1
|
Barandiaran A, Lascano D, Montanes N, Balart R, Selles MA, Moreno V. Improvement of the Ductility of Environmentally Friendly Poly(lactide) Composites with Posidonia oceanica Wastes Plasticized with an Ester of Cinnamic Acid. Polymers (Basel) 2023; 15:4534. [PMID: 38231960 PMCID: PMC10708467 DOI: 10.3390/polym15234534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
New composite materials were developed with poly(lactide) (PLA) and Posidonia oceanica fibers through reactive extrusion in the presence of dicumyl peroxide (DCP) and subsequent injection molding. The effect of different amounts of methyl trans-cinnamate (MTC) on the mechanical, thermal, thermomechanical, and wettability properties was studied. The results showed that the presence of Posidonia oceanica fibers generated disruptions in the PLA matrix, causing a decrease in the tensile mechanical properties and causing an impact on the strength due to the stress concentration phenomenon. Reactive extrusion with DCP improved the PO/PLA interaction, diminishing the gap between the fibers and the surrounding matrix, as corroborated by field emission scanning electron microscopy (FESEM). It was observed that 20 phr (parts by weight of the MTC, per one hundred parts by weight of the PO/PLA composite) led to a noticeable plasticizing effect, significantly increasing the elongation at break from 7.1% of neat PLA to 31.1%, which means an improvement of 338%. A considerable decrease in the glass transition temperature, from 61.1 °C of neat PLA to 41.6 °C, was also observed. Thermogravimetric analysis (TGA) showed a loss of thermal stability of the plasticized composites, mainly due to the volatility of the cinnamate ester, leading to a decrease in the onset degradation temperature above 10 phr MTC.
Collapse
Affiliation(s)
| | - Diego Lascano
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| | | | | | | | - Virginia Moreno
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| |
Collapse
|
2
|
Guo S, Zhou Z, Yu S, Chen Z, Xiang H, Zhu M. The synergistic effect of heterogeneous nucleation and stress-induced crystallization on supramolecular structure and performances of poly(lactic acid) melt-spun fibers. Int J Biol Macromol 2023; 226:1579-1587. [PMID: 36503823 DOI: 10.1016/j.ijbiomac.2022.11.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
As a kind of bio-based polymer, poly (lactic acid) has potential application in fibers fields. Due to the weak nucleation ability, PLA crystallizes slowly and forms large spherulites during the forming process, which deteriorates the properties of PLA fibers. In this work, melt-spun method is employed for the fabrication of PLA/T composite fibers using succinate diphenyl dihydrazide (TMC-306) as the nucleating agent, and then the hot-drawing and heat setting is performed to the as-spun fibers. Compared with pure PLA fibers, PLA/T fibers show faster crystallization rate and improved performance due to the synergistic effect of heterogeneous nucleation and stress-induced crystallization. The characterization of non-isothermal crystallization behavior indicates that the peak crystallization temperature as well as crystallinity of PLA composites is increased to 121.5 °C and 36.78 % respectively by blending 0.3 wt% TMC-306. Meanwhile, the obtained PLA/0.3T composite fibers are highly crystallized and oriented at hot-drawing ratio of 2.4 folds and heat setting temperature of 100 °C, and the conformational stability is noticeably enhanced. Further, the tensile strength and storage modulus of PLA/0.3T composite fiber are 3.46 cN/dtex and 46,953 MPa respectively, which are increased by 42 % and 41 % compared with neat PLA fibers.
Collapse
Affiliation(s)
- Sheng Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhe Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhongbi Chen
- Anhui BBCA Biofiber Co., Ltd, Bengbu, Anhui 233000, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Recent advances on reactive Extrusion of Poly(lactic acid). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Li H, Jilili Y, Zhen W, Zhao L. Preparation, performance and structure-properties relationship of poly (lactic acid)/modified saponite nanocomposites based on thiol-ene click chemistry. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1948059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Hao Li
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, China
| | - Yikelamu Jilili
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, China
| | - Weijun Zhen
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, China
| | - Ling Zhao
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Chanthot P, Kerddonfag N, Pattamaprom C. The Influence of Peroxide on Bubble Stability and Rheological Properties of Biobased Poly(lactic acid)/Natural Rubber Blown Films. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2653-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
All in one: The preparation of polyester/silica hybrid nanocomposites via three different metal-free click reactions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Zhu S, Wang X, Cong Y, Liu L, Li L. Free Radical Polymerization of Gold Nanoclusters and Hydrogels for Cell Capture and Light-Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19360-19368. [PMID: 33876923 DOI: 10.1021/acsami.1c03587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanocluster (AuNC) decorated hydrogels have attracted considerable attention as versatile biomaterials. To date AuNCs and hydrogels have mainly been mixed as independent components. Here, we report the use of AuNCs as reactive monomers in the polymerization of hydrogels. We used a free radical polymerization to copolymerize AuNCs with acrylamide and N-acryloyl glycinamide to prepare stimuli-responsive smart hydrogels. Multiple C═C bonds were decorated on the surface of the AuNCs as active sites for polymerization. These C═C bonds not only protected the structure of the AuNCs from oxidation by free radicals during polymerization but also covalently connected the AuNCs with the polymer chains. This structure ensured good photothermal performance of the AuNCs while preserving the thermoresponsive hydrogen bonds of polymers. Moreover, the copolymerized AuNCs acted as cross-linkers, which improved the mechanical properties of the hydrogels. These smart hydrogels had good stability, efficient photothermal conversion, and a sensitive thermoresponsive. We examined their potential for capture of MDA-MB-231 cells with hyaluronic acid as target molecules. The captured cells were released under 660 nm irradiation. This process of targeted capture and light-controlled remote release could be repeatedly applied. These results suggest that systems based on AuNCs copolymerized with hydrogels have great potential for biomedical applications.
Collapse
Affiliation(s)
- Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yujie Cong
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
8
|
The effect of dynamic vulcanization systems on the mechanical properties and phase morphology of PLA/NR reactive blends. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02364-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Affiliation(s)
- Melania Bednarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Katarina Borska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Przemysław Kubisa
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
10
|
Affiliation(s)
- Mohammadreza Nofar
- Metallurgical and Materials Engineering, Department Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Reza Salehiyan
- DST-CSIR National Centre for Nanostructured Materials Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
11
|
Coltelli MB, Mallegni N, Rizzo S, Cinelli P, Lazzeri A. Improved Impact Properties in Poly(lactic acid) (PLA) Blends Containing Cellulose Acetate (CA) Prepared by Reactive Extrusion. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E270. [PMID: 30650639 PMCID: PMC6357089 DOI: 10.3390/ma12020270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/14/2023]
Abstract
Poly(lactic acid)/triacetine plasticized cellulose acetate (PLA/pCA) blends were prepared by extrusion at two different temperatures and tetrabutylammonium tetraphenyl borate (TBATPB) was added as a transesterification catalyst to reactively promote the formation of PLA-CA copolymer during the reactive extrusion. The occurrence of chain scission in the PLA phase and branching/crosslinking in the CA phase in the presence of TBATPB, resulting also in a darkening of the material, were demonstrated by studying torque measurements and by performing proper thermogravimetric tests on CA with the different additives. Tensile and impact tests onto the blends prepared at the lower temperature showed better properties than the ones obtained at a higher temperature. Then, the mechanical properties of PLA/plasticized cellulose acetate (pCA) blends prepared at the lower temperature were investigated as a function of the content of plasticized CA in the blend. A range of compositions was observed where blends exhibited improved impact properties with respect to pure PLA without a significant decrease in their elastic modulus. The study of the phase morphology of the blends revealed that the occurrence of reactive compatibilization did not significantly affect the phase distribution. In general, fibrillar CA particles were formed in the PLA matrix during extrusion, thus allowing the preparation of CA fibre reinforced composites. The trend of morphology as a function of the composition and processing conditions was then discussed by considering the evolution of phase morphology in immiscible polymer blends.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), c/o Via Diotisalvi, 2, 56126 Pisa, Italy.
| | - Norma Mallegni
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy.
| | - Sara Rizzo
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy.
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), c/o Via Diotisalvi, 2, 56126 Pisa, Italy.
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), c/o Via Diotisalvi, 2, 56126 Pisa, Italy.
| |
Collapse
|
12
|
Bednarek M, Kubisa P. Reversible networks of degradable polyesters containing weak covalent bonds. Polym Chem 2019. [DOI: 10.1039/c8py01731j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of reversible polyester networks based mainly on the Diels–Alder chemistry, alkene [2 + 2] cycloaddition or transesterification reactions and studies of their reversibility and its consequences are reviewed.
Collapse
Affiliation(s)
- Melania Bednarek
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Przemysław Kubisa
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| |
Collapse
|
13
|
Wu T, Tong Y, Qiu F, Yuan D, Zhang G, Qu J. Morphology, rheology property, and crystallization behavior of PLLA/OMMT nanocomposites prepared by an innovative eccentric rotor extruder. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4087] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ting Wu
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Yuru Tong
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Feng Qiu
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Ding Yuan
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Guizhen Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Jinping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|