1
|
Boehm CA, Donay C, Lubig A, Ruetten S, Sesa M, Fernández-Colino A, Reese S, Jockenhoevel S. Bio-Inspired Fiber Reinforcement for Aortic Valves: Scaffold Production Process and Characterization. Bioengineering (Basel) 2023; 10:1064. [PMID: 37760166 PMCID: PMC10525898 DOI: 10.3390/bioengineering10091064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The application of tissue-engineered heart valves in the high-pressure circulatory system is still challenging. One possible solution is the development of biohybrid scaffolds with textile reinforcement to achieve improved mechanical properties. In this article, we present a manufacturing process of bio-inspired fiber reinforcement for an aortic valve scaffold. The reinforcement structure consists of polyvinylidene difluoride monofilament fibers that are biomimetically arranged by a novel winding process. The fibers were embedded and fixated into electrospun polycarbonate urethane on a cylindrical collector. The scaffold was characterized by biaxial tensile strength, bending stiffness, burst pressure and hemodynamically in a mock circulation system. The produced fiber-reinforced scaffold showed adequate acute mechanical and hemodynamic properties. The transvalvular pressure gradient was 3.02 ± 0.26 mmHg with an effective orifice area of 2.12 ± 0.22 cm2. The valves sustained aortic conditions, fulfilling the ISO-5840 standards. The fiber-reinforced scaffold failed in a circumferential direction at a stress of 461.64 ± 58.87 N/m and a strain of 49.43 ± 7.53%. These values were above the levels of tested native heart valve tissue. Overall, we demonstrated a novel manufacturing approach to develop a fiber-reinforced biomimetic scaffold for aortic heart valve tissue engineering. The characterization showed that this approach is promising for an in situ valve replacement.
Collapse
Affiliation(s)
- Christian A. Boehm
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
| | - Christine Donay
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
| | - Andreas Lubig
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
| | - Stephan Ruetten
- Electron Microscopy Facility, University Hospital Aachen, Pauwelstr. 30, 52074 Aachen, Germany;
| | - Mahmoud Sesa
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany; (M.S.); (S.R.)
| | - Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
| | - Stefanie Reese
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany; (M.S.); (S.R.)
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.B.); (C.D.); (A.L.); (A.F.-C.)
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus, Urmonderbaan 22, 6167 Geleen, The Netherlands
| |
Collapse
|
2
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
3
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
4
|
Wang Y, Tao M, Wei H, Arslan Ahmad M, Ma Y, Mao X, Hao L, Ao Q. PLCL vascular external sheath carrying prednisone for improving patency rate of the vein graft. Tissue Eng Part A 2021; 28:394-404. [PMID: 34605672 DOI: 10.1089/ten.tea.2021.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coronary artery bypass graft surgery (CABG) is an impactful treatment for coronary heart disease. Intimal hyperplasia is the central reason for the restenosis of vein grafts after CABG. The introduction of external vascular sheaths around VGs (VGs) can effectively inhibit intimal hyperplasia and ensure the patency of VGs. In this study, the well-known biodegradable copolymer poly (ε-caprolactone-co-L, L-lactide) (PLCL) was electrospun into high porosity external sheaths. The prednisone loaded in the PLCL sheath was slowly released during the degradation process of PLCL. Under the combined effects of sheath and prednisone, intimal hyperplasia was inhibited. For the cell experiments, all sheaths show low cytotoxicity to L929 cells at different concentrations at different time intervals. The ultrasonography and histological results showed prominent dilation and intimal hyperplasia of VG without sheath after two months of surgery. But there was no dilation in PLCL and PLCLPrednisone groups. Notably, the prednisone-loaded sheath group exhibited efficacy in inhibiting intimal hyperplasia and ensured graft patency.
Collapse
Affiliation(s)
- Yang Wang
- China Medical University, 38019, School of Forensic Medicine, Shenyang, China.,China Medical University, School of Intelligent Medicine, Shenyang, China;
| | - Meihan Tao
- China Medical University, 38019, School of Intelligent Medicine, Shenyang, China;
| | - Huan Wei
- The First Affiliated Hospital of China Medical University, 159407, Shenyang, Liaoning, China;
| | | | - Yizhan Ma
- China Medical University, 38019, School of Intelligent Medicine, Shenyang, China;
| | - Xiaoyan Mao
- China Medical University, 38019, School of Intelligent Medicine, Shenyang, China;
| | - Liang Hao
- China Medical University, School of Forensic Medicine, Shenyang, China;
| | - Qiang Ao
- China Medical University, 38019, School of Intelligent Medicine, Shenyang, China.,Sichuan University, 12530, Chengdu, Sichuan, China;
| |
Collapse
|
5
|
Liu X, Liu S, Feng S, Li K, Fan Y, Wang X, Xiao J, Bai W, Chen D, Xiong C, Zhang L. Biodegradable cross‐linked poly(1,3‐trimethylene carbonate) networks formed by gamma irradiation under vacuum. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiliang Liu
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences, School of Chemical Sciences Beijing China
| | - Song Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment Tsinghua University Beijing China
| | - Shaomin Feng
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences, School of Chemical Sciences Beijing China
| | - Kaiqi Li
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences, School of Chemical Sciences Beijing China
| | - Youkun Fan
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences, School of Chemical Sciences Beijing China
| | - Xin Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Jianping Xiao
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Wei Bai
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Dongliang Chen
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Lifang Zhang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| |
Collapse
|
6
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|