1
|
Ye Y, Zhang H, Fan X, Yao Q, Lu C, Liu J, Jiao Q. Advancing PLP Biosynthesis: Enhanced Stability and Activity of EcPdxK via LXTE-600 Immobilization. Biotechnol Appl Biochem 2025. [PMID: 39901467 DOI: 10.1002/bab.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
Pyridoxal 5'-phosphate (PLP) plays an essential role in a multitude of cellular processes due to its function as a critical coenzyme. This study introduces a significant advancement in PLP biosynthesis by enhancing the stability and activity of Escherichia coli-derived pyridoxal kinase (EcPdxK) through immobilization on an innovative epoxy resin, LXTE-600. Our approach involved the systematic optimization of enzyme loading, coupling duration, and temperature, which resulted in improved immobilization efficiency and a high loading capacity of 80 mg/g. The characterization of immobilized EcPdxK@LXTE-600 was conducted using Fourier transform infrared spectroscopy (FTIR) and confocal laser scanning microscopy (CLSM), confirming successful immobilization. This process notably enhanced the enzyme's performance, increasing its tolerance to pH and temperature fluctuations, thereby improving its thermal stability. The immobilized EcPdxK@LXTE-600 retained over 80% of its initial activity after 4 weeks of storage at 4°C and could be reused up to eight cycles while maintaining more than 70% of its initial activity. These findings not only demonstrate the efficacy of the LXTE-600-based immobilization method but also suggest promising industrial applications for the sustainable production of PLP, potentially revolutionizing approaches in biotechnological and pharmaceutical sectors.
Collapse
Affiliation(s)
- Yunhui Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Heng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinyu Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qilong Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenhong Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junzhong Liu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, CHINA CO-OP, Nanjing, China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Ye T, An Z, Song M, Wei X, Liu L, Zhang X, Zhang H, Liu H, Fang H. Strategies to enhance the hydrolytic activity of Escherichia coli BL21 penicillin G acylase based on heterologous expression and targeted mutagenesis. Colloids Surf B Biointerfaces 2025; 246:114356. [PMID: 39522286 DOI: 10.1016/j.colsurfb.2024.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Penicillin G acylase (PGA) serves as a critical biocatalyst for the hydrolysis of penicillin G, yielding 6-aminopenicillanic acid, a vital precursor for β-lactam semi-synthetic antibiotics. The catalytic efficiency of PGA, however, remains suboptimal in native Escherichia coli strains. To improve this, E. coli BL21 was engineered as a microbial cell factory via heterologous expression and site-directed mutagenesis to enhance PGA activity. The heterologous pga gene from Providencia rettgeri was integrated into E. coli BL21 (DE3) for the biosynthesis of PGA, achieving a PGA activity of 253 ± 2 U/mL after 16 hours of fermentation. The N167 site underwent mutation, producing the sites N167A and N167I. Plasmids carrying these mutations were introduced into E. coli BL21(DE3), and the enzymatic activities were recorded as 293 ± 3 U/mL for the N167A mutant and 238 ± 2 U/mL for the N167I mutant. This study not only introduces a novel approach to enhancing PGA activity but also illustrates the potential for catalytic optimization through targeted modifications of the enzyme's active site.
Collapse
Affiliation(s)
- Tong Ye
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Zhengxu An
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mengge Song
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Lu Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiangjun Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haojie Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Haitian Fang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
3
|
Lv Z, Wang Z, Wu S, Yu X. Enhanced catalytic performance of penicillin G acylase by covalent immobilization onto functionally-modified magnetic Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles. PLoS One 2024; 19:e0297149. [PMID: 38241311 PMCID: PMC10798532 DOI: 10.1371/journal.pone.0297149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024] Open
Abstract
With the emergence of penicillin resistance, the development of novel antibiotics has become an urgent necessity. Semi-synthetic penicillin has emerged as a promising alternative to traditional penicillin. The demand for the crucial intermediate, 6-aminopicillanic acid (6-APA), is on the rise. Enzyme catalysis is the primary method employed for its production. However, due to certain limitations, the strategy of enzyme immobilization has also gained prominence. The magnetic Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles were successfully prepared by a rapid-combustion method. Sodium silicate was used to modify the surface of the Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles to obtain silica-coated nanoparticles (Ni0.4Cu0.5Zn0.1Fe2O4-SiO2). Subsequently, in order to better crosslink PGA, the nanoparticles were modified again with glutaraldehyde to obtain glutaraldehyde crosslinked Ni0.4Cu0.5Zn0.1Fe2O4-SiO2-GA nanoparticles which could immobilize the PGA. The structure of the PGA protein was analyzed by the PyMol program and the immobilization strategy was determined. The conditions of PGA immobilization were investigated, including immobilization time and PGA concentration. Finally, the enzymological properties of the immobilized and free PGA were compared. The optimum catalytic pH of immobilized and free PGA was 8.0, and the optimum catalytic temperature of immobilized PGA was 50°C, 5°C higher than that of free PGA. Immobilized PGA in a certain pH and temperature range showed better catalytic stability. Vmax and Km of immobilized PGA were 0.3727 μmol·min-1 and 0.0436 mol·L-1, and the corresponding free PGA were 0.7325 μmol·min-1 and 0.0227 mol·L-1. After five cycles, the immobilized enzyme activity was still higher than 25%.
Collapse
Affiliation(s)
- Zhixiang Lv
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212300, P.R. China
| | - Zhou Wang
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, College of Vanadium and Titanium, Panzhihua University, Panzhihua, 617000, P.R. China
| | - Shaobo Wu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212013, P.R. China
| | - Xiang Yu
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, College of Vanadium and Titanium, Panzhihua University, Panzhihua, 617000, P.R. China
| |
Collapse
|
4
|
Yan Z, Huang B, Yang K, Anaman R, Amanze C, Jin J, Zhou H, Qiu G, Zeng W. Enlarging the substrate binding pocket of penicillin G acylase from Achromobacter sp. for highly efficient biosynthesis of β-lactam antibiotics. Bioorg Chem 2023; 136:106533. [PMID: 37084587 DOI: 10.1016/j.bioorg.2023.106533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
Penicillin G acylase (PGA) is a key biocatalyst for the enzymatic production of β-lactam antibiotics, which can not only catalyze the synthesis of β-lactam antibiotics but also catalyze the hydrolysis of the products to prepare semi-synthetic antibiotic intermediates. However, the high hydrolysis and low synthesis activities of natural PGAs severely hinder their industrial application. In this study, a combinatorial directed evolution strategy was employed to obtain new PGAs with outstanding performances. The best mutant βF24G/βW154G was obtained from the PGA of Achromobacter sp., which exhibited approximately a 129.62-fold and a 52.55-fold increase in specific activity and synthesis/hydrolysis ratio, respectively, compared to the wild-type AsPGA. Thereafter, this mutant was used to synthesize amoxicillin, cefadroxil, and ampicillin; all conversions > 99% were accomplished in 90-135 min with almost no secondary hydrolysis byproducts produced in the reaction. Molecular dynamics simulation and substrate pocket calculation revealed that substitution of the smallest glycine residue at βF24 and βW154 expanded the binding pocket, thereby facilitating the entry and release of substrates and products. Therefore, this novel mutant is a promising catalyst for the large-scale production of β-lactam antibiotics.
Collapse
Affiliation(s)
- Zhen Yan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bin Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jing Jin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
5
|
Ma M, Chen X, Yue Y, Wang J, He D, Liu R. Immobilization and property of penicillin G acylase on amino functionalized magnetic Ni0.3Mg0.4Zn0.3Fe2O4 nanoparticles prepared via the rapid combustion process. Front Bioeng Biotechnol 2023; 11:1108820. [PMID: 36994365 PMCID: PMC10040772 DOI: 10.3389/fbioe.2023.1108820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Penicillin G acylase plays an important role in the biocatalytic process of semi-synthetic penicillin. In order to overcome the disadvantages of free enzymes and improve the catalytic performance of enzymes, it is a new method to immobilize enzymes on carrier materials. And magnetic materials have the characteristics of easy separation. In the present study, the Magnetic Ni0.3Mg0.4Zn0.3Fe2O4 nanoparticles were successfully prepared by a rapid-combustion method and calcined at 400°C for 2 h. The surface of the nanoparticles was modified with sodium silicate hydrate, and the PGA was covalently bound to the carrier particles through the cross-linking of glutaraldehyde. The results showed that the activity of immobilized PGA reached 7121.00 U/g. The optimum pH for immobilized PGA was 8 and the optimum temperature was 45°C, the immobilized PGA exhibited higher stability against changes in pH and temperature. The Michaelis–Menten constant (Km) values of the free and immobilized PGA were 0.00387 and 0.0101 mol/L and the maximum rate (Vmax) values were 0.387 and 0.129 μmol/min. Besides, the immobilized PGA revealed excellent cycling performance. The immobilization strategy presented PGA had the advantages of reuse, good stability, cost saving and had considerable practical significance for the commercial application of PGA.
Collapse
Affiliation(s)
- Mingyi Ma
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xiu Chen
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Yao Yue
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Jie Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dawei He
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou, China
- *Correspondence: Ruijiang Liu, ; Dawei He,
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- *Correspondence: Ruijiang Liu, ; Dawei He,
| |
Collapse
|
6
|
Tu H, Niu F, Li X, Gao K, Chen Z, Wang P, Li Z. Nanoarchitectonics of penicillin G acylase with Mn2+ doped β-cyclodextrin/Fe3O4 for enhanced catalytic activity and reusability. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Lu S, Tu H, Liu Y, Zhang B, Chen Z. Fabrication of polymer functionalized Mn2+-tannic acid coatings on magnetism-responsive nano-microspheres for Immobilized Penicillin G acylase. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Pan X, Xu L, Li Y, Wu S, Wu Y, Wei W. Strategies to Improve the Biosynthesis of β-Lactam Antibiotics by Penicillin G Acylase: Progress and Prospects. Front Bioeng Biotechnol 2022; 10:936487. [PMID: 35923572 PMCID: PMC9340067 DOI: 10.3389/fbioe.2022.936487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
β-Lactam antibiotics are widely used anti-infection drugs that are traditionally synthesized via a chemical process. In recent years, with the growing demand for green alternatives, scientists have turned to enzymatic synthesis. Penicillin G acylase (PGA) is the second most commercially used enzyme worldwide with both hydrolytic and synthetic activities toward antibiotics, which has been used to manufacture the key antibiotic nucleus on an industrial level. However, the large-scale application of PGA-catalyzed antibiotics biosynthesis is still in the experimental stage because of some key limitations, such as low substrate concentration, unsatisfactory yield, and lack of superior biocatalysts. This paper systematically reviews the strategies adopted to improve the biosynthesis of β-lactam antibiotics by adjusting the enzymatic property and manipulating the reaction system in recent 20 years, including mining of enzymes, protein engineering, solvent engineering, in situ product removal, and one-pot reaction cascade. These advances will provide important guidelines for the future use of enzymatic synthesis in the industrial production of β-lactam antibiotics.
Collapse
Affiliation(s)
- Xin Pan
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- *Correspondence: Xin Pan, ; Yong Wu, ; Wenping Wei,
| | - Lei Xu
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaru Li
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sihua Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Yong Wu
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- *Correspondence: Xin Pan, ; Yong Wu, ; Wenping Wei,
| | - Wenping Wei
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- *Correspondence: Xin Pan, ; Yong Wu, ; Wenping Wei,
| |
Collapse
|
9
|
Liu C, Zhou Y, Wu G, Gao K, Li L, Tu H, Chen Z. Sandwich-likely structured, magnetically-driven recovery, biomimetic composite penicillin G acylase-based biocatalyst with excellent operation stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Biosynthesis of β-lactam nuclei in yeast. Metab Eng 2022; 72:56-65. [PMID: 35245651 DOI: 10.1016/j.ymben.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
Abstract
We have engineered brewer's yeast as a general platform for de novo synthesis of diverse β-lactam nuclei starting from simple sugars, thereby enabling ready access to a number of structurally different antibiotics of significant pharmaceutical importance. The biosynthesis of β-lactam nuclei has received much attention in recent years, while rational engineering of non-native antibiotics-producing microbes to produce β-lactam nuclei remains challenging. Benefited by the integration of heterologous biosynthetic pathways and rationally designed enzymes that catalyze hydrolysis and ring expansion reactions, we succeeded in constructing synthetic yeast cell factories which produce antibiotic cephalosporin C (CPC, 170.1 ± 4.9 μg/g DCW) and the downstream β-lactam nuclei, including 6-amino penicillanic acid (6-APA, 5.3 ± 0.2 mg/g DCW), 7-amino cephalosporanic acid (7-ACA, 6.2 ± 1.1 μg/g DCW) as well as 7-amino desacetoxy cephalosporanic acid (7-ADCA, 1.7 ± 0.1 mg/g DCW). This work established a Saccharomyces cerevisiae platform capable of synthesizing multiple β-lactam nuclei by combining natural and artificial enzymes, which serves as a metabolic tool to produce valuable β-lactam intermediates and new antibiotics.
Collapse
|
11
|
Chen X, Huang Z, Huang L, Shen Q, Yang ND, Pu C, Shao J, Li L, Yu C, Huang W. Small-molecule fluorescent probes based on covalent assembly strategy for chemoselective bioimaging. RSC Adv 2022; 12:1393-1415. [PMID: 35425188 PMCID: PMC8979026 DOI: 10.1039/d1ra08037g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we comprehensively summarize the recent progress in the development of small molecular fluorescent probes based on the covalent assembly principle. The challenges and perspective in this field are also presented.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nai-Di Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Chibin Pu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, P. R. China
| |
Collapse
|
12
|
Sambyal K, Singh RV. Exploitation of E. coli for the production of penicillin G amidase: a tool for the synthesis of semisynthetic β-lactam antibiotics. J Genet Eng Biotechnol 2021; 19:156. [PMID: 34652570 PMCID: PMC8521562 DOI: 10.1186/s43141-021-00263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Penicillin G amidase/acylases from microbial sources is a unique enzyme that belongs to the N-terminal nucleophilic hydrolase structural superfamily. It catalyzes the selective hydrolysis of side chain amide/acyl bond of penicillins and cephalosporins whereas the labile amide/acyl bond in the β-lactam ring remains intact. This review summarizes the production aspects of PGA from various microbial sources at optimized conditions. The minimal yield from wild strains has been extensively improved using varying strain improvement techniques like recombination and mutagenesis; further applied for the subsequent synthesis of 6-aminopenicillanic acid, which is an intermediate molecule for synthesis of a wide range of novel β-lactam antibiotics. Immobilization of PGA has also been attempted to enhance the durability of enzyme for the industrial purposes. SHORT CONCLUSION The present review provides an emphasis on exploitation of E. coli to enhance the microbial production of PGA. The latest achievements in the production of recombinant enzymes have also been discussed. Besides E. coli, other potent microbial strains with PGA activity must be explored to enhance the yields.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Rahul Vikram Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Surface Modulation of Graphene Oxide for Amidase Immobilization with High Loadings for Efficient Biocatalysis. Biomolecules 2021; 11:biom11101399. [PMID: 34680032 PMCID: PMC8533581 DOI: 10.3390/biom11101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
As a type of important and versatile biocatalyst, amidase immobilization on solid materials has received broad attention with its relatively easy procedure and available reusability. However, current porous supports have suffered from limited loadings, and it is highly desired to develop a new type of material with abundant space so as to ensure a high loading of amidase. Here, graphene oxide was adopted as the support for amidase immobilization, which showed the highest loading capacity for amidase (~3000 mg/g) to date. To the best of our knowledge, it is the first case of amidase immobilized on graphene oxide. Through surface modulation via reducing the contents of oxygen-containing functional groups, activity recovery of immobilized amidase increased from 67.8% to 85.3%. Moreover, surface-modulated graphene oxide can efficiently uptake amidase under a wide range of pH, and the maximum loading can reach ~3500 mg/g. The resultant biocomposites exhibit efficient biocatalytic performance for asymmetric synthesis of a chiral amino acid (i.e., L-4-fluorophenylglycine, an intermediate of aprepitant).
Collapse
|
14
|
Ahsaie FG, Pazuki G. Separation of phenyl acetic acid and 6-aminopenicillanic acid applying aqueous two-phase systems based on copolymers and salts. Sci Rep 2021; 11:3489. [PMID: 33568710 PMCID: PMC7875977 DOI: 10.1038/s41598-021-82476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/20/2021] [Indexed: 01/12/2023] Open
Abstract
6-Aminopenicillanic acid (6-APA) is used for synthesis of semisynthetic antibiotics. Polymer-salt aqueous two-phase systems (ATPSs) were applied for separation of 6-APA and phenyl acetic acid (PAA), as the products of hydrolyzation reaction of Penicillin G/Penicillin V. The binodal curves of ATPS composed of a copolymer (reverse Pluronic 10R5, Pluronic L35 and PEG-ran-PPG) and a salt (Tri-sodium citrate, tri-potassium citrate, di-potassium phosphate, sodium sulphate and magnesium sulphate) were obtained. The results show that, at a fixed PPG/PEG ratio, block copolymers have larger two-phase region compared with random copolymer. After screening on the partition coefficient of PAA and 6-APA separately, Na2SO4 was selected for studying the effect of the copolymer structure and the composition of salt and copolymer on partitioning, considering higher selectivity of PAA and 6-APA. 10R5-Na2SO4 ATPS was selected as the most appropriate system for separation of 6-APA and PAA. This system was used for separation of mixture of 6-APA and PAA. The results show that selectivity was [Formula: see text] 53 and smaller in a system, containing a mixture of 6-APA and PAA. This observation can be justified by the interaction between 6-APA and PAA. Molecular interaction between these two molecules were investigated by the Flory-Huggins interaction parameter.
Collapse
Affiliation(s)
- Farzaneh Ghazizadeh Ahsaie
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
15
|
Sawant AM, Sunder AV, Vamkudoth KR, Ramasamy S, Pundle A. Process Development for 6-Aminopenicillanic Acid Production Using Lentikats-Encapsulated Escherichia coli Cells Expressing Penicillin V Acylase. ACS OMEGA 2020; 5:28972-28976. [PMID: 33225127 PMCID: PMC7675567 DOI: 10.1021/acsomega.0c02813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/26/2020] [Indexed: 05/07/2023]
Abstract
Penicillin V acylase (PVA, EC 3.5.1.11) hydrolyzes the side chain of phenoxymethylpenicillin (Pen V) and finds application in the manufacture of the pharmaceutical intermediate 6-aminopenicillanic acid (6-APA). Here, we report the scale-up of cultivation of Escherichia coli whole cells expressing a highly active PVA from Pectobacterium atrosepticum and their encapsulation in polyvinyl alcohol-poly(ethylene glycol) Lentikats hydrogels. A biocatalytic process for the hydrolysis of 2% (w/v) Pen V was set up in a 2 L reactor using the Lentikats-immobilized whole cells, with a customized setup to enable continuous downstream processing of the reaction products. The biocatalytic reaction afforded complete conversion of Pen V for 10 reaction cycles, with an overall 90% conversion up to 50 cycles. The bioprocess was further scaled up to the pilot-scale at 10 L, enabling complete conversion of Pen V to 6-APA for 10 cycles. The 6-APA and phenoxy acetic acid products were recovered from downstream processing with isolated yields of 85-90 and 87-92%, respectively. Immobilization in Lentikats beads improved the stability of the whole cells on storage, maintaining 90-100% activity and similar conversion efficiency after 3 months at 4 °C. The robust PVA biocatalyst can be employed in a continuous process to provide a sustainable route for bulk 6-APA production from Pen V.
Collapse
Affiliation(s)
- Amol M. Sawant
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
- Biochemical
Sciences Division, National Chemical Laboratory-CSIR, Pune 411008, India
| | | | - Koteswara Rao Vamkudoth
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
- Biochemical
Sciences Division, National Chemical Laboratory-CSIR, Pune 411008, India
| | - Sureshkumar Ramasamy
- Biochemical
Sciences Division, National Chemical Laboratory-CSIR, Pune 411008, India
| | - Archana Pundle
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
- Biochemical
Sciences Division, National Chemical Laboratory-CSIR, Pune 411008, India
| |
Collapse
|
16
|
Liu R, Huang W, Pan S, Li Y, Yu L, He D. Covalent immobilization and characterization of penicillin G acylase on magnetic Fe2O3/Fe3O4 heterostructure nanoparticles prepared via a novel solution combustion and gel calcination process. Int J Biol Macromol 2020; 162:1587-1596. [DOI: 10.1016/j.ijbiomac.2020.07.283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
|