1
|
Jurich C, Shao Q, Ran X, Yang ZJ. Physics-based modeling in the new era of enzyme engineering. NATURE COMPUTATIONAL SCIENCE 2025; 5:279-291. [PMID: 40275092 DOI: 10.1038/s43588-025-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/04/2025] [Indexed: 04/26/2025]
Abstract
Enzyme engineering is entering a new era characterized by the integration of computational strategies. While bioinformatics and artificial intelligence methods have been extensively applied to accelerate the screening of function-enhancing mutants, physics-based modeling methods, such as molecular mechanics and quantum mechanics, are essential complements in many objectives. In this Perspective, we highlight how physics-based modeling will help the field of computational enzyme engineering reach its full potential by exploring current developments, unmet challenges and emerging opportunities for tool development.
Collapse
Affiliation(s)
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
- Data Science Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Kopar M, Senyurt Tuzun N. A Quantum Mechanical Approach to The Mechanism of Asymmetric Synthesis of Chiral Amine by Imine Reductase from Stackebrandtia Nassauensis. Chempluschem 2025; 90:e202400606. [PMID: 39434680 PMCID: PMC11734578 DOI: 10.1002/cplu.202400606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The asymmetric synthesis of tetrahydroisoquinolines (THIQs) has gained importance in recent years due to their significant potential in drug development studies. In this study, the conversion of 1-methyl-3,4-dihydroisoquinoline substrate to a chiral amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline, under the catalysis of the stereoselective imine reductase enzyme from Stackebrandtia nassauensis (SnIR) was investigated in detail to elucidate the mechanism and explain the experimental enantioselectivity. The results were found to be in agreement with the experimental data. To elucidate the reaction mechanism, quantum mechanical calculations were performed by considering a large cluster of the active site of the enzyme. In this regard, possible reaction pathways leading to both R- and S-products with the corresponding intermediates and the transition states for the hydride transfer from the cofactor to the substrate were considered by density functional theory (DFT) calculations, and the factors contributing to the observed stereoselectivity were sought. The calculations supported a stepwise mechanism rather than the concerted protonation and the hydride transfer steps. The stereoselectivity in the hydride transfer was found to be due not only to the stability of the enzyme-subtrate complex but also to the corresponding reaction barriers. The calculations were performed at the wB97XD/6-311+G(2df,2p)//B3LYP/6-31G(d,p) level of theory using the PCM approach.
Collapse
Affiliation(s)
- Merve Kopar
- Department of ChemistryFaculty of Science and LettersIstanbul Technical UniversityMaslakİstanbul34469Turkey
| | - Nurcan Senyurt Tuzun
- Department of ChemistryFaculty of Science and LettersIstanbul Technical UniversityMaslakİstanbul34469Turkey
| |
Collapse
|
3
|
Li Q, Zhang S, Liu F, Su H, Sheng X. Quantum chemical modeling of enantioselective sulfoxidation and epoxidation reactions by indole monooxygenase VpIndA1. Phys Chem Chem Phys 2024; 26:16521-16528. [PMID: 38809594 DOI: 10.1039/d4cp00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.
Collapse
Affiliation(s)
- Qinrou Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
| | - Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| |
Collapse
|
4
|
Sahrawat AS, Polidori N, Kroutil W, Gruber K. Deciphering the Unconventional Reduction of C=N Bonds by Old Yellow Enzymes Using QM/MM. ACS Catal 2024; 14:1257-1266. [PMID: 38327643 PMCID: PMC10845114 DOI: 10.1021/acscatal.3c04362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
The reduction of C=X (X = N, O) bonds is a cornerstone in both synthetic organic chemistry and biocatalysis. Conventional reduction mechanisms usually involve a hydride ion targeting the less electronegative carbon atom. In a departure from this paradigm, our investigation into Old Yellow Enzymes (OYEs) reveals a mechanism involving transfer of hydride to the formally more electronegative nitrogen atom within a C=N bond. Beyond their known ability to reduce electronically activated C=C double bonds, e.g., in α, β-unsaturated ketones, these enzymes have recently been shown to reduce α-oximo-β-ketoesters to the corresponding amines. It has been proposed that this transformation involves two successive reduction steps and proceeds via imine intermediates formed by the reductive dehydration of the oxime moieties. We employ advanced quantum mechanics/molecular mechanics (QM/MM) simulations, enriched by a two-tiered approach incorporating QM/MM (UB3LYP-6-31G*/OPLS2005) geometry optimization, QM/MM (B3LYP-6-31G*/amberff19sb) steered molecular dynamics simulations, and detailed natural-bond-orbital analyses to decipher the unconventional hydride transfer to nitrogen in both reduction steps and to delineate the role of active site residues as well as of substituents present in the substrates. Our computational results confirm the proposed mechanism and agree well with experimental mutagenesis and enzyme kinetics data. According to our model, the catalysis of OYE involves hydride transfer from the flavin cofactor to the nitrogen atom in oximoketoesters as well as iminoketoesters followed by protonation at the adjacent oxygen or carbon atoms by conserved tyrosine residues and active site water molecules. Two histidine residues play a key role in the polarization and activation of the C=N bond, and conformational changes of the substrate observed along the reaction coordinate underline the crucial importance of dynamic electron delocalization for efficient catalysis.
Collapse
Affiliation(s)
| | - Nakia Polidori
- Institute
of Molecular Biosciences, University of
Graz, Graz 8010, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, Graz 8010, Austria
- Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Karl Gruber
- Institute
of Molecular Biosciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| |
Collapse
|
5
|
Wu K, Yan J, Liu Q, Wang X, Wu P, Cao Y, Lu X, Xu Y, Huang J, Shao L. Computational design of an imine reductase: mechanism-guided stereoselectivity reversion and interface stabilization. Chem Sci 2024; 15:1431-1440. [PMID: 38274081 PMCID: PMC10806680 DOI: 10.1039/d3sc04636b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Imine reductases (IREDs) are important biocatalysts in the asymmetric synthesis of chiral amines. However, a detailed understanding of the stereocontrol mechanism of IRED remains incomplete, making the design of IRED for producing the desired amine enantiomers challenging. In this study, we investigated the stereoselective catalytic mechanism and designed an (R)-stereoselective IRED from Paenibacillus mucilaginosus (PmIR) using pharmaceutically relevant 2-aryl-substituted pyrrolines as substrates. A putative mechanism for controlling stereoselectivity was proposed based on the crucial role of electrostatic interactions in controlling iminium cation orientation and employed to achieve complete inversion of stereoselectivity in PmIR using computational design. The variant PmIR-Re (Q138M/P140M/Y187E/Q190A/D250M/R251N) exhibited opposite (S)-stereoselectivity, with >96% enantiomeric excess (ee) towards tested 2-aryl-substituted pyrrolines. Computational tools were employed to identify stabilizing mutations at the interface between the two subunits. The variant PmIR-6P (P140A/Q190S/R251N/Q217E/A257R/T277M) showed a nearly 5-fold increase in activity and a 12 °C increase in melting temperature. The PmIR-6P successfully produced (R)-2-(2,5-difluorophenyl)-pyrrolidine, a key chiral pharmaceutical intermediate, at a concentration of 400 mM with an ee exceeding 99%. This study provides insight into the stereocontrol elements of IREDs and demonstrates the potential of computational design for tailored stereoselectivity and thermal stability.
Collapse
Affiliation(s)
- Kai Wu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Jinrong Yan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry 285 Gebaini Rd. Shanghai 200040 China
| | - Qinde Liu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
- Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Xiaojing Wang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Piaoru Wu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Yiyang Cao
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Xiuhong Lu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry 285 Gebaini Rd. Shanghai 200040 China
| | - Lei Shao
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry 285 Gebaini Rd. Shanghai 200040 China
| |
Collapse
|
6
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
7
|
Abstract
ConspectusThe quantum chemical cluster approach has been used for modeling enzyme active sites and reaction mechanisms for more than two decades. In this methodology, a relatively small part of the enzyme around the active site is selected as a model, and quantum chemical methods, typically density functional theory, are used to calculate energies and other properties. The surrounding enzyme is modeled using implicit solvation and atom fixing techniques. Over the years, a large number of enzyme mechanisms have been solved using this method. The models have gradually become larger as a result of the faster computers, and new kinds of questions have been addressed. In this Account, we review how the cluster approach can be utilized in the field of biocatalysis. Examples from our recent work are chosen to illustrate various aspects of the methodology. The use of the cluster model to explore substrate binding is discussed first. It is emphasized that a comprehensive search is necessary in order to identify the lowest-energy binding mode(s). It is also argued that the best binding mode might not be the productive one, and the full reactions for a number of enzyme-substrate complexes have therefore to be considered to find the lowest-energy reaction pathway. Next, examples are given of how the cluster approach can help in the elucidation of detailed reaction mechanisms of biocatalytically interesting enzymes, and how this knowledge can be exploited to develop enzymes with new functions or to understand the reasons for lack of activity toward non-natural substrates. The enzymes discussed in this context are phenolic acid decarboxylase and metal-dependent decarboxylases from the amidohydrolase superfamily. Next, the application of the cluster approach in the investigation of enzymatic enantioselectivity is discussed. The reaction of strictosidine synthase is selected as a case study, where the cluster calculations could reproduce and rationalize the selectivities of both the natural and non-natural substrates. Finally, we discuss how the cluster approach can be used to guide the rational design of enzyme variants with improved activity and selectivity. Acyl transferase from Mycobacterium smegmatis serves as an instructive example here, for which the calculations could pinpoint the factors controlling the reaction specificity and enantioselectivity. The cases discussed in this Account highlight thus the value of the cluster approach as a tool in biocatalysis. It complements experiments and other computational techniques in this field and provides insights that can be used to understand existing enzymes and to develop new variants with tailored properties.
Collapse
Affiliation(s)
- Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|