Tarish Abdullah RA, Şarkaya K. Interaction of lysozyme with solid supports cryogels containing imidazole functional group.
J Chromatogr B Analyt Technol Biomed Life Sci 2025;
1251:124405. [PMID:
39662363 DOI:
10.1016/j.jchromb.2024.124405]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
This paper details the preparation of acrylamide-based supermacroporous cryogels and their application in removing lysozyme from aqueous solutions. N-Vinyl imidazole was copolymerized with acrylamide as a comonomer to impart pseudo-specificity to the cryogels, forming poly(AAm-VIM) cryogel. Characterization studies to assess the physical and chemical properties of the synthesized cryogels involved swelling tests, Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, Field Emission Scanning Electron Microscopy (FESEM), and Thermogravimetric Analysis (TGA-DTA). To ascertain the optimal conditions for the adsorption process, pH 9.0 (TRIS buffer) was selected for lysozyme adsorption, using the parametres such as initial concentration screening, ionic strength, temperature, and column flow rate. The Langmuir and Freundlich isotherm models were analyzed to assess the adsorption parameters mathematically. The regression coefficient results indicated that lysozyme adsorption aligned more closely with the Langmuir isotherm model. The adsorption process is considered to be thermodynamically physical and spontaneous. SDS-PAGE analysis assessed the purity of lysozyme isolated from an aqueous solution using a poly(AAm-VIM) cryogel column. The inertness and regeneration capacity of poly(AAm-VIM) cryogel affinity columns were assessed using reusability studies conducted during the adsorption-desorption cycle.
Collapse