1
|
Wang C, Liu Y, Han J, Li W, Sun J, Wang Y. Detection and Removal of Aristolochic Acid in Natural Plants, Pharmaceuticals, and Environmental and Biological Samples: A Review. Molecules 2023; 29:81. [PMID: 38202664 PMCID: PMC10779802 DOI: 10.3390/molecules29010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Aristolochic acids (AAs) are a toxic substance present in certain natural plants. Direct human exposure to these plants containing AAs leads to a severe and irreversible condition known as aristolochic acid nephropathy (AAN). Additionally, AAs accumulation in the food chain through environmental mediators can trigger Balkan endemic nephropathy (BEN), an environmental variant of AAN. This paper presents a concise overview of the oncogenic pathways associated with AAs and explores the various routes of environmental exposure to AAs. The detection and removal of AAs in natural plants, drugs, and environmental and biological samples were classified and summarized, and the advantages and disadvantages of the various methods were analyzed. It is hoped that this review can provide effective insights into the detection and removal of AAs in the future.
Collapse
Affiliation(s)
- Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Jintai Han
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Wenying Li
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China;
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
2
|
Erdem Ö, Eş I, Saylan Y, Atabay M, Gungen MA, Ölmez K, Denizli A, Inci F. In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system. Nat Commun 2023; 14:4840. [PMID: 37563147 PMCID: PMC10415298 DOI: 10.1038/s41467-023-40413-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Current practices in synthesizing molecularly imprinted polymers face challenges-lengthy process, low-productivity, the need for expensive and sophisticated equipment, and they cannot be controlled in situ synthesis. Herein, we present a micro-reactor for in situ and continuously synthesizing trillions of molecularly imprinted polymeric nanoparticles that contain molecular fingerprints of bovine serum albumin in a short period of time (5-30 min). Initially, we performed COMSOL simulation to analyze mixing efficiency with altering flow rates, and experimentally validated the platform for synthesizing nanoparticles with sizes ranging from 52-106 nm. Molecular interactions between monomers and protein were also examined by molecular docking and dynamics simulations. Afterwards, we benchmarked the micro-reactor parameters through dispersity and concentration of molecularly imprinted polymers using principal component analysis. Sensing assets of molecularly imprinted polymers were examined on a metamaterial sensor, resulting in 81% of precision with high selectivity (4.5 times), and three cycles of consecutive use. Overall, our micro-reactor stood out for its high productivity (48-288 times improvement in assay-time and 2 times improvement in reagent volume), enabling to produce 1.4-1.5 times more MIPs at one-single step, and continuous production compared to conventional strategy.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Murat Alp Gungen
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
3
|
Cheng Y, Zhao X, Zhang Q, Li X, Wei Z. Constructing imprinted reticular structure in molecularly imprinted hybrid membranes for highly selective separation of acteoside. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
|
5
|
Mazzotta E, Di Giulio T, Malitesta C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Anal Bioanal Chem 2022; 414:5165-5200. [PMID: 35277740 PMCID: PMC8916950 DOI: 10.1007/s00216-022-03981-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
6
|
Pu H, Xu L. Molecularly Imprinted Nanoparticles Synthesized by Electrochemically Mediated Atom Transfer Radical Precipitation Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hang Pu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
7
|
Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steroid hormones are active substances that are necessary in the normal functioning of all physiological activities in the body, such as sexual characteristics, metabolism, and mood control. They are also widely used as exogenous chemicals in medical and pharmaceutical applications as treatments and at times growth promoters in animal farming. The vast application of steroid hormones has resulted in them being found in different matrices, such as food, environmental, and biological samples. The presence of hormones in such matrices means that they can easily come into contact with humans and animals as exogenous compounds, resulting in abnormal concentrations that can lead to endocrine disruption. This makes their determination in different matrices a vital part of pollutant management and control. Although advances in analytical instruments are constant, it has been determined that these instruments still require some sample preparation steps to be able to determine the occurrence of pollutants in the complex matrices in which they occur. Advances are still being made in sample preparation to ensure easier, selective, and sensitive analysis of complex matrices. Molecularly imprinted polymers (MIPs) have been termed as advanced solid-phase (SPE) materials for the selective extraction and preconcentration of hormones in complex matrices. This review explores the preparation and application of MIPs for the determination of steroid hormones in different sample types.
Collapse
|
8
|
Sun Y, Gu Y, Jiang Y. Adsorption behavior of a tri-functionalized imprinted resin with high selectivity for 5-sulfosalicylic acid: Batch experiments and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125271. [PMID: 33548783 DOI: 10.1016/j.jhazmat.2021.125271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The presence of aromatic compounds with multiple functional groups such as 5-sulfosalicylic acid (SSA) in water bodies is a threat to aquatic organisms and human health. Phenol (PH) with the -OH group, benzoic acid with -COOH and benzenesulfonic acid (BSA) with -SO3H can be considered as SSA structural unit. In this study, three functional monomers, namely, N-methylallylamine, diallylamine, and triallylamine, with strong affinity for PH, BA, and BSA, respectively, were selected from 16 monomers by using density functional theory (DFT). Molecularly imprinted resin (MIP-4) with tri-functional groups and excellent selectivity for SSA was synthesized using a macroporous polystyrene resin (NDA-1800) as the carrier. In binary systems, MIP-4 exhibited excellent imprinting effect and adsorption selectivity for SSA. X-ray spectroscopy data and DFT calculations illustrated that the adsorption of SSA on MIP-4 was mainly dependent on the strong electrostatic interaction between the protonated amine group on the resin and -SO3- of SSA, as well as, the hydrogen bond between the neutral amine group and -OH and -COOH of SSA; the order of the three functional groups in identification was -OH > -COOH > -SO3H. In addition, the adsorption performance of MIP-4 was retained after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yu Jiang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
9
|
Chaipuang A, Phungpanya C, Thongpoon C, Watla‐iad K, Inkaew P, Machan T, Suwantong O. Effect of ethylene diamine tetra‐acetic acid and functional monomers on the structure and adsorption properties of copper (
II
) ion‐imprinted polymers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Angkana Chaipuang
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Chalida Phungpanya
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Chalermporn Thongpoon
- Program of Chemistry, Faculty of Science and Technology Pibulsongkram Rajabhat University Phitsanulok Thailand
| | - Kanchana Watla‐iad
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Prachak Inkaew
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Theeraphan Machan
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Orawan Suwantong
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| |
Collapse
|
10
|
Abstract
Molecularly imprinted polymers (MIPs) are currently widely used and further developed for biological applications. The MIP synthesis procedure is a key process, and a wide variety of protocols exist. The templates that are used for imprinting vary from the smallest glycosylated glycan structures or even amino acids to whole proteins or bacteria. The low cost, quick preparation, stability and reproducibility have been highlighted as advantages of MIPs. The biological applications utilizing MIPs discussed here include enzyme-linked assays, sensors, in vivo applications, drug delivery, cancer diagnostics and more. Indeed, there are numerous examples of how MIPs can be used as recognition elements similar to natural antibodies.
Collapse
|
11
|
Hand RA, Piletska E, Bassindale T, Morgan G, Turner N. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst 2020; 145:4716-4736. [PMID: 32500888 DOI: 10.1039/d0an00682c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The problem posed by anti-doping requirements is one of the great analytical challenges; multiple compound detection at low ng ml-1 levels from complex samples, with requirements for exceptional confidence in results. This review surveys the design, synthesis and application of molecularly imprinted polymers (MIPs) in this field, focusing on the templating of androgenous anabolic steroids (AASs), as the most commonly abused substances, but also other WADA prohibited substances. Commentary on the application of these materials in detection, clean-up and sensing is offered, alongside views on the future of imprinting in this field.
Collapse
Affiliation(s)
- Rachel A Hand
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| | - Elena Piletska
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas Bassindale
- Department of Chemistry and Forensic Science, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Geraint Morgan
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Nicholas Turner
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| |
Collapse
|
12
|
Ibarra IS, Miranda JM, Pérez-Silva I, Jardinez C, Islas G. Sample treatment based on molecularly imprinted polymers for the analysis of veterinary drugs in food samples: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2958-2977. [PMID: 32930156 DOI: 10.1039/d0ay00533a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of veterinary drugs in medical treatments and in the livestock industry is a recurrent practice. When applied in subtherapeutic doses over prolonged times, they can also act as growth promoters. However, residues of these substances in foods present a risk to human health. Their analysis is thus important and can help guarantee consumer safety. The critical point in each analytical technique is the sample treatment and the analytical matrix complexity. The present manuscript summarizes the development, type of synthesis, characterization, and application of molecularly imprinted polymers in the separation, identification, and quantification techniques for the determination of veterinary drug residues in food samples in extraction, clean-up, isolation, and pre-concentration systems. Synthesized sorbents with specific recognition properties improve the interactions between the analytes and the polymeric sorbents, providing better analysis conditions and advantages in comparison with commercial sorbents in terms of high selectivity, analytical sensitivity, easy performance, and low cost analysis.
Collapse
Affiliation(s)
- I S Ibarra
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - J M Miranda
- Departamento Quimica Analítica, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Pabellon 4 planta bajo, Campus Universitario s/n, 27002 Lugo, Spain
| | - I Pérez-Silva
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - C Jardinez
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - G Islas
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
- Universidad Politécnica de Francisco I. Madero, Área de Ingeniería Agroindustrial, Domicilio Conocido, 42640 Tepatepec, Hgo, Mexico
| |
Collapse
|
13
|
Zhao X, Pei W, Guo R, Li X. Selective Adsorption and Purification of the Acteoside in Cistanche tubulosa by Molecularly Imprinted Polymers. Front Chem 2020; 7:903. [PMID: 32039143 PMCID: PMC6989468 DOI: 10.3389/fchem.2019.00903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Acteoside (ACT) is the main component of phenylethanoid glycosides in Cistanche tubulosa, and it is extremely desirable for obtaining high purification of ACT by molecularly imprinted polymers (MIPs) from their extracts. In this study, MIPs were designed and synthetized to adsorb selectively the ACT in C. tubulosa. The effects of different functional monomers, cross-linkers, and solvents of MIPs were investigated. MIPs were studied in terms of static adsorption experiments, dynamic adsorption experiments, and selectivity experiments. The optimal functional monomer, cross-linking agent, and solvent are 4-vinylpyridine, ethylene glycol dimethylacrylate, and the mixed solvent (acetonitrile and N,N-dimethylformamide, 1:1.5, v/v), respectively. Under the optimal conditions, the synthesized MIP1 has a high adsorption performance for ACT. The adsorption capacity of MIP1 to ACT reached 112.60 mg/g, and the separation factor of ACT/echinacoside was 4.68. Because the molecularly imprinted cavities of MIP1 resulted from template molecules of ACT, it enables MIP1 to recognize selectively ACT. Moreover, the N–H groups on MIP1 can form hydrogen bonds with the hydroxyl groups on the ACT; this improves the separation factor of MIP1. The dynamic adsorption of ACT accorded with the quasi-second-order kinetics; it indicated that the adsorption process of MIP1 is the process of chemical adsorption to ACT. MIPs can be applied as a potential adsorption material to purify the active ingredients of herbal medicines.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Wenjing Pei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Ruili Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xueqin Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
14
|
Affiliation(s)
- Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France.,Sorbonne Université , 75005 Paris , France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|