microscopic events. Avidity also covers potential effects of reduced dimensionality and/or hindered diffusion observed at or near surfaces e.g., at the cell membrane. Avidity is often used to describe the discrepancy or the "extra on top" when cellular interactions display binding that are several orders of magnitude stronger than those estimated in vitro. Here we review the principles and theoretical frameworks governing avidity in biological systems and the methods for predicting and simulating avidity. While the avidity and effects thereof are well-understood for extracellular biomolecular interactions, we present here examples of, and discuss how, avidity and the underlying kinetics influences intracellular signaling processes.
Collapse
Affiliation(s)
- Simon Erlendsson
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Guyon L, Groo AC, Malzert-Fréon A. Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Mol Pharm 2020; 18:44-64. [PMID: 33244972 DOI: 10.1021/acs.molpharmaceut.0c00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface functionalization of lipid-based nanocarriers (LBNCs) with targeting ligands has attracted huge interest in the field of nanomedicines for their ability to overcome some physiological barriers and their potential to deliver an active molecule to a specific target without causing damage to healthy tissues. The principal objective of this review is to summarize the present knowledge on LBNC decoration used for biomedical applications, with an emphasis on the ligands used, the functionalization approaches, and the purification methods after ligand corona formation. The most potent experimental techniques for the LBNC surface characterization are described. The potential of promising methods such as nuclear magnetic resonance spectroscopy and isothermal titration calorimetry to characterize ligand surface corona is also outlined.
Collapse
Affiliation(s)
- Léna Guyon
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | - Anne-Claire Groo
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | | |
Collapse
|
23
|
Di Iorio D, Lu Y, Meulman J, Huskens J. Recruitment of receptors at supported lipid bilayers promoted by the multivalent binding of ligand-modified unilamellar vesicles. Chem Sci 2020; 11:3307-3315. [PMID: 34122838 PMCID: PMC8152591 DOI: 10.1039/d0sc00518e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a better understanding of biomolecular processes, such as the recruitment of receptors at interfaces, at the molecular level. Here we report a model system based on supported lipid bilayers (SLBs) for the investigation of the clustering of receptors at their interface. Biotinylated SLBs, used as cell membrane mimics, were functionalized with streptavidin (SAv), used here as receptor. Subsequently, biotinylated small (SUVs) and giant (GUVs) unilamellar vesicles were bound to the SAv-functionalized SLBs by multivalent interactions and found to induce the recruitment of both SAv on the SLB surface and the biotin moieties in the vesicles. The recruitment of receptors was investigated with quartz crystal microbalance with dissipation monitoring (QCM-D), which allowed the identification of the biotin and SAv densities necessary to obtain receptor recruitment. At approx. 0.6% of biotin in the vesicles, a transition between dense and low vesicle packing was observed, which coincided with the transitions between recruitment in the vesicles vs. recruitment in the SLB and between full and partial use of the biotin moieties in the vesicle. Direct optical visualization of the clustering at the interface of individual GUVs with the SLB platform was achieved with fluorescence microscopy, showing recruitment of SAv at the contact area as well as the deformation of the vesicles upon binding. Different vesicle binding regimes were observed for lower and higher biotin densities in the vesicles and at the SLBs. A more quantitative analysis of the molecular parameters implied in the interaction, indicated that approx. 10% of the vesicle area constitutes the contact area. Moreover, the SUV binding and recruitment appeared to be fast on the analysis time scale, whereas the binding of GUVs is slower due to the larger SLB area over which SAv recruitment needs to occur. The mechanisms revealed in this study may provide insight in biological processes in which recruitment occurs. The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a molecular understanding of biomolecular processes, such as the recruitment of receptors at interfaces.![]()
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Yao Lu
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Joris Meulman
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| |
Collapse
|
24
|
Di Iorio D, Huskens J. Surface Modification with Control over Ligand Density for the Study of Multivalent Biological Systems. ChemistryOpen 2020; 9:53-66. [PMID: 31921546 PMCID: PMC6948118 DOI: 10.1002/open.201900290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
In the study of multivalent interactions at interfaces, as occur for example at cell membranes, the density of the ligands or receptors displayed at the interface plays a pivotal role, affecting both the overall binding affinities and the valencies involved in the interactions. In order to control the ligand density at the interface, several approaches have been developed, and they concern the functionalization of a wide range of materials. Here, different methods employed in the modification of surfaces with controlled densities of ligands are being reviewed. Examples of such methods encompass the formation of self-assembled monolayers (SAMs), supported lipid bilayers (SLBs) and polymeric layers on surfaces. Particular emphasis is given to the methods employed in the study of different types of multivalent biological interactions occurring at the functionalized surfaces and their working principles.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|